1,112
Views
17
CrossRef citations to date
0
Altmetric
Article Addendum

Enterohemorrhagic and enteropathogenic Escherichia coli evolved different strategies to resist antimicrobial peptides

, , , &
Pages 556-561 | Published online: 16 Aug 2012

References

  • Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 2011; 80:1420 - 38; http://dx.doi.org/10.1111/j.1365-2958.2011.07661.x; PMID: 21488979
  • Nataro JP, Kaper JB. Diarrheagenic Escherichia coli.. Clin Microbiol Rev 1998; 11:142 - 201; PMID: 9457432
  • Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev 2012; 245:84 - 112; http://dx.doi.org/10.1111/j.1600-065X.2011.01082.x; PMID: 22168415
  • Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005; 6:551 - 7; http://dx.doi.org/10.1038/ni1206; PMID: 15908936
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol 2005; 3:238 - 50; http://dx.doi.org/10.1038/nrmicro1098; PMID: 15703760
  • Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006; 306:27 - 66; http://dx.doi.org/10.1007/3-540-29916-5_2; PMID: 16909917
  • Menendez A, Brett Finlay B. Defensins in the immunology of bacterial infections. Curr Opin Immunol 2007; 19:385 - 91; http://dx.doi.org/10.1016/j.coi.2007.06.008; PMID: 17702560
  • Nijnik A, Hancock RE. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 2009; 16:41 - 7; http://dx.doi.org/10.1097/MOH.0b013e32831ac517; PMID: 19068548
  • Gruenheid S, Le Moual H. Resistance to antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Lett 2012; 330:81 - 9; http://dx.doi.org/10.1111/j.1574-6968.2012.02528.x; PMID: 22339775
  • Kukkonen M, Korhonen TK. The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis.. Int J Med Microbiol 2004; 294:7 - 14; http://dx.doi.org/10.1016/j.ijmm.2004.01.003; PMID: 15293449
  • Hritonenko V, Stathopoulos C. Omptin proteins: an expanding family of outer membrane proteases in Gram-negative Enterobacteriaceae.. Mol Membr Biol 2007; 24:395 - 406; http://dx.doi.org/10.1080/09687680701443822; PMID: 17710644
  • Haiko J, Suomalainen M, Ojala T, Lähteenmäki K, Korhonen TK. Invited review: Breaking barriers--attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 2009; 15:67 - 80; http://dx.doi.org/10.1177/1753425909102559; PMID: 19318417
  • Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli.. J Bacteriol 1998; 180:4002 - 6; PMID: 9683502
  • Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun 2012; 80:483 - 92; http://dx.doi.org/10.1128/IAI.05674-11; PMID: 22144482
  • Le Sage V, Zhu L, Lepage C, Portt A, Viau C, Daigle F, et al. An outer membrane protease of the omptin family prevents activation of the Citrobacter rodentium PhoPQ two-component system by antimicrobial peptides. Mol Microbiol 2009; 74:98 - 111; http://dx.doi.org/10.1111/j.1365-2958.2009.06854.x; PMID: 19708916
  • Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD. A surface protease and the invasive character of plague. Science 1992; 258:1004 - 7; http://dx.doi.org/10.1126/science.1439793; PMID: 1439793
  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453 - 62; http://dx.doi.org/10.1126/science.277.5331.1453; PMID: 9278503
  • Guillier M, Gottesman S. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol Microbiol 2006; 59:231 - 47; http://dx.doi.org/10.1111/j.1365-2958.2005.04929.x; PMID: 16359331
  • Castellanos MI, Harrison DJ, Smith JM, Labahn SK, Levy KM, Wing HJ. VirB alleviates H-NS repression of the icsP promoter in Shigella flexneri from sites more than one kilobase upstream of the transcription start site. J Bacteriol 2009; 191:4047 - 50; http://dx.doi.org/10.1128/JB.00313-09; PMID: 19363111
  • Lewenza S, Mhlanga MM, Pugsley AP. Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol 2008; 190:6119 - 25; http://dx.doi.org/10.1128/JB.00603-08; PMID: 18641140
  • Darveau RP, Blake J, Seachord CL, Cosand WL, Cunningham MD, Cassiano-Clough L, et al. Peptides related to the carboxyl terminus of human platelet factor IV with antibacterial activity. J Clin Invest 1992; 90:447 - 55; http://dx.doi.org/10.1172/JCI115880; PMID: 1644916
  • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011; 9:356 - 68; http://dx.doi.org/10.1038/nrmicro2546; PMID: 21423246
  • Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 2002; 70:953 - 63; http://dx.doi.org/10.1128/IAI.70.2.953-963.2002; PMID: 11796631
  • Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB Jr., O’Neill S, et al. Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol 2003; 171:931 - 7; PMID: 12847264
  • Maisetta G, Brancatisano FL, Esin S, Campa M, Batoni G. Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-β-defensin 3 and affect peptide’s antibacterial activity in vitro. Peptides 2011; 32:1073 - 7; http://dx.doi.org/10.1016/j.peptides.2011.02.003; PMID: 21335044
  • Belas R, Manos J, Suvanasuthi R. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun 2004; 72:5159 - 67; http://dx.doi.org/10.1128/IAI.72.9.5159-5167.2004; PMID: 15322010
  • Kooi C, Sokol PA. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides. Microbiology 2009; 155:2818 - 25; http://dx.doi.org/10.1099/mic.0.028969-0; PMID: 19542010
  • Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 2011; 469:419 - 23; http://dx.doi.org/10.1038/nature09674; PMID: 21248850

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.