2,629
Views
54
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum)

, , , , , , , , , , , , , , , & show all
Pages 106-119 | Received 15 Feb 2014, Accepted 26 Jun 2014, Published online: 17 Jul 2014

References

  • Begcy K, Mariano ED, Gentile A, Lembke CG, Zingaretti SM, Souza GM, Menossi M. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One 2012; 7:e44697; http://dx.doi.org/10.1371/journal.pone.0044697; PMID: 22984543
  • Boyer JS. Plant productivity and environment. Science 1982; 218:443 - 8; http://dx.doi.org/10.1126/science.218.4571.443; PMID: 17808529
  • Maybank J, Bonsai B, Jones K, Lawford R, O'brien E, Ripley E, Wheaton E. Drought as a natural disaster. Atmos-ocean 1995; 33:195 - 222; http://dx.doi.org/10.1080/07055900.1995.9649532
  • Solari LI, Johnson S, DeJong TM. Relationship of water status to vegetative growth and leaf gas exchange of peach (Prunus persica) trees on different rootstocks. Tree Physiol 2006; 26:1333 - 41; http://dx.doi.org/10.1093/treephys/26.10.1333; PMID: 16815835
  • Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 2002; 53:247 - 73; http://dx.doi.org/10.1146/annurev.arplant.53.091401.143329; PMID: 12221975
  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 2009; 60:939 - 54; http://dx.doi.org/10.1093/jxb/ern348; PMID: 19213813
  • Turner NC, Wright GC, Siddique K. Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 2001; 71:193 - 231; http://dx.doi.org/10.1016/S0065-2113(01)71015-2
  • Nguyen HT, Babu RC, Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 1997; 37:1426 - 34; http://dx.doi.org/10.2135/cropsci1997.0011183X003700050002x
  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K. Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics 2013; 27:463 - 77; http://dx.doi.org/10.2478/intag-2013-0017
  • Blum A. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive?. Crop Pasture Sci 2005; 56:1159 - 68; http://dx.doi.org/10.1071/AR05069
  • Vadez V, Kholova J, Choudhary S, Zindy P, Terrier M, Krishnamurthy L, Kumar PR. NC T. Responses to increased moisture stress and extremes: Whole plant response to drought under climate change. In: S.S. Yadav, R. Redden, J.L. Hatfield, H. Lotze-Campen, Hall AE, eds. Crop adaptation to climate change. Chichester: Wiley-Blackwell, 2011.
  • Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 2005; 16:123 - 32; http://dx.doi.org/10.1016/j.copbio.2005.02.001; PMID: 15831376
  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218:1 - 14; http://dx.doi.org/10.1007/s00425-003-1105-5; PMID: 14513379
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 2003; 6:410 - 7; http://dx.doi.org/10.1016/S1369-5266(03)00092-X; PMID: 12972040
  • Wani SH, Singh NB, Haribhushan A, Mir JI. Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. Curr Genomics 2013; 14:157 - 65; http://dx.doi.org/10.2174/1389202911314030001; PMID: 24179438
  • Neumann PM. Coping mechanisms for crop plants in drought-prone environments. Ann Bot 2008; 101:901 - 7; http://dx.doi.org/10.1093/aob/mcn018; PMID: 18252764
  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 2006; 17:113 - 22; http://dx.doi.org/10.1016/j.copbio.2006.02.002; PMID: 16495045
  • Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R. Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics 2011; 11:445 - 65; http://dx.doi.org/10.1007/s10142-011-0218-3; PMID: 21472467
  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 2012; 63:2933 - 46; http://dx.doi.org/10.1093/jxb/err462; PMID: 22330896
  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 2006; 60:107 - 24; http://dx.doi.org/10.1007/s11103-005-2910-y; PMID: 16463103
  • Mukhopadhyay A, Vij S, Tyagi AK. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 2004; 101:6309 - 14; http://dx.doi.org/10.1073/pnas.0401572101; PMID: 15079051
  • Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 2012; 80:241 - 53; http://dx.doi.org/10.1007/s11103-012-9941-y; PMID: 22875749
  • Georges F, Das S, Ray H, Bock C, Nokhrina K, Kolla VA, Keller W. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant Cell Environ 2009; 32:1664 - 81; http://dx.doi.org/10.1111/j.1365-3040.2009.02027.x; PMID: 19671099
  • Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell 2002; 14:Suppl S165 - 83; PMID: 12045276
  • Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G, et al. Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 2012; 24:2262 - 78; http://dx.doi.org/10.1105/tpc.112.096677; PMID: 22693282
  • Heller K, Woznica Z, Byczynska M, Wielgusz K, Baraniecki P. The Efficacy of Salicylic and Acetylsalicylic Acids in the Protection of Fibrous Flax Against Drought Stress. J Nat Fibers 2013; 10:29 - 39; http://dx.doi.org/10.1080/15440478.2012.748298
  • FAO. FAO Statistical Yearbook 2009. http://wwwfaoorg/economic/ess/ess-publications/ess-yearbook/en/#UuTH_BC6bIU 2009.
  • Martin JH, Leonard WH. D.L. S. Principles of field crop production. N.Y.: Macmillan, 1976.
  • Casa R, Russell G, Lo Cascio B, Rossini F. Environmental effects on linseed (Linum usitatissimum L.) yield and growth of flax at different stand densities. Eur J Agron 1999; 11:267 - 78; http://dx.doi.org/10.1016/S1161-0301(99)00037-4
  • Dutta HK, Rao RM. H S. Response of linseed (Linum usitatissimum L.) to irrigation and nitrogen. Indian J Agron 1995; 40:130 - 1
  • Heller K, Konczewicz W, Byczyńska M, Łukaszewska N, Praczyk M. The effect of fibre flax growing technologies on ontogenesis and cultivars yielding capacity. Conference on Flax and other Bast Plants 2008:315-25
  • Rolski S, Heller K. Yielding capacity of different flax cultivars in varied environmental condition. Natural fibres 1998; 2:84 - 8
  • Xinwen L. Analysis of ecological adaptation of flax in dry and cool areas in China. Proc of the Flax & Other Bast Plants Symposium 1997:43-8.
  • Widstoe JA. Dry farming for sustainable agriculture. Agrobios (India) 2007:361.
  • Gupta US. Physiology of stressed crops. Georgia, USA: Science Publishers, 2007.
  • IPCC. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change core writing team Geneva, Switzerland, 2007.
  • Hayano-Kanashiro C, Calderón-Vázquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One 2009; 4:e7531; http://dx.doi.org/10.1371/journal.pone.0007531; PMID: 19888455
  • Pereira SS, Guimarães FC, Carvalho JF, Stolf-Moreira R, Oliveira MC, Rolla AA, Farias JR, Neumaier N, Nepomuceno AL. Transcription factors expressed in soybean roots under drought stress. Genet Mol Res 2011; 10:3689 - 701; http://dx.doi.org/10.4238/2011.October.21.5; PMID: 22033904
  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 2003; 133:1755 - 67; http://dx.doi.org/10.1104/pp.103.025742; PMID: 14645724
  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 2009; 10:279; http://dx.doi.org/10.1186/1471-2164-10-279; PMID: 19552804
  • Lu S, Bahn SC, Qu G, Qin H, Hong Y, Xu Q, Zhou Y, Hong Y, Wang X. Increased expression of phospholipase Dα1 in guard cells decreases water loss with improved seed production under drought in Brassica napus. Plant Biotechnol J 2013; 11:380 - 9; http://dx.doi.org/10.1111/pbi.12028; PMID: 23279050
  • Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang YQ. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 2014; 14:8; http://dx.doi.org/10.1186/1471-2229-14-8; PMID: 24397480
  • Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R, Selvaraj G, Datla R, Haughn G. Analysis of gene expression patterns during seed coat development in Arabidopsis. Mol Plant 2011; 4:1074 - 91; http://dx.doi.org/10.1093/mp/ssr040; PMID: 21653281
  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 2001; 13:61 - 72; http://dx.doi.org/10.1105/tpc.13.1.61; PMID: 11158529
  • Xu ZH, Wu WR. Comparative and joint analyses of gene expression profiles under drought and rewatering in Arabidopsis. Genet Mol Res 2013; 12:3622 - 9; http://dx.doi.org/10.4238/2013.September.13.6; PMID: 24085426
  • Huang D, Wu W, Abrams SR, Cutler AJ. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 2008; 59:2991 - 3007; http://dx.doi.org/10.1093/jxb/ern155; PMID: 18552355
  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 2012; 72:461 - 73; http://dx.doi.org/10.1111/j.1365-313X.2012.05093.x; PMID: 22757964
  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 2004; 37:914 - 39; http://dx.doi.org/10.1111/j.1365-313X.2004.02016.x; PMID: 14996223
  • Wang S, Liang D, Shi S, Ma F, Shu H, Wang R. Isolation and Characterization of a Novel Drought Responsive Gene Encoding a Glycine-rich RNA-binding Protein in Malus prunifolia (Willd.) Borkh. Plant Mol Biol Rep 2011; 29:125 - 34; http://dx.doi.org/10.1007/s11105-010-0221-1
  • Bae H, Kim SK, Cho SK, Kang BG, Kim WT. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 2011; 180:775 - 82; http://dx.doi.org/10.1016/j.plantsci.2011.02.008; PMID: 21497713
  • Peng H, Yu X, Cheng H, Shi Q, Zhang H, Li J, Ma H. Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.). Mol Biotechnol 2010; 44:30 - 40; http://dx.doi.org/10.1007/s12033-009-9202-8; PMID: 19669952
  • Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One 2014; 9:e86217; http://dx.doi.org/10.1371/journal.pone.0086217; PMID: 24465967
  • Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Köhl KI. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 2009; 69:133 - 53; http://dx.doi.org/10.1007/s11103-008-9412-7; PMID: 18931976
  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M. Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. [Setaria italica (L.)] J Exp Bot 2011; 62:3387 - 401; http://dx.doi.org/10.1093/jxb/err016; PMID: 21414959
  • Perdiguero P, Collada C, Barbero MdelC, García Casado G, Cervera MT, Soto A. Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization. Plant Physiol Biochem 2012; 50:44 - 53; http://dx.doi.org/10.1016/j.plaphy.2011.09.022; PMID: 22099518
  • Yao LM, Wang B, Cheng LJ, Wu TL. Identification of key drought stress-related genes in the hyacinth bean. PLoS One 2013; 8:e58108; http://dx.doi.org/10.1371/journal.pone.0058108; PMID: 23472143
  • Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 2008; 9:118; http://dx.doi.org/10.1186/1471-2164-9-118; PMID: 18318901
  • Kerepesi I, Galiba G. Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Sci 2000; 40:482 - 7; http://dx.doi.org/10.2135/cropsci2000.402482x
  • Serraj R, Sinclair TR. Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plant Cell Environ 2002; 25:333 - 41; http://dx.doi.org/10.1046/j.1365-3040.2002.00754.x; PMID: 11841674
  • Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 2002; 130:1143 - 51; http://dx.doi.org/10.1104/pp.006858; PMID: 12427981
  • Wilkinson S, Davies WJ. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 2010; 33:510 - 25; http://dx.doi.org/10.1111/j.1365-3040.2009.02052.x; PMID: 19843256
  • Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang H-S, Zhu T, Kreps JA, Nguyen HT. Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct Integr Genomics 2005; 5:104 - 16; http://dx.doi.org/10.1007/s10142-004-0126-x; PMID: 15480887
  • Oztur ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 2002; 48:551 - 73; http://dx.doi.org/10.1023/A:1014875215580; PMID: 11999834
  • Talamè V, Ozturk NZ, Bohnert HJ, Tuberosa R. Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 2007; 58:229 - 40; http://dx.doi.org/10.1093/jxb/erl163; PMID: 17110587
  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 2011; 18:263 - 76; http://dx.doi.org/10.1093/dnares/dsr015; PMID: 21685489
  • Chen Y, Liu Z-H, Feng L, Zheng Y, Li D-D, Li X-B. Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought. PLoS One 2013; 8:e80879; http://dx.doi.org/10.1371/journal.pone.0080879; PMID: 24260499
  • Dai M, Xue Q, Mccray T, Margavage K, Chen F, Lee JH, Nezames CD, Guo L, Terzaghi W, Wan J, et al. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 2013; 25:517 - 34; http://dx.doi.org/10.1105/tpc.112.105767; PMID: 23404889
  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci U S A 2009; 106:5418 - 23; http://dx.doi.org/10.1073/pnas.0811088106; PMID: 19276109
  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK. Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 2006; 142:98 - 112; http://dx.doi.org/10.1104/pp.106.081141; PMID: 16844837
  • Gregersen PL, Holm PB. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 2007; 5:192 - 206; http://dx.doi.org/10.1111/j.1467-7652.2006.00232.x; PMID: 17207268
  • Lim PO, Kim HJ, Nam HG. Leaf senescence. Annu Rev Plant Biol 2007; 58:115 - 36; http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316; PMID: 17177638
  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 2007; 63:609 - 23; http://dx.doi.org/10.1007/s11103-006-9112-0; PMID: 17160619
  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, et al. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 2005; 139:822 - 35; http://dx.doi.org/10.1104/pp.105.065961; PMID: 16183841
  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 2009; 103:551 - 60; http://dx.doi.org/10.1093/aob/mcn125; PMID: 18662937
  • Saibo NJM, Lourenço T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 2009; 103:609 - 23; http://dx.doi.org/10.1093/aob/mcn227; PMID: 19010801
  • Cellier F, Conéjéro G, Breitler JC, Casse F. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol 1998; 116:319 - 28; http://dx.doi.org/10.1104/pp.116.1.319; PMID: 9499218
  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 2004; 55:327 - 42; http://dx.doi.org/10.1007/s11103-004-0685-1; PMID: 15604685
  • Cameron KD, Teece MA, Smart LB. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 2006; 140:176 - 83; http://dx.doi.org/10.1104/pp.105.069724; PMID: 16361524
  • Zhang J, Tan W, Yang X-H, Zhang H-X. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 2008; 27:1113 - 24; http://dx.doi.org/10.1007/s00299-008-0549-2; PMID: 18437388
  • Lee M, Jung J-H, Han D-Y, Seo PJ, Park WJ, Park C-M. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 2012; 235:923 - 38; http://dx.doi.org/10.1007/s00425-011-1552-3; PMID: 22109847
  • Ramachandra Reddy A, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 2004; 161:1189 - 202; http://dx.doi.org/10.1016/j.jplph.2004.01.013; PMID: 15602811
  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B. Drought stress responses in crops. Funct Integr Genomics 2014; 14:11 - 22; http://dx.doi.org/10.1007/s10142-013-0356-x; PMID: 24408129
  • Barr HD, Weatherley PE. A re-examination of the relative turgidity technique of estimating water deficit in leaves. Aust J Biol Sci 1962; 15:413 - 28
  • Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, et al. Gene expression analysis of flax seed development. BMC Plant Biol 2011; 11:74; http://dx.doi.org/10.1186/1471-2229-11-74; PMID: 21529361
  • Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc, B 1995; 57:289 - 300

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.