2,578
Views
63
CrossRef citations to date
0
Altmetric
Research Paper

Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions

, &
Pages 864-872 | Received 08 Feb 2013, Accepted 24 Jun 2013, Published online: 27 Jun 2013

References

  • Reinders J, Paszkowski J. Unlocking the Arabidopsis epigenome. Epigenetics 2009; 4:557 - 63; http://dx.doi.org/10.4161/epi.4.8.10347; PMID: 19934651
  • Zhang M, Kimatu JN, Xu K, Liu B. DNA cytosine methylation in plant development. J Genet Genomics 2010; 37:1 - 12; http://dx.doi.org/10.1016/S1673-8527(09)60020-5; PMID: 20171573
  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, et al. Epigenetic inheritance in rice plants. Ann Bot 2007; 100:205 - 17; http://dx.doi.org/10.1093/aob/mcm110; PMID: 17576658
  • Wang X, Elling AA, Li X, Li N, Peng Z, He G, et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 2009; 21:1053 - 69; http://dx.doi.org/10.1105/tpc.109.065714; PMID: 19376930
  • Chen M, Lv S, Meng Y. Epigenetic performers in plants. Dev Growth Differ 2010; 52:555 - 66; http://dx.doi.org/10.1111/j.1440-169X.2010.01192.x; PMID: 20646028
  • Meyer P. DNA methylation systems and targets in plants. FEBS Lett 2011; 585:2008 - 15; http://dx.doi.org/10.1016/j.febslet.2010.08.017; PMID: 20727353
  • Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A 1996; 93:8449 - 54; http://dx.doi.org/10.1073/pnas.93.16.8449; PMID: 8710891
  • Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 2012; 151:167 - 80; http://dx.doi.org/10.1016/j.cell.2012.07.034; PMID: 23021223
  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002; 416:556 - 60; http://dx.doi.org/10.1038/nature731; PMID: 11898023
  • Cao X, Jacobsen SE. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 2002; 12:1138 - 44; http://dx.doi.org/10.1016/S0960-9822(02)00925-9; PMID: 12121623
  • Zhang X. The epigenetic landscape of plants. Science 2008; 320:489 - 92; http://dx.doi.org/10.1126/science.1153996; PMID: 18436779
  • Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science 2010; 330:622 - 7; http://dx.doi.org/10.1126/science.1190614; PMID: 21030646
  • Miura A, Nakamura M, Inagaki S, Kobayashi A, Saze H, Kakutani T. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J 2009; 28:1078 - 86; http://dx.doi.org/10.1038/emboj.2009.59; PMID: 19262562
  • Qiu YL, Palmer JD. Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 1999; 4:26 - 30; http://dx.doi.org/10.1016/S1360-1385(98)01361-2; PMID: 10234267
  • Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012; 485:635 - 41; http://dx.doi.org/10.1038/nature11119; PMID: 22660326
  • Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, et al. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 2008; 228:391 - 9; http://dx.doi.org/10.1007/s00425-008-0743-z; PMID: 18488247
  • González RM, Ricardi MM, Iusem ND. Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol 2011; 11:94; http://dx.doi.org/10.1186/1471-2229-11-94; PMID: 21599976
  • Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 2013; 31:154 - 9; http://dx.doi.org/10.1038/nbt.2462; PMID: 23354102
  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins. Plant Physiol 2008; 148:6 - 24; http://dx.doi.org/10.1104/pp.108.120725; PMID: 18772351
  • Frankel N, Carrari F, Hasson E, Iusem ND. Evolutionary history of the Asr gene family. Gene 2006; 378:74 - 83; http://dx.doi.org/10.1016/j.gene.2006.05.010; PMID: 16822623
  • Maskin L, Gudesblat GE, Moreno JE, Carrari FO, Frankel NS, Sambade A, et al. Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Plant Sci 2001; 161:739 - 46; http://dx.doi.org/10.1016/S0168-9452(01)00464-2
  • Konrad Z, Bar-Zvi D. Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 2008; 227:1213 - 9; http://dx.doi.org/10.1007/s00425-008-0693-5; PMID: 18270732
  • Maskin L, Frankel N, Gudesblat G, Demergasso MJ, Pietrasanta LI, Iusem ND. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss. Biochem Biophys Res Commun 2007; 352:831 - 5; http://dx.doi.org/10.1016/j.bbrc.2006.11.115; PMID: 17157822
  • Ricardi MM, Guaimas FF, González RM, Burrieza HP, López-Fernández MP, Jares-Erijman EA, et al. Nuclear import and dimerization of tomato ASR1, a water stress-inducible protein exclusive to plants. PLoS One 2012; 7:e41008; http://dx.doi.org/10.1371/journal.pone.0041008; PMID: 22899993
  • Moretti MB, Maskin L, Gudesblat G, García SC, Iusem ND. ASR1, a stress-induced tomato protein, protects yeast from osmotic stress. Physiol Plant 2006; 127:111 - 8; http://dx.doi.org/10.1111/j.1399-3054.2006.00664.x
  • Giombini MI, Frankel N, Iusem ND, Hasson E. Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato. Genetica 2009; 136:13 - 25; http://dx.doi.org/10.1007/s10709-008-9295-1; PMID: 18636230
  • Rossi M, Carrari F, Cabrera-Ponce JL, Vázquez-Rovere C, Herrera-Estrella L, Gudesblat G, et al. Analysis of an abscisic acid (ABA)-responsive gene promoter belonging to the Asr gene family from tomato in homologous and heterologous systems. Mol Gen Genet 1998; 258:1 - 8; http://dx.doi.org/10.1007/s004380050700; PMID: 9613566
  • Jones VA, Dolan L. The evolution of root hairs and rhizoids. Ann Bot 2012; 110:205 - 12; http://dx.doi.org/10.1093/aob/mcs136; PMID: 22730024
  • Finnegan EJ. Epialleles - a source of random variation in times of stress. Curr Opin Plant Biol 2002; 5:101 - 6; http://dx.doi.org/10.1016/S1369-5266(02)00233-9; PMID: 11856603
  • Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environ Mol Mutagen 2008; 49:61 - 72; http://dx.doi.org/10.1002/em.20347; PMID: 17948278
  • Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 2009; 12:133 - 9; http://dx.doi.org/10.1016/j.pbi.2008.12.006; PMID: 19179104
  • Caramelo JJ, Iusem ND. When cells lose water: Lessons from biophysics and molecular biology. Prog Biophys Mol Biol 2009; 99:1 - 6; http://dx.doi.org/10.1016/j.pbiomolbio.2008.10.001; PMID: 18977383
  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, et al. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 2010; 5:e9514; http://dx.doi.org/10.1371/journal.pone.0009514; PMID: 20209086
  • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693 - 705; http://dx.doi.org/10.1016/j.cell.2007.02.005; PMID: 17320507
  • Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. DNA methylation: bisulphite modification and analysis. Nat Protoc 2006; 1:2353 - 64; http://dx.doi.org/10.1038/nprot.2006.324; PMID: 17406479
  • Henderson IR, Chan SR, Cao X, Johnson L, Jacobsen SE. Accurate sodium bisulfite sequencing in plants. Epigenetics 2010; 5:47 - 9; http://dx.doi.org/10.4161/epi.5.1.10560; PMID: 20081358
  • Peng Q, Ecker JR. Detection of allele-specific methylation through a generalized heterogeneous epigenome model. Bioinformatics 2012; 28:i163 - 71; http://dx.doi.org/10.1093/bioinformatics/bts231; PMID: 22689757
  • Feng S, Jacobsen SE. Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 2011; 14:179 - 86; http://dx.doi.org/10.1016/j.pbi.2010.12.002; PMID: 21233005
  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008; 133:523 - 36; http://dx.doi.org/10.1016/j.cell.2008.03.029; PMID: 18423832
  • Shibuya K, Fukushima S, Takatsuji H. RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci U S A 2009; 106:1660 - 5; http://dx.doi.org/10.1073/pnas.0809294106; PMID: 19164525
  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006; 126:1189 - 201; http://dx.doi.org/10.1016/j.cell.2006.08.003; PMID: 16949657
  • Henderson IR, Jacobsen SE. Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 2008; 22:1597 - 606; http://dx.doi.org/10.1101/gad.1667808; PMID: 18559476
  • Widman N, Jacobsen SE, Pellegrini M. Determining the conservation of DNA methylation in Arabidopsis. Epigenetics 2009; 4:119 - 24; http://dx.doi.org/10.4161/epi.4.2.8214; PMID: 19384058
  • Diéguez MJ, Bellotto M, Afsar K, Mittelsten Scheid O, Paszkowski J. Methylation of cytosines in nonconventional methylation acceptor sites can contribute to reduced gene expression. Mol Gen Genet 1997; 253:581 - 8; http://dx.doi.org/10.1007/s004380050360; PMID: 9065691
  • Greenberg MV, Ausin I, Chan SW, Cokus SJ, Cuperus JT, Feng S, et al. Identification of genes required for de novo DNA methylation in Arabidopsis. Epigenetics 2011; 6:344 - 54; http://dx.doi.org/10.4161/epi.6.3.14242; PMID: 21150311
  • You W, Tyczewska A, Spencer M, Daxinger L, Schmid MW, Grossniklaus U, et al. Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana. BMC Plant Biol 2012; 12:51; http://dx.doi.org/10.1186/1471-2229-12-51; PMID: 22512782
  • Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 2007; 17:379 - 84; http://dx.doi.org/10.1016/j.cub.2007.01.009; PMID: 17239600
  • Johnson LM, Law JA, Khattar A, Henderson IR, Jacobsen SE. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet 2008; 4:e1000280; http://dx.doi.org/10.1371/journal.pgen.1000280; PMID: 19043555
  • Woo HR, Pontes O, Pikaard CS, Richards EJ. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev 2007; 21:267 - 77; http://dx.doi.org/10.1101/gad.1512007; PMID: 17242155
  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 2001; 292:2077 - 80; http://dx.doi.org/10.1126/science.1059745; PMID: 11349138
  • Saze H, Tsugane K, Kanno T, Nishimura T. DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 2012; 53:766 - 84; http://dx.doi.org/10.1093/pcp/pcs008; PMID: 22302712
  • Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, et al. Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 2011; 52:149 - 61; http://dx.doi.org/10.1093/pcp/pcq182; PMID: 21097475
  • Zhang M, Xu C, von Wettstein D, Liu B. Tissue-specific differences in cytosine methylation and their association with differential gene expression in sorghum. Plant Physiol 2011; 156:1955 - 66; http://dx.doi.org/10.1104/pp.111.176842; PMID: 21632971
  • Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, et al. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 2012; 13:300; http://dx.doi.org/10.1186/1471-2164-13-300; PMID: 22747568
  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 2011; 62:1951 - 60; http://dx.doi.org/10.1093/jxb/erq391; PMID: 21193578
  • Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 2013; 152:352 - 64; http://dx.doi.org/10.1016/j.cell.2012.10.054; PMID: 23313553
  • Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. Nature 2007; 447:418 - 24; http://dx.doi.org/10.1038/nature05917; PMID: 17522675
  • Gehring M, Henikoff S. DNA methylation dynamics in plant genomes. Biochim Biophys Acta 2007; 1769:276 - 86; http://dx.doi.org/10.1016/j.bbaexp.2007.01.009; PMID: 17341434
  • Hunter B, Hollister JD, Bomblies K. Epigenetic inheritance: what news for evolution?. Curr Biol 2012; 22:R54 - 6; http://dx.doi.org/10.1016/j.cub.2011.11.054; PMID: 22280908
  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, et al. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 2010; 3:594 - 602; http://dx.doi.org/10.1093/mp/ssq014; PMID: 20410255
  • Peralta IE, Spooner DM. Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 2001; 88:1888 - 902; http://dx.doi.org/10.2307/3558365; PMID: 21669622
  • Wojdacz TK, Hansen LL, Dobrovic A. A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes 2008; 1:54; http://dx.doi.org/10.1186/1756-0500-1-54; PMID: 18710507
  • Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics 2008; 9:371; http://dx.doi.org/10.1186/1471-2105-9-371; PMID: 18786255
  • Ricardi MM, González RM, Iusem ND. Protocol: fine-tuning of a Chromatin Immunoprecipitation (ChIP) protocol in tomato. Plant Methods 2010; 6:11; http://dx.doi.org/10.1186/1746-4811-6-11; PMID: 20380723
  • Tamás L, Simonovicova M, Huttova J, Mistrik I. Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot 2004; 51:281 - 8; http://dx.doi.org/10.1016/j.envexpbot.2003.11.007