2,615
Views
52
CrossRef citations to date
0
Altmetric
Research Paper

Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing

, , , , &
Pages 979-989 | Received 06 May 2013, Accepted 18 Jul 2013, Published online: 24 Jul 2013

References

  • Elango N, Yi SV. DNA methylation and structural and functional bimodality of vertebrate promoters. Mol Biol Evol 2008; 25:1602 - 8; http://dx.doi.org/10.1093/molbev/msn110; PMID: 18469331
  • Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, et al. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell 2012; 47:633 - 47; http://dx.doi.org/10.1016/j.molcel.2012.06.019; PMID: 22841485
  • Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005; 434:400 - 4; http://dx.doi.org/10.1038/nature03479; PMID: 15772666
  • Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, et al. Large-scale structure of genomic methylation patterns. Genome Res 2006; 16:157 - 63; http://dx.doi.org/10.1101/gr.4362006; PMID: 16365381
  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9:465 - 76; http://dx.doi.org/10.1038/nrg2341; PMID: 18463664
  • Igarashi J, Muroi S, Kawashima H, Wang X, Shinojima Y, Kitamura E, et al. Quantitative analysis of human tissue-specific differences in methylation. Biochem Biophys Res Commun 2008; 376:658 - 64; http://dx.doi.org/10.1016/j.bbrc.2008.09.044; PMID: 18805397
  • Chatterjee A, Morison IM. Monozygotic twins: genes are not the destiny?. Bioinformation 2011; 7:369 - 70; http://dx.doi.org/10.6026/97320630007369; PMID: 22355239
  • Baylin S, Bestor TH. Altered methylation patterns in cancer cell genomes: cause or consequence?. Cancer Cell 2002; 1:299 - 305; http://dx.doi.org/10.1016/S1535-6108(02)00061-2; PMID: 12086841
  • Mirbahai L, Williams TD, Zhan H, Gong Z, Chipman JK. Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis. BMC Genomics 2011; 12:3; http://dx.doi.org/10.1186/1471-2164-12-3; PMID: 21205313
  • Bailey GS, Williams DE, Hendricks JD. Fish models for environmental carcinogenesis: the rainbow trout. Environ Health Perspect 1996; 104:Suppl 1 5 - 21; PMID: 8722107
  • Wardle FC, Odom DT, Bell GW, Yuan B, Danford TW, Wiellette EL, et al. Zebrafish promoter microarrays identify actively transcribed embryonic genes. Genome Biol 2006; 7:R71; http://dx.doi.org/10.1186/gb-2006-7-8-r71; PMID: 16889661
  • Berghmans S, Jette C, Langenau D, Hsu K, Stewart R, Look T, et al. Making waves in cancer research: new models in the zebrafish. Biotechniques 2005; 39:227 - 37; http://dx.doi.org/10.2144/05392RV02; PMID: 16116796
  • Zon LI. Zebrafish: a new model for human disease. Genome Res 1999; 9:99 - 100; PMID: 10022974
  • Lam SH, Gong Z. Modeling liver cancer using zebrafish: a comparative oncogenomics approach. Cell Cycle 2006; 5:573 - 7; http://dx.doi.org/10.4161/cc.5.6.2550; PMID: 16582610
  • Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 2006; 24:73 - 5; http://dx.doi.org/10.1038/nbt1169; PMID: 16327811
  • Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007; 8:353 - 67; http://dx.doi.org/10.1038/nrg2091; PMID: 17440532
  • Wu SF, Zhang H, Hammoud SS, Potok M, Nix DA, Jones DA, et al. DNA methylation profiling in zebrafish. Methods Cell Biol 2011; 104:327 - 39; http://dx.doi.org/10.1016/B978-0-12-374814-0.00018-5; PMID: 21924171
  • Goll MG, Halpern ME. DNA methylation in zebrafish. Prog Mol Biol Transl Sci 2011; 101:193 - 218; http://dx.doi.org/10.1016/B978-0-12-387685-0.00005-6; PMID: 21507352
  • Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 2013; 153:773 - 84; http://dx.doi.org/10.1016/j.cell.2013.04.041; PMID: 23663777
  • Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 2013; 153:759 - 72; http://dx.doi.org/10.1016/j.cell.2013.04.030; PMID: 23663776
  • Mhanni AA, McGowan RA. Global changes in genomic methylation levels during early development of the zebrafish embryo. Dev Genes Evol 2004; 214:412 - 7; http://dx.doi.org/10.1007/s00427-004-0418-0; PMID: 15309635
  • Macleod D, Clark VH, Bird A. Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nat Genet 1999; 23:139 - 40; http://dx.doi.org/10.1038/13767; PMID: 10508504
  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 2010; 107:8689 - 94; http://dx.doi.org/10.1073/pnas.1002720107; PMID: 20395551
  • Andersen IS, Reiner AH, Aanes H, Aleström P, Collas P. Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol 2012; 13:R65; http://dx.doi.org/10.1186/gb-2012-13-7-r65; PMID: 22830626
  • Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010; 11:191 - 203; http://dx.doi.org/10.1038/nrg2732; PMID: 20125086
  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454:766 - 70; PMID: 18600261
  • Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet 2011; 7:e1002228; http://dx.doi.org/10.1371/journal.pgen.1002228; PMID: 21852959
  • Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011; 144:439 - 52; http://dx.doi.org/10.1016/j.cell.2010.12.032; PMID: 21295703
  • Steine EJ, Ehrich M, Bell GW, Raj A, Reddy S, van Oudenaarden A, et al. Genes methylated by DNA methyltransferase 3b are similar in mouse intestine and human colon cancer. J Clin Invest 2011; 121:1748 - 52; http://dx.doi.org/10.1172/JCI43169; PMID: 21490393
  • Iwamoto K, Bundo M, Ueda J, Oldham MC, Ukai W, Hashimoto E, et al. Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Res 2011; 21:688 - 96; http://dx.doi.org/10.1101/gr.112755.110; PMID: 21467265
  • Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 2008; 28:10576 - 86; http://dx.doi.org/10.1523/JNEUROSCI.1786-08.2008; PMID: 18923034
  • Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010; 13:1338 - 44; http://dx.doi.org/10.1038/nn.2672; PMID: 20975758
  • Migliore L, Coppedè F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 2009; 667:82 - 97; http://dx.doi.org/10.1016/j.mrfmmm.2008.10.011; PMID: 19026668
  • Samaco RC, Neul JL. Complexities of Rett syndrome and MeCP2. J Neurosci 2011; 31:7951 - 9; http://dx.doi.org/10.1523/JNEUROSCI.0169-11.2011; PMID: 21632916
  • Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82:696 - 711; http://dx.doi.org/10.1016/j.ajhg.2008.01.008; PMID: 18319075
  • Guo Y, Monahan K, Wu H, Gertz J, Varley KE, Li W, et al. CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice. Proc Natl Acad Sci U S A 2012; 109:21081 - 6; http://dx.doi.org/10.1073/pnas.1219280110; PMID: 23204437
  • Chatterjee A, Stockwell PA, Rodger EJ, Morison IM. Comparison of alignment software for genome-wide bisulphite sequence data. Nucleic Acids Res 2012; 40:e79; http://dx.doi.org/10.1093/nar/gks150; PMID: 22344695
  • Hartung T, Zhang L, Kanwar R, Khrebtukova I, Reinhardt M, Wang C, et al. Diametrically opposite methylome-transcriptome relationships in high- and low-CpG promoter genes in postmitotic neural rat tissue. Epigenetics 2012; 7:421 - 8; http://dx.doi.org/10.4161/epi.19565; PMID: 22415013
  • Shimoda N, Yamakoshi K, Miyake A, Takeda H. Identification of a gene required for de novo DNA methylation of the zebrafish no tail gene. Dev Dyn 2005; 233:1509 - 16; http://dx.doi.org/10.1002/dvdy.20455; PMID: 15937923
  • Goll MG, Anderson R, Stainier DY, Spradling AC, Halpern ME. Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 2009; 182:747 - 55; http://dx.doi.org/10.1534/genetics.109.102079; PMID: 19433629
  • Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008; 135:1201 - 12; http://dx.doi.org/10.1016/j.cell.2008.11.042; PMID: 19109892
  • Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 2012; 148:816 - 31; http://dx.doi.org/10.1016/j.cell.2011.12.035; PMID: 22341451
  • Wang J, Xia Y, Li L, Gong D, Yao Y, Luo H, et al. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics 2013; 14:11; http://dx.doi.org/10.1186/1471-2164-14-11; PMID: 23324053
  • Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 2013; 496:494 - 7; http://dx.doi.org/10.1038/nature11992; PMID: 23594742
  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496:498 - 503; http://dx.doi.org/10.1038/nature12111; PMID: 23594743
  • Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 2006; 103:1412 - 7; http://dx.doi.org/10.1073/pnas.0510310103; PMID: 16432200
  • Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 2002; 99:3740 - 5; http://dx.doi.org/10.1073/pnas.052410099; PMID: 11891299
  • Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987; 196:261 - 82; http://dx.doi.org/10.1016/0022-2836(87)90689-9; PMID: 3656447
  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009; 41:178 - 86; http://dx.doi.org/10.1038/ng.298; PMID: 19151715
  • Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41:1350 - 3; http://dx.doi.org/10.1038/ng.471; PMID: 19881528
  • Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010; 20:320 - 31; http://dx.doi.org/10.1101/gr.101907.109; PMID: 20133333
  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011; 479:74 - 9; http://dx.doi.org/10.1038/nature10442; PMID: 21964334
  • Hahn MA, Wu X, Li AX, Hahn T, Pfeifer GP. Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One 2011; 6:e18844; http://dx.doi.org/10.1371/journal.pone.0018844; PMID: 21526191
  • Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet 2011; 20:670 - 80; http://dx.doi.org/10.1093/hmg/ddq513; PMID: 21112978
  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462:315 - 22; http://dx.doi.org/10.1038/nature08514; PMID: 19829295
  • Bird A, Tate P, Nan X, Campoy J, Meehan R, Cross S, et al. Studies of DNA methylation in animals. J Cell Sci Suppl 1995; 19:37 - 9; http://dx.doi.org/10.1242/jcs.1995.Supplement_19.5; PMID: 8655645
  • Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of human gene-body DNA methylation. Oncotarget 2012; 3:462 - 74; PMID: 22577155
  • Bogdanovic O, Fernandez-Miñán A, Tena JJ, de la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res 2012; 22:2043 - 53; http://dx.doi.org/10.1101/gr.134833.111; PMID: 22593555
  • Marsman J, Horsfield JA. Long distance relationships: enhancer-promoter communication and dynamic gene transcription. Biochim Biophys Acta 2012; 1819:1217 - 27; http://dx.doi.org/10.1016/j.bbagrm.2012.10.008; PMID: 23124110
  • Kriukienė E, Liutkevičiūtė Z, Klimašauskas S. 5-Hydroxymethylcytosine–the elusive epigenetic mark in mammalian DNA. Chem Soc Rev 2012; 41:6916 - 30; http://dx.doi.org/10.1039/c2cs35104h; PMID: 22842880
  • Chatterjee A, Rodger EJ, Stockwell PA, Weeks RJ, Morison IM. Technical considerations for reduced representation bisulfite sequencing with multiplexed libraries. J Biomed Biotechnol 2012; 2012:741542; http://dx.doi.org/10.1155/2012/741542; PMID: 23193365
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011; 27:1571 - 2; http://dx.doi.org/10.1093/bioinformatics/btr167; PMID: 21493656
  • Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012; 13:R87; http://dx.doi.org/10.1186/gb-2012-13-10-r87; PMID: 23034086
  • Xin Y, Chanrion B, O’Donnell AH, Milekic M, Costa R, Ge Y, et al. MethylomeDB: a database of DNA methylation profiles of the brain. Nucleic Acids Res 2012; 40:Database issue D1245 - 9; http://dx.doi.org/10.1093/nar/gkr1193; PMID: 22140101
  • Smith ZD, Gu H, Bock C, Gnirke A, Meissner A. High-throughput bisulfite sequencing in mammalian genomes. Methods 2009; 48:226 - 32; http://dx.doi.org/10.1016/j.ymeth.2009.05.003; PMID: 19442738