1,111
Views
12
CrossRef citations to date
0
Altmetric
Review

Assembling pieces of the centromere epigenetics puzzle

, &
Pages 3-13 | Received 08 Sep 2011, Accepted 24 Oct 2011, Published online: 01 Jan 2012

References

  • Foltz DR, Jansen L, Black B, Yates J, Cleveland DW. The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 2006; 8:458 - 69; http://dx.doi.org/10.1038/ncb1397; PMID: 16622419
  • Furuyama S, Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 2007; 104:14706 - 11; http://dx.doi.org/10.1073/pnas.0706985104; PMID: 17804787
  • Ugarković DI. Centromere-competent DNA: structure and evolution. Prog Mol Subcell Biol 2009; 48:53 - 76; http://dx.doi.org/10.1007/978-3-642-00182-6_3; PMID: 19521812
  • Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, et al. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 1998; 16:431 - 9; http://dx.doi.org/10.1038/nbt0598-431; PMID: 9592390
  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 1997; 7:901 - 4; http://dx.doi.org/10.1016/S0960-9822(06)00382-4; PMID: 9382805
  • Ketel C, Wang H, McClellan M, Bouchonville K, Selmecki A, Lahav T, et al. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet 2009; 5:e1000400; http://dx.doi.org/10.1371/journal.pgen.1000400; PMID: 19266018
  • Shuaib M, Ouararhni K, Dimitrov S, Hamiche A. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc Natl Acad Sci USA 2010; 107:1349 - 54; http://dx.doi.org/10.1073/pnas.0913709107; PMID: 20080577
  • Hu H, Liu Y, Wang M, Fang J, Huang H, Yang N, et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev 2011; 25:901 - 6; http://dx.doi.org/10.1101/gad.2045111; PMID: 21478274
  • Kato T, Sato N, Hayama S, Yamabuki T, Ito T, Miyamoto M, et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 2007; 67:8544 - 53; http://dx.doi.org/10.1158/0008-5472.CAN-07-1307; PMID: 17823411
  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 1989; 109:1963 - 73; http://dx.doi.org/10.1083/jcb.109.5.1963; PMID: 2808515
  • Choo KH. Domain organization at the centromere and neocentromere. Dev Cell 2001; 1:165 - 77; http://dx.doi.org/10.1016/S1534-5807(01)00028-4; PMID: 11702777
  • Earnshaw WC, Ratrie HR, Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 1989; 98:1 - 12; http://dx.doi.org/10.1007/BF00293329; PMID: 2475307
  • Grimes BR, Babcock J, Rudd M, Chadwick B, Willard H. Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 2004; 5:R89; http://dx.doi.org/10.1186/gb-2004-5-11-r89; PMID: 15535865
  • Harrington JJ, Van BG, Mays R, Gustashaw K, Willard H. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 1997; 15:345 - 55; http://dx.doi.org/10.1038/ng0497-345; PMID: 9090378
  • Gascoigne KE, Cheeseman I. Kinetochore assembly: if you build it, they will come. Curr Opin Cell Biol 2011; 23:102 - 8; http://dx.doi.org/10.1016/j.ceb.2010.07.007; PMID: 20702077
  • Zeitlin SG. Centromere: the wild west of the post-genome age. Epigenetics 2010; 5:34 - 40; http://dx.doi.org/10.4161/epi.5.1.10629; PMID: 20093854
  • Blower MD, Sullivan B, Karpen G. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2002; 2:319 - 30; http://dx.doi.org/10.1016/S1534-5807(02)00135-1; PMID: 11879637
  • Jansen LE, Black B, Foltz D, Cleveland D. Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 2007; 176:795 - 805; http://dx.doi.org/10.1083/jcb.200701066; PMID: 17339380
  • Stimpson KM, Sullivan B. Histone H3K4 methylation keeps centromeres open for business. EMBO J 2011; 30:233 - 4; http://dx.doi.org/10.1038/emboj.2010.339; PMID: 21245889
  • Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 2011; 476:232 - 5; http://dx.doi.org/10.1038/nature10258; PMID: 21743476
  • Black BE, Brock M, Bédard S, Woods V, Cleveland D. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc Natl Acad Sci USA 2007; 104:5008 - 13; http://dx.doi.org/10.1073/pnas.0700390104; PMID: 17360341
  • Sekulic N, Bassett E, Rogers D, Black B. The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature 2010; 467:347 - 51; http://dx.doi.org/10.1038/nature09323; PMID: 20739937
  • Ribeiro SA, Vagnarelli P, Dong Y, Hori T, McEwen B, Fukugawa T, et al. A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci USA 2010; 107:10484 - 9; http://dx.doi.org/10.1073/pnas.1002325107; PMID: 20483991
  • Jin W, Lamb J, Zhang W, Kolano B, Birchler J, Jiang J. Histone modifications associated with both A and B chromosomes of maize. Chromosome Res 2008; 16:1203 - 14; http://dx.doi.org/10.1007/s10577-008-1269-8; PMID: 18987983
  • Shi J, Dawe R. Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 2006; 173:1571 - 83; http://dx.doi.org/10.1534/genetics.106.056853; PMID: 16624902
  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell C, et al. Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 2005; 17:3227 - 38; http://dx.doi.org/10.1105/tpc.105.037945; PMID: 16272428
  • Bergmann JH, Rodríguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 2011; 30:328 - 40; http://dx.doi.org/10.1038/emboj.2010.329; PMID: 21157429
  • Higgins AW, Gustashaw K, Willard H. Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res 2005; 13:745 - 62; http://dx.doi.org/10.1007/s10577-005-1009-2; PMID: 16331407
  • Nakano M, Cardinale S, Noskov V, Gassmann R, Vangarelli P, Kandels-Lewis S, et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 2008; 14:507 - 22; http://dx.doi.org/10.1016/j.devcel.2008.02.001; PMID: 18410728
  • Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, et al. Co-localization CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 2007; 8:R148; http://dx.doi.org/10.1186/gb-2007-8-7-r148; PMID: 17651496
  • Cardinale S, Bergmann J, Kelly D, Nakano M, Valdivia M, Kimura H, et al. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 2009; 20:4194 - 204; http://dx.doi.org/10.1091/mbc.E09-06-0489; PMID: 19656847
  • Lam AL, Boivin C, Bonney C, Rudd M, Sullivan B. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 2006; 103:4186 - 91; http://dx.doi.org/10.1073/pnas.0507947103; PMID: 16537506
  • Okamoto Y, Nakano M, Ohzeki J-I, Larionov V, Masumoto H. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 2007; 26:1279 - 91; http://dx.doi.org/10.1038/sj.emboj.7601584; PMID: 17318187
  • Zhang W, Friebe B, Gill B, Jiang J. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma 2010; 119:553 - 63; http://dx.doi.org/10.1007/s00412-010-0278-5; PMID: 20499078
  • Cheeseman IM, Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 2008; 9:33 - 46; http://dx.doi.org/10.1038/nrm2310; PMID: 18097444
  • McEwen BF, Dong Y. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci 2010; 67:2163 - 72; http://dx.doi.org/10.1007/s00018-010-0322-x; PMID: 20336345
  • Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukugawa T, Cheeseman I. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 2011; 145:410 - 22; http://dx.doi.org/10.1016/j.cell.2011.03.031; PMID: 21529714
  • Heun P, Erhardt S, Blower M, Weiss S, Skora A, Karpen G. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 2006; 10:303 - 15; http://dx.doi.org/10.1016/j.devcel.2006.01.014; PMID: 16516834
  • Hori T, Amano M, Suzuki A, Backer C, Welburn J, Dong Y, et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 2008; 135:1039 - 52; http://dx.doi.org/10.1016/j.cell.2008.10.019; PMID: 19070575
  • Okada M, Okawa K, Isobe T, Fukagawa T. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 2009; 20:3986 - 95; http://dx.doi.org/10.1091/mbc.E09-01-0065; PMID: 19625449
  • Prendergast L, van Vuuren C, Kaczmarczyk A, Doering V, Hellwig D, Quinn N, et al. Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol 2011; 9:e1001082; http://dx.doi.org/10.1371/journal.pbio.1001082; PMID: 21695110
  • Carroll CW, Milks K, Straight A. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 2010; 189:1143 - 55; http://dx.doi.org/10.1083/jcb.201001013; PMID: 20566683
  • Wood KW, Sakowicz R, Goldstein L, Cleveland D. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 1997; 91:357 - 66; http://dx.doi.org/10.1016/S0092-8674(00)80419-5; PMID: 9363944
  • Wan X, O'Quinn R, Pierce H, Joglekar A, Gall W, DeLuca J, et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009; 137:672 - 84; http://dx.doi.org/10.1016/j.cell.2009.03.035; PMID: 19450515
  • Cheeseman IM, Hori T, Fukagawa T, Desai A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 2008; 19:587 - 94; http://dx.doi.org/10.1091/mbc.E07-10-1051; PMID: 18045986
  • Zuccolo M, Alves A, Galy V, Bolhy S, Formstecher E, Racine V, et al. The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J 2007; 26:1853 - 64; http://dx.doi.org/10.1038/sj.emboj.7601642; PMID: 17363900
  • Mukhopadhyay D, Dasso M. The fate of metaphase kinetochores is weighed in the balance of SUMOylation during S phase. Cell Cycle 2010; 9:3194 - 201; http://dx.doi.org/10.4161/cc.9.16.12619; PMID: 20724819
  • Wallrath LL, Elgin S. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 1995; 9:1263 - 77; http://dx.doi.org/10.1101/gad.9.10.1263; PMID: 7758950
  • de Wit E, Greil F, Steensel BV. High-resolution mapping reveals links of HP1 with active and inactive chromatin components. PLoS Genet 2007; 3:e38; http://dx.doi.org/10.1371/journal.pgen.0030038; PMID: 17335352
  • Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SI, et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 2002; 4:89 - 93; http://dx.doi.org/10.1038/ncb739; PMID: 11780129
  • Inoue A, Hyle J, Lechner M, Lahti J. Perturbation of HP1 localization and chromatin binding ability causes defects in sister-chromatid cohesion. Mutat Res 2008; 657:48 - 55; PMID: 18790078
  • Ayoub N, Jeyasekharan A, Venkitaraman A. Mobilization and recruitment of HP1: a bimodal response to DNA breakage. Cell Cycle 2009; 8:2945 - 50; http://dx.doi.org/10.4161/cc.8.18.9486; PMID: 19657222
  • Singh PB, Miller J, Pearce J, Kothary R, Burton R, Paro R, et al. A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res 1991; 19:789 - 94; http://dx.doi.org/10.1093/nar/19.4.789; PMID: 1708124
  • Ye Q, Worman H. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 1996; 271:14653 - 6; http://dx.doi.org/10.1074/jbc.271.25.14653; PMID: 8663349
  • Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 2001; 11:266 - 73; http://dx.doi.org/10.1016/S0962-8924(01)02001-3; PMID: 11356363
  • Bannister AJ, Zegerman P, Partridge J, Miska E, Thomas J, Allshire R. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410:120 - 4; http://dx.doi.org/10.1038/35065138; PMID: 11242054
  • Folco HD, Pidoux A, Urano T, Allshire R. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 2008; 319:94 - 7; http://dx.doi.org/10.1126/science.1150944; PMID: 18174443
  • Probst AV, Almouzni G. Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet 2011; 27:177 - 85; http://dx.doi.org/10.1016/j.tig.2011.02.002; PMID: 21497937
  • Cowell IG, Aucott R, Mahadevaiah S, Burgoyne P, Huskisson N, Bongiorni S, et al. Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 2002; 111:22 - 36; http://dx.doi.org/10.1007/s00412-002-0182-8; PMID: 12068920
  • Heit R, Underhill D, Chan G, Hendzel M. Epigenetic regulation of centromere formation and kinetochore function. Biochem Cell Biol 2006; 84:605 - 18; http://dx.doi.org/10.1139/o06-080; PMID: 16936832
  • Vos LJ, Famulski J, Chan G. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol 2006; 84:619 - 39; http://dx.doi.org/10.1139/o06-078; PMID: 16936833
  • Kiyomitsu T, Iwasaki O, Obuse C, Yanagida M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J Cell Biol 2010; 188:791 - 807; http://dx.doi.org/10.1083/jcb.200908096; PMID: 20231385
  • Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol 2004; 6:1135 - 41; http://dx.doi.org/10.1038/ncb1187; PMID: 15502821
  • Przewloka MR, Zhang W, Costa P, Archambault V, D’Avino P, Lilley KS, et al. Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS ONE 2007; 2:e478; http://dx.doi.org/10.1371/journal.pone.0000478; PMID: 17534428
  • Lomberk G, Wallrath L, Urrutia R. The Heterochromatin Protein 1 family. Genome Biol 2006; 7:228; http://dx.doi.org/10.1186/gb-2006-7-7-228; PMID: 17224041
  • Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S, Cittaro D, et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 2010; 190:835 - 52; http://dx.doi.org/10.1083/jcb.201002070; PMID: 20819937
  • Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y. Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 2003; 116:3327 - 38; http://dx.doi.org/10.1242/jcs.00635; PMID: 12840071
  • Thomsen R, Christensen D, Rosborg S, Linnet T, Blechingberg J, Nielsen A. Analysis of HP1a regulation in human breast cancer cells. Mol Carcinog 2011; 50:601 - 13; http://dx.doi.org/10.1002/mc.20755; PMID: 21374739
  • Terada Y. Aurora-B/AIM-1 regulates the dynamic behavior of HP1alpha at the G2-M transition. Mol Biol Cell 2006; 17:3232 - 41; http://dx.doi.org/10.1091/mbc.E05-09-0906; PMID: 16687578
  • Kirschmann DA, Lininger R, Gardner L, Selfor E, Odero V, Ainsztein A, et al. Down-regulation of HP1Hsalpha expression is associated with the metastatic phenotype in breast cancer. Cancer Res 2000; 60:3359 - 63; PMID: 10910038
  • Bernard P, Maure J, Partridge J, Genier S, Javerzat J, Allshire R. Requirement of heterochromatin for cohesion at centromeres. Science 2001; 294:2539 - 42; http://dx.doi.org/10.1126/science.1064027; PMID: 11598266
  • Rao CV, Yamada H, Yao Y, Dai W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 2009; 30:1469 - 74; http://dx.doi.org/10.1093/carcin/bgp081; PMID: 19372138
  • Thoma CR, Toso A, Meraldi P, Krek W. Mechanisms of aneuploidy and its suppression by tumour suppressor proteins. Swiss Med Wkly 2011; 141:w13170; PMID: 21384284
  • Laganà A, Russo F, Sismeiro C, Giugno R, Pulvirenti A, Ferro A. Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material. PLoS ONE 2010; 5:e11166; http://dx.doi.org/10.1371/journal.pone.0011166; PMID: 20567512
  • Calin GA, Sevignani C, Dumitru C, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101:2999 - 3004; http://dx.doi.org/10.1073/pnas.0307323101; PMID: 14973191
  • Lee AJ, Endesfelder D, Rowan A, Walther A, Birkbak N, Futreal P, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 2011; 71:1858 - 70; http://dx.doi.org/10.1158/0008-5472.CAN-10-3604; PMID: 21363922
  • Carter SL, Eklund A, Kohane I, Harris L, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38:1043 - 8; http://dx.doi.org/10.1038/ng1861; PMID: 16921376
  • Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 2005; 45:629 - 56; http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095832; PMID: 15822191
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28:1057 - 68; http://dx.doi.org/10.1038/nbt.1685; PMID: 20944598
  • Watanabe Y, Maekawa M. Methylation of DNA in cancer. Adv Clin Chem 2010; 52:145 - 67; http://dx.doi.org/10.1016/S0065-2423(10)52006-7; PMID: 21275343
  • Jones PA, Wolkowicz MJ, Rideout WM 3rd, Gonzales FA, Marziasz CM, Coetzee GA, et al. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc Natl Acad Sci USA 1990; 87:6117 - 21; http://dx.doi.org/10.1073/pnas.87.16.6117; PMID: 2385586
  • Hansen KD, Timp W, Bravo H, Sabaunciyan S, Langmead B, McDonald OG, et al. Incraesed methylation variation in epigenetic domains across cancer types. Nat Genet 2011; 43:768 - 75; http://dx.doi.org/10.1038/ng.865; PMID: 21706001
  • Kanai Y. Genome-wide DNA methylation profiles in precancerous conditions andcancers. Cancer Sci 2010; 101:36 - 45; http://dx.doi.org/10.1111/j.1349-7006.2009.01383.x; PMID: 19891661
  • Issa JP. Colon cancer: it's CIN or CIMP. Clin Cancer Res 2008; 14:5939 - 40; http://dx.doi.org/10.1158/1078-0432.CCR-08-1596; PMID: 18829469
  • Ndlovu MN, Denis H, Fuks F. Exposing the DNA methylome iceberg. Trends Biochem Sci 2011; 36:381 - 7; PMID: 21497094
  • Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer 2004; 4:988 - 93; http://dx.doi.org/10.1038/nrc1507; PMID: 15573120
  • Georgiades IB, Curtis L, Morris R, Bird C, Wyllie A. Heterogeneity studies identify a subset of sporadic colorectal cancers without evidence for chromosomal or microsatellite instability. Oncogene 1999; 18:7933 - 40; http://dx.doi.org/10.1038/sj.onc.1203368; PMID: 10637503
  • Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6:597 - 610; http://dx.doi.org/10.1038/nrg1655; PMID: 16136652
  • Toyota M, Suzuki H. Epigenetic drivers of genetic alterations. Adv Genet 2010; 70:309 - 23; http://dx.doi.org/10.1016/B978-0-12-380866-0.60011-3; PMID: 20920753
  • Jin B, Tao Q, Peng J, Soo H, Wu W, Ying J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 2008; 17:690 - 709; http://dx.doi.org/10.1093/hmg/ddm341; PMID: 18029387
  • Ehrlich M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 2003; 109:17 - 28; http://dx.doi.org/10.1016/S1521-6616(03)00201-8; PMID: 14585272
  • Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res 2008; 642:1 - 13; http://dx.doi.org/10.1016/j.mrfmmm.2008.03.002; PMID: 18471836
  • Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana M, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011; 6:692 - 702; http://dx.doi.org/10.4161/epi.6.6.16196; PMID: 21593595
  • Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 2003; 63:3511 - 6; PMID: 12839935
  • Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11:25 - 36; http://dx.doi.org/10.1016/j.ccr.2006.12.003; PMID: 17189716
  • Amato A, Schillaci T, Lentini L, Di Leonardo A. CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol Cancer 2009; 8:119; http://dx.doi.org/10.1186/1476-4598-8-119; PMID: 20003272
  • Hu Z, Huang G, Sadanandam A, Gu S, Lenburg ME, Pai M, et al. The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer. Breast Cancer Res 2010; 12:R18; http://dx.doi.org/10.1186/bcr2487; PMID: 20211017
  • Toyota M, Ahuja N, Ohe-Toyota M, Herman J, Baylin S, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96:8681 - 6; http://dx.doi.org/10.1073/pnas.96.15.8681; PMID: 10411935
  • Soto-Reyes E, Recillas-Targa F. Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines. Oncogene 2010; 29:2217 - 27; http://dx.doi.org/10.1038/onc.2009.509; PMID: 20101205
  • Simon JA, Lange C. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008; 647:21 - 9; http://dx.doi.org/10.1016/j.mrfmmm.2008.07.010; PMID: 18723033
  • Jagani Z, Wiederschain D, Loo A, He D, Mosher R, Fordjour P, et al. The Polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells. Cancer Res 2010; 70:5528 - 38; http://dx.doi.org/10.1158/0008-5472.CAN-09-4229; PMID: 20530672
  • Volpe TA, Kidner C, Hall I, Teng G, Grewal S, Martienssen R. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297:1833 - 7; http://dx.doi.org/10.1126/science.1074973; PMID: 12193640
  • Pezer Z, Ugarkovic D. Role of non-coding RNA and heterochromatin in aneuploidy and cancer. Semin Cancer Biol 2008; 18:123 - 30; http://dx.doi.org/10.1016/j.semcancer.2008.01.003; PMID: 18291669
  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297:1833 - 7; http://dx.doi.org/10.1126/science.1074973; PMID: 12193640
  • Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009; 10:94 - 108; http://dx.doi.org/10.1038/nrg2504; PMID: 19148191
  • Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SIS. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 2008; 451:734 - 7; http://dx.doi.org/10.1038/nature06561; PMID: 18216783
  • Djupedal I, Portoso M, Spahr H, Bonilla C, Gustafsson CM, Allshire RC, et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev 2005; 19:2301 - 6; http://dx.doi.org/10.1101/gad.344205; PMID: 16204182
  • Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 2004; 119:789 - 802; http://dx.doi.org/10.1016/j.cell.2004.11.034; PMID: 15607976
  • Shanker S, Job G, George OL, Creamer KM, Shaban A, Partridge JF. Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex. PLoS Genet 2010; 6:e1001174; http://dx.doi.org/10.1371/journal.pgen.1001174; PMID: 21060862
  • Cheloufi S, Dos Santos CO, Chong MMW, Hannon GJ. A dicer- independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465:584 - 9; http://dx.doi.org/10.1038/nature09092; PMID: 20424607
  • Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010; 328:1694 - 8; http://dx.doi.org/10.1126/science.1190809; PMID: 20448148
  • Topp CN, Zhong CX, Dawe RK. Centromere-encoded RNAs are integral components of the maize kinethochore. Proc Natl Acad Sci USA 2004; 101:15986 - 91; http://dx.doi.org/10.1073/pnas.0407154101; PMID: 15514020
  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, et al. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 2007; 17:1146 - 60; http://dx.doi.org/10.1101/gr.6022807; PMID: 17623812
  • Carone DM, Longo M, Ferreri GC, Hall L, Harris M, Shook N, et al. A new Class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 2009; 118:113 - 25; http://dx.doi.org/10.1007/s00412-008-0181-5; PMID: 18839199
  • Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 2005; 33:2868 - 79; http://dx.doi.org/10.1093/nar/gki579; PMID: 15908586
  • Choi ES, Strålfors A, Castillo AG, Durand-Dubief M, Ekwall K, Allshire RC. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J Biol Chem 2011; 286:23600 - 7; http://dx.doi.org/10.1074/jbc.M111.228510; PMID: 21531710
  • Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, et al. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet 2009; 41:941 - 5; http://dx.doi.org/10.1038/ng.409; PMID: 19633671
  • Lefrançois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, et al. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 2009; 10:37; http://dx.doi.org/10.1186/1471-2164-10-37; PMID: 19159457
  • Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 2010; 19:625 - 38; http://dx.doi.org/10.1016/j.devcel.2010.09.002; PMID: 20951352
  • Doi A, Park I-H, Wen B, Murakami P, Aryee M, Irizarry R, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41:1350 - 3; http://dx.doi.org/10.1038/ng.471; PMID: 19881528