1,569
Views
14
CrossRef citations to date
0
Altmetric
Review

Colonize, evade, flourish

How glyco-conjugates promote virulence of Helicobacter pylori

&
Pages 439-453 | Received 10 Jun 2013, Accepted 11 Jul 2013, Published online: 12 Jul 2013

References

  • Blaser MJ. Helicobacter pylori and gastric diseases. BMJ 1998; 316:1507 - 10; http://dx.doi.org/10.1136/bmj.316.7143.1507; PMID: 9582144
  • Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000; 22:283 - 97; http://dx.doi.org/10.1093/oxfordjournals.epirev.a018040; PMID: 11218379
  • Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002; 71:635 - 700; http://dx.doi.org/10.1146/annurev.biochem.71.110601.135414; PMID: 12045108
  • Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 2002; 26:17 - 47; http://dx.doi.org/10.1111/j.1574-6976.2002.tb00597.x; PMID: 12007641
  • Moran AP. Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori.. Carbohydr Res 2008; 343:1952 - 65; http://dx.doi.org/10.1016/j.carres.2007.12.012; PMID: 18279843
  • Berg DE, Hoffman PS, Appelmelk BJ, Kusters JG. The Helicobacter pylori genome sequence: genetic factors for long life in the gastric mucosa. Trends Microbiol 1997; 5:468 - 74; http://dx.doi.org/10.1016/S0966-842X(97)01164-5; PMID: 9447657
  • Hug I, Feldman MF. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. [cited 2013 May 7 ] Glycobiology 2011; 21:138 - 51; http://dx.doi.org/10.1093/glycob/cwq148; PMID: 20871101
  • Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, Feldman MF. Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog 2010; 6:e1000819; http://dx.doi.org/10.1371/journal.ppat.1000819; PMID: 20333251
  • Alaimo C, Catrein I, Morf L, Marolda CL, Callewaert N, Valvano MA, et al. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J 2006; 25:967 - 76; http://dx.doi.org/10.1038/sj.emboj.7601024; PMID: 16498400
  • El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D. Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli.. J Biol Chem 2005; 280:18689 - 95; http://dx.doi.org/10.1074/jbc.M412277200; PMID: 15778224
  • Sperandeo P, Dehò G, Polissi A. The lipopolysaccharide transport system of Gram-negative bacteria. Biochim Biophys Acta 2009; 1791:594 - 602; http://dx.doi.org/10.1016/j.bbalip.2009.01.011; PMID: 19416651
  • Liechti G, Goldberg JB. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori.. Front Cell Infect Microbiol 2012; 2:29; http://dx.doi.org/10.3389/fcimb.2012.00029; PMID: 22919621
  • Bos MP, Tommassen J. The LptD chaperone LptE is not directly involved in lipopolysaccharide transport in Neisseria meningitidis.. J Biol Chem 2011; 286:28688 - 96; http://dx.doi.org/10.1074/jbc.M111.239673; PMID: 21705335
  • Raetz CRH, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 2007; 76:295 - 329; http://dx.doi.org/10.1146/annurev.biochem.76.010307.145803; PMID: 17362200
  • Muotiala A, Helander IM, Pyhälä L, Kosunen TU, Moran AP. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect Immun 1992; 60:1714 - 6; PMID: 1548097
  • Ogawa T, Suda Y, Kashihara W, Hayashi T, Shimoyama T, Kusumoto S, et al. Immunobiological activities of chemically defined lipid A from Helicobacter pylori LPS in comparison with Porphyromonas gingivalis lipid A and Escherichia coli-type synthetic lipid A (compound 506). Vaccine 1997; 15:1598 - 605; http://dx.doi.org/10.1016/S0264-410X(97)00102-3; PMID: 9364689
  • Ogawa T, Asai Y, Sakai Y, Oikawa M, Fukase K, Suda Y, et al. Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206-1. FEMS Immunol Med Microbiol 2003; 36:1 - 7; http://dx.doi.org/10.1016/S0928-8244(03)00093-2; PMID: 12727359
  • Raetz CR. Biochemistry of endotoxins. Annu Rev Biochem 1990; 59:129 - 70; http://dx.doi.org/10.1146/annurev.bi.59.070190.001021; PMID: 1695830
  • Tran AX, Whittimore JD, Wyrick PB, McGrath SC, Cotter RJ, Trent MS. The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin. J Bacteriol 2006; 188:4531 - 41; http://dx.doi.org/10.1128/JB.00146-06; PMID: 16740959
  • Stead CM, Beasley A, Cotter RJ, Trent MS. Deciphering the unusual acylation pattern of Helicobacter pylori lipid A. J Bacteriol 2008; 190:7012 - 21; http://dx.doi.org/10.1128/JB.00667-08; PMID: 18757539
  • Tran AX, Karbarz MJ, Wang X, Raetz CRH, McGrath SC, Cotter RJ, et al. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J Biol Chem 2004; 279:55780 - 91; http://dx.doi.org/10.1074/jbc.M406480200; PMID: 15489235
  • Stead CM, Zhao J, Raetz CRH, Trent MS. Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface. Mol Microbiol 2010; 78:837 - 52; http://dx.doi.org/10.1111/j.1365-2958.2010.07304.x; PMID: 20659292
  • Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS. Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathog 2011; 7:e1002454; http://dx.doi.org/10.1371/journal.ppat.1002454; PMID: 22216004
  • Kawasaki K, Ernst RK, Miller SI. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J Biol Chem 2004; 279:20044 - 8; http://dx.doi.org/10.1074/jbc.M401275200; PMID: 15014080
  • Coats SR, Pham T-TT, Bainbridge BW, Reife RA, Darveau RP. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J Immunol 2005; 175:4490 - 8; PMID: 16177092
  • Teghanemt A, Zhang D, Levis EN, Weiss JP, Gioannini TL. Molecular basis of reduced potency of underacylated endotoxins. J Immunol 2005; 175:4669 - 76; PMID: 16177114
  • Cullen TW, Trent MS. A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni.. Proc Natl Acad Sci U S A 2010; 107:5160 - 5; http://dx.doi.org/10.1073/pnas.0913451107; PMID: 20194750
  • Scott NE, Nothaft H, Edwards AVG, Labbate M, Djordjevic SP, Larsen MR, et al. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. J Biol Chem 2012; 287:29384 - 96; http://dx.doi.org/10.1074/jbc.M112.380212; PMID: 22761430
  • Cullen TW, O’Brien JP, Hendrixson DR, Giles DK, Hobb RI, Thompson SA, et al. EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence. Infect Immun 2013; 81:430 - 40; http://dx.doi.org/10.1128/IAI.01046-12; PMID: 23184526
  • Simoons-Smit IM, Appelmelk BJ, Verboom T, Negrini R, Penner JL, Aspinall GO, et al. Typing of Helicobacter pylori with monoclonal antibodies against Lewis antigens in lipopolysaccharide. J Clin Microbiol 1996; 34:2196 - 200; PMID: 8862584
  • Heneghan MA, McCarthy CF, Moran AP. Relationship of blood group determinants on Helicobacter pylori lipopolysaccharide with host lewis phenotype and inflammatory response. Infect Immun 2000; 68:937 - 41; http://dx.doi.org/10.1128/IAI.68.2.937-941.2000; PMID: 10639467
  • Kocharova NA, Knirel YA, Widmalm G, Jansson PE, Moran AP. Structure of an atypical O-antigen polysaccharide of Helicobacter pylori containing a novel monosaccharide 3-C-methyl-D-mannose. Biochemistry 2000; 39:4755 - 60; http://dx.doi.org/10.1021/bi992635k; PMID: 10769132
  • Logan SM, Conlan JW, Monteiro MA, Wakarchuk WW, Altman E. Functional genomics of Helicobacter pylori: identification of a beta-1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol Microbiol 2000; 35:1156 - 67; http://dx.doi.org/10.1046/j.1365-2958.2000.01784.x; PMID: 10712696
  • Pohl MA, Romero-Gallo J, Guruge JL, Tse DB, Gordon JI, Blaser MJ. Host-dependent Lewis (Le) antigen expression in Helicobacter pylori cells recovered from Leb-transgenic mice. J Exp Med 2009; 206:3061 - 72; http://dx.doi.org/10.1084/jem.20090683; PMID: 20008521
  • Logan SM, Altman E, Mykytczuk O, Brisson J-R, Chandan V, Schur MJ, et al. Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori.. Glycobiology 2005; 15:721 - 33; http://dx.doi.org/10.1093/glycob/cwi057; PMID: 15814825
  • Aspinall GO, Monteiro MA, Moran AP, Pang H, Penner JL, Shaver RT. Lipopolysaccharides from Helicobacter pylori.. Prog Clin Biol Res 1995; 392:93 - 101; PMID: 8524968
  • Aspinall GO, Monteiro MA, Pang H, Walsh EJ, Moran AP. Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions. Biochemistry 1996; 35:2489 - 97; http://dx.doi.org/10.1021/bi951852s; PMID: 8652593
  • Nilsson C, Skoglund A, Moran AP, Annuk H, Engstrand L, Normark S. An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc Natl Acad Sci U S A 2006; 103:2863 - 8; http://dx.doi.org/10.1073/pnas.0511119103; PMID: 16477004
  • Appelmelk BJ, Monteiro MA, Martin SL, Moran AP, Vandenbroucke-Grauls CM. Why Helicobacter pylori has Lewis antigens. Trends Microbiol 2000; 8:565 - 70; http://dx.doi.org/10.1016/S0966-842X(00)01875-8; PMID: 11115753
  • Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori.. Nature 1999; 397:176 - 80; http://dx.doi.org/10.1038/16495; PMID: 9923682
  • Wang G, Ge Z, Rasko DA, Taylor DE. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol Microbiol 2000; 36:1187 - 96; http://dx.doi.org/10.1046/j.1365-2958.2000.01934.x; PMID: 10931272
  • Appelmelk BJ, Negrini R, Moran AP, Kuipers EJ. Molecular mimicry between Helicobacter pylori and the host. Trends Microbiol 1997; 5:70 - 3; http://dx.doi.org/10.1016/S0966-842X(96)10084-6; PMID: 9108933
  • Pohl MA, Kienesberger S, Blaser MJ. Novel functions for glycosyltransferases Jhp0562 and GalT in Lewis antigen synthesis and variation in Helicobacter pylori.. Infect Immun 2012; 80:1593 - 605; http://dx.doi.org/10.1128/IAI.00032-12; PMID: 22290141
  • Nilsson C, Skoglund A, Moran AP, Annuk H, Engstrand L, Normark S. Lipopolysaccharide diversity evolving in Helicobacter pylori communities through genetic modifications in fucosyltransferases. PLoS One 2008; 3:e3811; http://dx.doi.org/10.1371/journal.pone.0003811; PMID: 19043574
  • Monteiro MA, St Michael F, Rasko DA, Taylor DE, Conlan JW, Chan KH, et al. Helicobacter pylori from asymptomatic hosts expressing heptoglycan but lacking Lewis O-chains: Lewis blood-group O-chains may play a role in Helicobacter pylori induced pathology. Biochem Cell Biol 2001; 79:449 - 59; PMID: 11527214
  • Edwards NJ, Monteiro MA, Faller G, Walsh EJ, Moran AP, Roberts IS, et al. Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol Microbiol 2000; 35:1530 - 9; http://dx.doi.org/10.1046/j.1365-2958.2000.01823.x; PMID: 10760152
  • Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ. Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol 2006; 8:44 - 54; http://dx.doi.org/10.1111/j.1462-5822.2005.00599.x; PMID: 16367865
  • Bergman MP, Engering A, Smits HH, van Vliet SJ, van Bodegraven AA, Wirth H-P, et al. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 2004; 200:979 - 90; http://dx.doi.org/10.1084/jem.20041061; PMID: 15492123
  • Ghuysen J-M, Hakenbeck R. Bacterial Cell Wall. Elsevier; 1994.
  • Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli.. Microbiol Mol Biol Rev 1998; 62:181 - 203; PMID: 9529891
  • Takebe I. Extent of cross linkage in the murein sacculus of Escherichia coli B cell wall. Biochim Biophys Acta 1965; 101:124 - 6; http://dx.doi.org/10.1016/0926-6534(65)90038-2; PMID: 14329278
  • Costa K, Bacher G, Allmaier G, Dominguez-Bello MG, Engstrand L, Falk P, et al. The morphological transition of Helicobacter pylori cells from spiral to coccoid is preceded by a substantial modification of the cell wall. J Bacteriol 1999; 181:3710 - 5; PMID: 10368145
  • Harz H, Burgdorf K, Höltje JV. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem 1990; 190:120 - 8; http://dx.doi.org/10.1016/0003-2697(90)90144-X; PMID: 2285138
  • Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 2010; 141:822 - 33; http://dx.doi.org/10.1016/j.cell.2010.03.046; PMID: 20510929
  • Bonis M, Ecobichon C, Guadagnini S, Prévost M-C, Boneca IGA. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol Microbiol 2010; 78:809 - 19; http://dx.doi.org/10.1111/j.1365-2958.2010.07383.x; PMID: 20815828
  • Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z, Vollmer W, et al. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLoS Pathog 2012; 8:e1002603; http://dx.doi.org/10.1371/journal.ppat.1002603; PMID: 22457625
  • Frirdich E, Biboy J, Adams C, Lee J, Ellermeier J, Gielda LD, et al. Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni.. PLoS Pathog 2012; 8:e1002602; http://dx.doi.org/10.1371/journal.ppat.1002602; PMID: 22457624
  • Chaput C, Ecobichon C, Cayet N, Girardin SE, Werts C, Guadagnini S, et al. Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape. PLoS Pathog 2006; 2:e97; http://dx.doi.org/10.1371/journal.ppat.0020097; PMID: 17002496
  • van Heijenoort J. Peptidoglycan hydrolases of Escherichia coli.. [cited 2013 May 22 ] Microbiol Mol Biol Rev 2011; 75:636 - 63; http://dx.doi.org/10.1128/MMBR.00022-11; PMID: 22126997
  • Scheurwater E, Reid CW, Clarke AJ. Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 2008; 40:586 - 91; http://dx.doi.org/10.1016/j.biocel.2007.03.018; PMID: 17468031
  • Helicobacter pylori: physiology and genetics. Washington, DC: ASM Press; 2001.
  • Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004; 5:1166 - 74; http://dx.doi.org/10.1038/ni1131; PMID: 15489856
  • Wang G, Olczak A, Forsberg LS, Maier RJ. Oxidative stress-induced peptidoglycan deacetylase in Helicobacter pylori.. J Biol Chem 2009; 284:6790 - 800; http://dx.doi.org/10.1074/jbc.M808071200; PMID: 19147492
  • Wang G, Maier SE, Lo LF, Maier G, Dosi S, Maier RJ. Peptidoglycan deacetylation in Helicobacter pylori contributes to bacterial survival by mitigating host immune responses. Infect Immun 2010; 78:4660 - 6; http://dx.doi.org/10.1128/IAI.00307-10; PMID: 20805339
  • Wang G, Lo LF, Forsberg LS, Maier RJ. Helicobacter pylori peptidoglycan modifications confer lysozyme resistance and contribute to survival in the host. MBio 2012; 3:e00409 - 12; http://dx.doi.org/10.1128/mBio.00409-12; PMID: 23221800
  • Vollmer W. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 2008; 32:287 - 306; http://dx.doi.org/10.1111/j.1574-6976.2007.00088.x; PMID: 18070068
  • Schirm M, Soo EC, Aubry AJ, Austin J, Thibault P, Logan SM. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori.. Mol Microbiol 2003; 48:1579 - 92; http://dx.doi.org/10.1046/j.1365-2958.2003.03527.x; PMID: 12791140
  • Thibault P, Logan SM, Kelly JF, Brisson JR, Ewing CP, Trust TJ, et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 2001; 276:34862 - 70; http://dx.doi.org/10.1074/jbc.M104529200; PMID: 11461915
  • McNally DJ, Hui JPM, Aubry AJ, Mui KKK, Guerry P, Brisson J-R, et al. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J Biol Chem 2006; 281:18489 - 98; http://dx.doi.org/10.1074/jbc.M603777200; PMID: 16684771
  • Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev 2011; 75:84 - 132; http://dx.doi.org/10.1128/MMBR.00035-10; PMID: 21372321
  • Asakura H, Churin Y, Bauer B, Boettcher JP, Bartfeld S, Hashii N, et al. Helicobacter pylori HP0518 affects flagellin glycosylation to alter bacterial motility. Mol Microbiol 2010; 78:1130 - 44; http://dx.doi.org/10.1111/j.1365-2958.2010.07393.x; PMID: 21091500
  • Höpf PS, Ford RS, Zebian N, Merkx-Jacques A, Vijayakumar S, Ratnayake D, et al. Protein glycosylation in Helicobacter pylori: beyond the flagellins?. PLoS One 2011; 6:e25722; http://dx.doi.org/10.1371/journal.pone.0025722; PMID: 21984942
  • Nothaft H, Liu X, McNally DJ, Li J, Szymanski CM. Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. [cited 2013 Jun 5 ] Proc Natl Acad Sci U S A 2009; 106:15019 - 24; http://dx.doi.org/10.1073/pnas.0903078106; PMID: 19706478
  • Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P. Evidence for a system of general protein glycosylation in Campylobacter jejuni.. Mol Microbiol 1999; 32:1022 - 30; http://dx.doi.org/10.1046/j.1365-2958.1999.01415.x; PMID: 10361304
  • Hug I, Zheng B, Reiz B, Whittal RM, Fentabil MA, Klassen JS, et al. Exploiting bacterial glycosylation machineries for the synthesis of a Lewis antigen-containing glycoprotein. J Biol Chem 2011; 286:37887 - 94; http://dx.doi.org/10.1074/jbc.M111.287755; PMID: 21878645
  • Altman E, Chandan V, Harrison BA, Veloso-Pita R, Li J, KuoLee R, et al, Regional Helicobacter pylori Study Group. Design and immunological properties of Helicobacter pylori glycoconjugates based on a truncated lipopolysaccharide lacking Lewis antigen and comprising an α-1,6-glucan chain. Vaccine 2012; 30:7332 - 41; http://dx.doi.org/10.1016/j.vaccine.2012.04.035; PMID: 22534169
  • Ansorg R, Müller KD, von Recklinghausen G, Nalik HP. Cholesterol binding of Helicobacter pylori.. Zentralbl Bakteriol 1992; 276:323 - 9; http://dx.doi.org/10.1016/S0934-8840(11)80538-4; PMID: 1576402
  • Haque M, Hirai Y, Yokota K, Oguma K. Lipid profiles of Helicobacter pylori and Helicobacter mustelae grown in serum-supplemented and serum-free media. Acta Med Okayama 1995; 49:205 - 11; PMID: 7502681
  • Testerman TL, McGee DJ, Mobley HL. Helicobacter pylori growth and urease detection in the chemically defined medium Ham’s F-12 nutrient mixture. J Clin Microbiol 2001; 39:3842 - 50; http://dx.doi.org/10.1128/JCM.39.11.3842-3850.2001; PMID: 11682496
  • Wunder C, Churin Y, Winau F, Warnecke D, Vieth M, Lindner B, et al. Cholesterol glucosylation promotes immune evasion by Helicobacter pylori.. Nat Med 2006; 12:1030 - 8; http://dx.doi.org/10.1038/nm1480; PMID: 16951684
  • McGee DJ, George AE, Trainor EA, Horton KE, Hildebrandt E, Testerman TL. Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Antimicrob Agents Chemother 2011; 55:2897 - 904; http://dx.doi.org/10.1128/AAC.00016-11; PMID: 21464244
  • Shimomura H, Hosoda K, Hayashi S, Yokota K, Oguma K, Hirai Y. Steroids mediate resistance to the bactericidal effect of phosphatidylcholines against Helicobacter pylori.. FEMS Microbiol Lett 2009; 301:84 - 94; http://dx.doi.org/10.1111/j.1574-6968.2009.01807.x; PMID: 19843309
  • Shimomura H, Hosoda K, McGee DJ, Hayashi S, Yokota K, Hirai Y. Detoxification of 7-dehydrocholesterol fatal to Helicobacter pylori is a novel role of cholesterol glucosylation. J Bacteriol 2013; 195:359 - 67; http://dx.doi.org/10.1128/JB.01495-12; PMID: 23144252
  • Beigier-Bompadre M, Moos V, Belogolova E, Allers K, Schneider T, Churin Y, et al. Modulation of the CD4+ T-cell response by Helicobacter pylori depends on known virulence factors and bacterial cholesterol and cholesterol α-glucoside content. J Infect Dis 2011; 204:1339 - 48; http://dx.doi.org/10.1093/infdis/jir547; PMID: 21921201
  • Wang H-J, Cheng W-C, Cheng H-H, Lai C-H, Wang W-C. Helicobacter pylori cholesteryl glucosides interfere with host membrane phase and affect type IV secretion system function during infection in AGS cells. Mol Microbiol 2012; 83:67 - 84; http://dx.doi.org/10.1111/j.1365-2958.2011.07910.x; PMID: 22053852
  • Lai C-H, Chang Y-C, Du S-Y, Wang H-J, Kuo C-H, Fang S-H, et al. Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun 2008; 76:3293 - 303; http://dx.doi.org/10.1128/IAI.00365-08; PMID: 18443091
  • Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007; 449:862 - 6; http://dx.doi.org/10.1038/nature06187; PMID: 17943123
  • Hutton ML, Kaparakis-Liaskos M, Turner L, Cardona A, Kwok T, Ferrero RL. Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 2010; 78:4523 - 31; http://dx.doi.org/10.1128/IAI.00439-10; PMID: 20713621

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.