1,628
Views
29
CrossRef citations to date
0
Altmetric
Review

Interplay of chromatin modifications and non-coding RNAs in the heart

, , &
Pages 101-112 | Received 14 Aug 2013, Accepted 06 Sep 2013, Published online: 10 Oct 2013

References

  • Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 2012; 151:206 - 20; http://dx.doi.org/10.1016/j.cell.2012.07.035; PMID: 22981692
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403:41 - 5; http://dx.doi.org/10.1038/47412; PMID: 10638745
  • Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 2012; 151:221 - 32; http://dx.doi.org/10.1016/j.cell.2012.08.027; PMID: 22981225
  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191 - 227; http://dx.doi.org/10.1016/j.pharmthera.2010.04.005; PMID: 20438756
  • Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 2010; 122:2727 - 35; http://dx.doi.org/10.1161/CIRCULATIONAHA.110.942268; PMID: 21173361
  • Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003; 65:45 - 79; http://dx.doi.org/10.1146/annurev.physiol.65.092101.142243; PMID: 12524460
  • Chang L, Kiriazis H, Gao XM, Du XJ, El-Osta A. Cardiac genes show contextual SWI/SNF interactions with distinguishable gene activities. Epigenetics 2011; 6:760 - 8; http://dx.doi.org/10.4161/epi.6.6.16007; PMID: 21586902
  • Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 2006; 98:15 - 24; http://dx.doi.org/10.1161/01.RES.0000197782.21444.8f; PMID: 16397154
  • Mathiyalagan P, Chang L, Du XJ, El-Osta A. Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle 2010; 9:612 - 7; http://dx.doi.org/10.4161/cc.9.3.10612; PMID: 20090419
  • Delgado-Olguín P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 2012; 44:343 - 7; http://dx.doi.org/10.1038/ng.1068; PMID: 22267199
  • Lai HL, Grachoff M, McGinley AL, Khan FF, Warren CM, Chowdhury SA, Wolska BM, Solaro RJ, Geenen DL, Wang QT. Maintenance of adult cardiac function requires the chromatin factor Asxl2. J Mol Cell Cardiol 2012; 53:734 - 41; http://dx.doi.org/10.1016/j.yjmcc.2012.08.014; PMID: 23046516
  • Han P, Hang CT, Yang J, Chang CP. Chromatin remodeling in cardiovascular development and physiology. Circ Res 2011; 108:378 - 96; http://dx.doi.org/10.1161/CIRCRESAHA.110.224287; PMID: 21293009
  • Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguín P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y, et al. Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun 2011; 2:187; http://dx.doi.org/10.1038/ncomms1187; PMID: 21304516
  • Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 2012; 111:1349 - 62; http://dx.doi.org/10.1161/CIRCRESAHA.112.268953; PMID: 23104877
  • Luther HP. Role of endogenous antisense RNA in cardiac gene regulation. J Mol Med (Berl) 2005; 83:26 - 32; http://dx.doi.org/10.1007/s00109-004-0613-5; PMID: 15592803
  • Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013; 152:570 - 83; http://dx.doi.org/10.1016/j.cell.2013.01.003; PMID: 23352431
  • Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013; 24:206 - 14; http://dx.doi.org/10.1016/j.devcel.2012.12.012; PMID: 23369715
  • Mattick JS. RNA as the substrate for epigenome-environment interactions: RNA guidance of epigenetic processes and the expansion of RNA editing in animals underpins development, phenotypic plasticity, learning, and cognition. Bioessays 2010; 32:548 - 52; http://dx.doi.org/10.1002/bies.201000028; PMID: 20544741
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10:155 - 9; http://dx.doi.org/10.1038/nrg2521; PMID: 19188922
  • Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20:300 - 7; http://dx.doi.org/10.1038/nsmb.2480; PMID: 23463315
  • Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A, et al. The reality of pervasive transcription. PLoS Biol 2011; 9:e1000625 - , discussion e1001102; http://dx.doi.org/10.1371/journal.pbio.1000625; PMID: 21765801
  • Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961; 3:318 - 356
  • Belotserkovskii BP, De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC. A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J Biol Chem 2007; 282:32433 - 32441
  • Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 2010; 24:2264 - 2269
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75:843 - 54; http://dx.doi.org/10.1016/0092-8674(93)90529-Y; PMID: 8252621
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75:855 - 62; http://dx.doi.org/10.1016/0092-8674(93)90530-4; PMID: 8252622
  • Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008; 105:2111 - 6; http://dx.doi.org/10.1073/pnas.0710228105; PMID: 18256189
  • Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tönjes M, Dunkel I, Sperling SR. The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet 2011; 7:e1001313; http://dx.doi.org/10.1371/journal.pgen.1001313; PMID: 21379568
  • Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129:303 - 17; http://dx.doi.org/10.1016/j.cell.2007.03.030; PMID: 17397913
  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316:575 - 9; http://dx.doi.org/10.1126/science.1139089; PMID: 17379774
  • Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Soldà G, Simons C, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 2008; 18:1433 - 45; http://dx.doi.org/10.1101/gr.078378.108; PMID: 18562676
  • Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, Wakamatsu A, Isogai T, Suzuki Y, Akimitsu N. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 2012; 22:947 - 56; http://dx.doi.org/10.1101/gr.130559.111; PMID: 22369889
  • Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA, Reinberg D. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 2010; 24:2615 - 20; http://dx.doi.org/10.1101/gad.1983810; PMID: 21123648
  • Han Y, Liu Y, Gui Y, Cai Z. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol 2013; 107:555 - 9; http://dx.doi.org/10.1002/jso.23264; PMID: 22961206
  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009; 106:11667 - 72; http://dx.doi.org/10.1073/pnas.0904715106; PMID: 19571010
  • Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477:295 - 300; http://dx.doi.org/10.1038/nature10398; PMID: 21874018
  • Schmidt LH, Spieker T, Koschmieder S, Schäffers S, Humberg J, Jungen D, Bulk E, Hascher A, Wittmer D, Marra A, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. [RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth.] J Thorac Oncol 2011; 6:1984 - 92; http://dx.doi.org/10.1097/JTO.0b013e3182307eac; PMID: 22088988
  • Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 2011; 25:2573 - 8; http://dx.doi.org/10.1101/gad.178780.111; PMID: 22155924
  • Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G 3rd, Kenny PJ, Wahlestedt C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008; 14:723 - 30; http://dx.doi.org/10.1038/nm1784; PMID: 18587408
  • Chung DW, Rudnicki DD, Yu L, Margolis RL. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum Mol Genet 2011; 20:3467 - 77; http://dx.doi.org/10.1093/hmg/ddr263; PMID: 21672921
  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81:145 - 66; http://dx.doi.org/10.1146/annurev-biochem-051410-092902; PMID: 22663078
  • Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011; 469:343 - 9; http://dx.doi.org/10.1038/nature09784; PMID: 21248841
  • Kanhere A, Jenner RG. Noncoding RNA localisation mechanisms in chromatin regulation. Silence 2012; 3:2; http://dx.doi.org/10.1186/1758-907X-3-2; PMID: 22292981
  • Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E. Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer 2013; 133:267 - 74; http://dx.doi.org/10.1002/ijc.27859; PMID: 23001607
  • Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2008; 322:1717 - 20; http://dx.doi.org/10.1126/science.1163802; PMID: 18988810
  • Pagans S, Kauder SE, Kaehlcke K, Sakane N, Schroeder S, Dormeyer W, Trievel RC, Verdin E, Schnolzer M, Ott M. The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 2010; 7:234 - 44; http://dx.doi.org/10.1016/j.chom.2010.02.005; PMID: 20227666
  • Krajewski WA, Nakamura T, Mazo A, Canaani E. A motif within SET-domain proteins binds single-stranded nucleic acids and transcribed and supercoiled DNAs and can interfere with assembly of nucleosomes. Mol Cell Biol 2005; 25:1891 - 9; http://dx.doi.org/10.1128/MCB.25.5.1891-1899.2005; PMID: 15713643
  • Xu S, Wu J, Sun B, Zhong C, Ding J. Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding. Nucleic Acids Res 2011; 39:4438 - 49; http://dx.doi.org/10.1093/nar/gkr019; PMID: 21266482
  • Ruthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 2007; 25:15 - 30; http://dx.doi.org/10.1016/j.molcel.2006.12.014; PMID: 17218268
  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472:120 - 4; http://dx.doi.org/10.1038/nature09819; PMID: 21423168
  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329:689 - 93; http://dx.doi.org/10.1126/science.1192002; PMID: 20616235
  • He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, Zhang B, Hsing M, Christodoulou DC, Cahan P, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res 2012; 110:406 - 15; http://dx.doi.org/10.1161/CIRCRESAHA.111.252205; PMID: 22158708
  • Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011; 30:1956 - 62; http://dx.doi.org/10.1038/onc.2010.568; PMID: 21151178
  • Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, et al, PROCARDIS consortium. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 2008; 17:806 - 14; http://dx.doi.org/10.1093/hmg/ddm352; PMID: 18048406
  • McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007; 316:1488 - 91; http://dx.doi.org/10.1126/science.1142447; PMID: 17478681
  • Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 2010; 464:409 - 12; http://dx.doi.org/10.1038/nature08801; PMID: 20173736
  • Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38:662 - 74; http://dx.doi.org/10.1016/j.molcel.2010.03.021; PMID: 20541999
  • Sato K, Nakagawa H, Tajima A, Yoshida K, Inoue I. ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol Rep 2010; 24:701 - 7; PMID: 20664976
  • Krenz M, Robbins J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol 2004; 44:2390 - 7; http://dx.doi.org/10.1016/j.jacc.2004.09.044; PMID: 15607403
  • Mahdavi V, Chambers AP, Nadal-Ginard B. Cardiac alpha- and beta-myosin heavy chain genes are organized in tandem. Proc Natl Acad Sci U S A 1984; 81:2626 - 30; http://dx.doi.org/10.1073/pnas.81.9.2626; PMID: 6585819
  • Haddad F, Qin AX, Bodell PW, Zhang LY, Guo H, Giger JM, Baldwin KM. Regulation of antisense RNA expression during cardiac MHC gene switching in response to pressure overload. Am J Physiol Heart Circ Physiol 2006; 290:H2351 - 61; http://dx.doi.org/10.1152/ajpheart.01111.2005; PMID: 16415074
  • Haddad F, Jiang W, Bodell PW, Qin AX, Baldwin KM. Cardiac myosin heavy chain gene regulation by thyroid hormone involves altered histone modifications. Am J Physiol Heart Circ Physiol 2010; 299:H1968 - 80; http://dx.doi.org/10.1152/ajpheart.00644.2010; PMID: 20833952
  • Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 2010; 466:62 - 7; http://dx.doi.org/10.1038/nature09130; PMID: 20596014
  • Huang WY, Liew CC. A conserved GATA motif in a tissue-specific DNase I hypersensitive site of the cardiac alpha-myosin heavy chain gene. Biochem J 1997; 325:47 - 51; PMID: 9224628
  • Lee JH, Gao C, Peng G, Greer C, Ren S, Wang Y, Xiao X. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res 2011; 109:1332 - 41; http://dx.doi.org/10.1161/CIRCRESAHA.111.249433; PMID: 22034492
  • Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 2011; 124:2411 - 22; http://dx.doi.org/10.1161/CIRCULATIONAHA.111.040071; PMID: 22025602
  • Gibb EA, Vucic EA, Enfield KS, Stewart GL, Lonergan KM, Kennett JY, Becker-Santos DD, MacAulay CE, Lam S, Brown CJ, et al. Human cancer long non-coding RNA transcriptomes. PLoS One 2011; 6:e25915; http://dx.doi.org/10.1371/journal.pone.0025915; PMID: 21991387
  • Annilo T, Kepp K, Laan M. Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol Biol 2009; 10:81; http://dx.doi.org/10.1186/1471-2199-10-81; PMID: 19671135
  • Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, et al, RIKEN Genome Exploration Research Group, Genome Science Group (Genome Network Project Core Group), FANTOM Consortium. Antisense transcription in the mammalian transcriptome. Science 2005; 309:1564 - 6; http://dx.doi.org/10.1126/science.1112009; PMID: 16141073
  • Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008; 322:1845 - 8; http://dx.doi.org/10.1126/science.1162228; PMID: 19056941
  • Haddad F, Qin AX, Giger JM, Guo H, Baldwin KM. Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR. BMC Biotechnol 2007; 7:21; http://dx.doi.org/10.1186/1472-6750-7-21; PMID: 17480233
  • Voigtsberger S, Bartsch H, Baumann G, Luther HP. Cell type-specific expression of endogenous cardiac Troponin I antisense RNA in the neonatal rat heart. Mol Cell Biochem 2009; 324:1 - 11; http://dx.doi.org/10.1007/s11010-008-9974-3; PMID: 19184367
  • He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. The antisense transcriptomes of human cells. Science 2008; 322:1855 - 7; http://dx.doi.org/10.1126/science.1163853; PMID: 19056939
  • Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 2010; 7:709 - 15; http://dx.doi.org/10.1038/nmeth.1491; PMID: 20711195
  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456:470 - 6; http://dx.doi.org/10.1038/nature07509; PMID: 18978772
  • Mironov AA, Fickett JW, Gelfand MS. Frequent alternative splicing of human genes. Genome Res 1999; 9:1288 - 93; http://dx.doi.org/10.1101/gr.9.12.1288; PMID: 10613851
  • Chooniedass-Kothari S, Emberley E, Hamedani MK, Troup S, Wang X, Czosnek A, Hube F, Mutawe M, Watson PH, Leygue E. The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 2004; 566:43 - 7; http://dx.doi.org/10.1016/j.febslet.2004.03.104; PMID: 15147866
  • Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6:e1001233; http://dx.doi.org/10.1371/journal.pgen.1001233; PMID: 21151960
  • Bartsch H, Voigtsberger S, Baumann G, Morano I, Luther HP. Detection of a novel sense-antisense RNA-hybrid structure by RACE experiments on endogenous troponin I antisense RNA. RNA 2004; 10:1215 - 24; http://dx.doi.org/10.1261/rna.5261204; PMID: 15272119
  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32:232 - 46; http://dx.doi.org/10.1016/j.molcel.2008.08.022; PMID: 18951091
  • van der Brug M, Nalls MA, Cookson MR. Deep sequencing of coding and non-coding RNA in the CNS. Brain Res 2010; 1338:146 - 54; http://dx.doi.org/10.1016/j.brainres.2010.03.039; PMID: 20307502
  • Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, Rinn JL. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 2012; 30:99 - 104; http://dx.doi.org/10.1038/nbt.2024; PMID: 22081020
  • Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, Piccolboni A, Bekiranov S, Helt G, et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 2004; 14:331 - 42; http://dx.doi.org/10.1101/gr.2094104; PMID: 14993201
  • Hurwitz J, Furth JJ, Anders M, Evans A. The role of deoxyribonucleic acid in ribonucleic acid synthesis. II. The influence of deoxyribonucleic acid on the reaction. J Biol Chem 1962; 237:3752 - 9; PMID: 13955883
  • Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, Dinger ME, Mattick JS. Genome-wide analysis of long noncoding RNA stability. Genome Res 2012; 22:885 - 98; http://dx.doi.org/10.1101/gr.131037.111; PMID: 22406755
  • Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 2011; 145:622 - 34; http://dx.doi.org/10.1016/j.cell.2011.03.042; PMID: 21549415
  • Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 2011; 469:368 - 73; http://dx.doi.org/10.1038/nature09652; PMID: 21248844
  • Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci 2003; 116:2833 - 8; http://dx.doi.org/10.1242/jcs.00633; PMID: 12808017
  • Chureau C, Chantalat S, Romito A, Galvani A, Duret L, Avner P, Rougeulle C. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 2011; 20:705 - 18; http://dx.doi.org/10.1093/hmg/ddq516; PMID: 21118898
  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39:925 - 38; http://dx.doi.org/10.1016/j.molcel.2010.08.011; PMID: 20797886
  • Korostowski L, Sedlak N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet 2012; 8:e1002956; http://dx.doi.org/10.1371/journal.pgen.1002956; PMID: 23028363
  • Mondal T, Rasmussen M, Pandey GK, Isaksson A, Kanduri C. Characterization of the RNA content of chromatin. Genome Res 2010; 20:899 - 907; http://dx.doi.org/10.1101/gr.103473.109; PMID: 20404130
  • Gregory RI, Randall TE, Johnson CA, Khosla S, Hatada I, O’Neill LP, Turner BM, Feil R. DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1. Mol Cell Biol 2001; 21:5426 - 36; http://dx.doi.org/10.1128/MCB.21.16.5426-5436.2001; PMID: 11463825
  • Zappulla DC, Cech TR. RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol 2006; 71:217 - 24; http://dx.doi.org/10.1101/sqb.2006.71.011; PMID: 17381300
  • Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 2011; 44:667 - 78; http://dx.doi.org/10.1016/j.molcel.2011.08.027; PMID: 21963238
  • Simon MD, Wang CI, Kharchenko PV, West JA, Chapman BA, Alekseyenko AA, Borowsky ML, Kuroda MI, Kingston RE. The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A 2011; 108:20497 - 502; http://dx.doi.org/10.1073/pnas.1113536108; PMID: 22143764
  • Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003; 302:1212 - 5; http://dx.doi.org/10.1126/science.1090095; PMID: 14615540
  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr., Jungkamp AC, Munschauer M, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141:129 - 41; http://dx.doi.org/10.1016/j.cell.2010.03.009; PMID: 20371350
  • Guil S, Soler M, Portela A, Carrère J, Fonalleras E, Gómez A, Villanueva A, Esteller M. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 2012; 19:664 - 70; http://dx.doi.org/10.1038/nsmb.2315; PMID: 22659877
  • Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 2013; 493:231 - 5; http://dx.doi.org/10.1038/nature11661; PMID: 23201690
  • Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979; 280:339 - 40; http://dx.doi.org/10.1038/280339a0; PMID: 460409
  • Surono A, Takeshima Y, Wibawa T, Ikezawa M, Nonaka I, Matsuo M. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum Mol Genet 1999; 8:493 - 500; http://dx.doi.org/10.1093/hmg/8.3.493; PMID: 9949208
  • Zaphiropoulos PG. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol 1997; 17:2985 - 93; PMID: 9154796
  • Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7:e30733; http://dx.doi.org/10.1371/journal.pone.0030733; PMID: 22319583
  • Li XF, Lytton J. A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem 1999; 274:8153 - 60; http://dx.doi.org/10.1074/jbc.274.12.8153; PMID: 10075718
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495:384 - 8; http://dx.doi.org/10.1038/nature11993; PMID: 23446346
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495:333 - 8; http://dx.doi.org/10.1038/nature11928; PMID: 23446348
  • Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30:4414 - 22; http://dx.doi.org/10.1038/emboj.2011.359; PMID: 21964070
  • Al-Balool HH, Weber D, Liu Y, Wade M, Guleria K, Nam PL, Clayton J, Rowe W, Coxhead J, Irving J, et al. Post-transcriptional exon shuffling events in humans can be evolutionarily conserved and abundant. Genome Res 2011; 21:1788 - 99; http://dx.doi.org/10.1101/gr.116442.110; PMID: 21948523
  • Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 2012; 40:5023 - 33; http://dx.doi.org/10.1093/nar/gks144; PMID: 22344696
  • Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2011; 2:611 - 31; http://dx.doi.org/10.1002/wrna.79; PMID: 21823225
  • Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 2010; 7:995 - 1001; http://dx.doi.org/10.1038/nmeth.1529; PMID: 21057495
  • Westhof E, Romby P. The RNA structurome: high-throughput probing. Nat Methods 2010; 7:965 - 7; http://dx.doi.org/10.1038/nmeth1210-965; PMID: 21116245
  • Benhamed M, Herbig U, Ye T, Dejean A, Bischof O. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 2012; 14:266 - 75; http://dx.doi.org/10.1038/ncb2443; PMID: 22366686
  • Morris KV, Chan SW, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004; 305:1289 - 92; http://dx.doi.org/10.1126/science.1101372; PMID: 15297624
  • Huang XA, Yin H, Sweeney S, Raha D, Snyder M, Lin H. A major epigenetic programming mechanism guided by piRNAs. Dev Cell 2013; 24:502 - 16; http://dx.doi.org/10.1016/j.devcel.2013.01.023; PMID: 23434410
  • Schubert T, Pusch MC, Diermeier S, Benes V, Kremmer E, Imhof A, Längst G. Df31 protein and snoRNAs maintain accessible higher-order structures of chromatin. Mol Cell 2012; 48:434 - 44; http://dx.doi.org/10.1016/j.molcel.2012.08.021; PMID: 23022379
  • Han J, Kim D, Morris KV. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci U S A 2007; 104:12422 - 7; http://dx.doi.org/10.1073/pnas.0701635104; PMID: 17640892
  • Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA, Elkon R, Melo SA, Léveillé N, Kalluri R, et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 2013; 49:524 - 35; http://dx.doi.org/10.1016/j.molcel.2012.11.021; PMID: 23273978
  • Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grandér D, Morris KV. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 2013; 20:440 - 6; http://dx.doi.org/10.1038/nsmb.2516; PMID: 23435381
  • Hawkins PG, Morris KV. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 2010; 1:165 - 75; http://dx.doi.org/10.4161/trns.1.3.13332; PMID: 21151833
  • Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 2009; 12:1020 - 7; http://dx.doi.org/10.1038/nn.2371; PMID: 19620975
  • Horard B, Gilson E. Telomeric RNA enters the game. Nat Cell Biol 2008; 10:113 - 5; http://dx.doi.org/10.1038/ncb0208-113; PMID: 18246034
  • Haeger P, Cuevas R, Forray MI, Rojas R, Daza C, Rivadeneira J, Gysling K. Natural expression of immature Ucn antisense RNA in the rat brain. Evidence favoring bidirectional transcription of the Ucn gene locus. Brain Res Mol Brain Res 2005; 139:115 - 28; http://dx.doi.org/10.1016/j.molbrainres.2005.05.024; PMID: 15979199
  • Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 2006; 51:1087 - 99; http://dx.doi.org/10.1007/s10038-006-0070-9; PMID: 17066261
  • Roeszler KN, Itman C, Sinclair AH, Smith CA. The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis. Dev Biol 2012; 366:317 - 26; http://dx.doi.org/10.1016/j.ydbio.2012.03.025; PMID: 22546690
  • Tran VG, Court F, Duputié A, Antoine E, Aptel N, Milligan L, Carbonell F, Lelay-Taha MN, Piette J, Weber M, et al. H19 antisense RNA can up-regulate Igf2 transcription by activation of a novel promoter in mouse myoblasts. PLoS One 2012; 7:e37923; http://dx.doi.org/10.1371/journal.pone.0037923; PMID: 22662250
  • Khalil AM, Faghihi MA, Modarresi F, Brothers SP, Wahlestedt C. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One 2008; 3:e1486; http://dx.doi.org/10.1371/journal.pone.0001486; PMID: 18213394
  • Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002; 415:810 - 3; http://dx.doi.org/10.1038/415810a; PMID: 11845212
  • Ritter O, Luther HP, Haase H, Baltas LG, Baumann G, Schulte HD, Morano I. Expression of atrial myosin light chains but not alpha-myosin heavy chains is correlated in vivo with increased ventricular function in patients with hypertrophic obstructive cardiomyopathy. J Mol Med (Berl) 1999; 77:677 - 85; http://dx.doi.org/10.1007/s001099900030; PMID: 10569205
  • Potts JD, Vincent EB, Runyan RB, Weeks DL. Sense and antisense TGF beta 3 mRNA levels correlate with cardiac valve induction. Dev Dyn 1992; 193:340 - 5; http://dx.doi.org/10.1002/aja.1001930407; PMID: 1511174
  • Robb GB, Carson AR, Tai SC, Fish JE, Singh S, Yamada T, Scherer SW, Nakabayashi K, Marsden PA. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 2004; 279:37982 - 96; http://dx.doi.org/10.1074/jbc.M400271200; PMID: 15234981
  • Friedrichs F, Zugck C, Rauch GJ, Ivandic B, Weichenhan D, Müller-Bardorff M, Meder B, El Mokhtari NE, Regitz-Zagrosek V, Hetzer R, et al. HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy. Genome Res 2009; 19:395 - 403; http://dx.doi.org/10.1101/gr.076653.108; PMID: 19064678
  • Rodríguez-Campos A, Azorín F. RNA is an integral component of chromatin that contributes to its structural organization. PLoS One 2007; 2:e1182; http://dx.doi.org/10.1371/journal.pone.0001182; PMID: 18000552

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.