1,023
Views
30
CrossRef citations to date
0
Altmetric
Review

Host cell-induced signaling causes Clostridium perfringens to upregulate production of toxins important for intestinal infections

, , &
Pages 96-107 | Received 03 Jul 2013, Accepted 08 Sep 2013, Published online: 10 Sep 2013

References

  • McClane BA, Uzal FA, Miyakawa MF, Lyerly D, Wilkins TD. (2006) The Enterotoxic Clostridia. In: Dworkin M, Falkow S, Rosenburg E, Schleifer H, Stackebrandt E, editors. The Prokaryotes. 3rd ed. New York: Springer NY press. pp. 688-752.
  • Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, McClane BA. Toxin plasmids of Clostridium perfringens.. Microbiol Mol Biol Rev 2013; 77:208 - 33; http://dx.doi.org/10.1128/MMBR.00062-12; PMID: 23699255
  • McClane BA, Robertson SL, Li J. (2013) Clostridium perfringens. In: Doyle MP, Buchanan RL, editors. Food Microbiology: Fundamentals and Frontiers. 4th ed. Washington D.C.: ASM press. pp. 465-489.
  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis 2011; 17:7 - 15; PMID: 21192848
  • Batz MB, Hoffmann S, Morris JG Jr.. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot 2012; 75:1278 - 91; http://dx.doi.org/10.4315/0362-028X.JFP-11-418; PMID: 22980012
  • Caserta JARS, Robertson SL, Saputo J, Shrestha A, McClane BA, Uzal FA. Development and application of a mouse intestinal loop model to study the in vivo action of Clostridium perfringens enterotoxin. Infect Immun 2011; 79:3020 - 7; http://dx.doi.org/10.1128/IAI.01342-10; PMID: 21628512
  • Deguchi A, Miyamoto K, Kuwahara T, Miki Y, Kaneko I, Li J, McClane BA, Akimoto S. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains. PLoS One 2009; 4:e5598; http://dx.doi.org/10.1371/journal.pone.0005598; PMID: 19479065
  • Li J, McClane BA. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog 2008; 4:e1000056; http://dx.doi.org/10.1371/journal.ppat.1000056; PMID: 18451983
  • Briggs DC, Naylor CE, Smedley JG 3rd, Lukoyanova N, Robertson S, Moss DS, McClane BA, Basak AK. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J Mol Biol 2011; 413:138 - 49; http://dx.doi.org/10.1016/j.jmb.2011.07.066; PMID: 21839091
  • Kitadokoro K, Nishimura K, Kamitani S, Fukui-Miyazaki A, Toshima H, Abe H, Kamata Y, Sugita-Konishi Y, Yamamoto S, Karatani H, et al. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem 2011; 286:19549 - 55; http://dx.doi.org/10.1074/jbc.M111.228478; PMID: 21489981
  • Shrestha A, McClane BA. Human claudin-8 and -14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin. MBio 2013; 4:e00594 - 12; http://dx.doi.org/10.1128/mBio.00594-12; PMID: 23322640
  • Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J. On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel) 2010; 2:1336 - 56; http://dx.doi.org/10.3390/toxins2061336; PMID: 22069641
  • Robertson SL, Smedley JG 3rd, Singh U, Chakrabarti G, Van Itallie CM, Anderson JM, McClane BA. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol 2007; 9:2734 - 55; http://dx.doi.org/10.1111/j.1462-5822.2007.00994.x; PMID: 17587331
  • Chen J, Theoret JR, Shrestha A, Smedley JG 3rd, McClane BA. Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation. Infect Immun 2012; 80:4078 - 88; http://dx.doi.org/10.1128/IAI.00069-12; PMID: 22966051
  • Chakrabarti G, McClane BA. The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol 2005; 7:129 - 46; http://dx.doi.org/10.1111/j.1462-5822.2004.00442.x; PMID: 15617529
  • Bos J, Smithee L, McClane BA, Distefano RF, Uzal F, et al. Fatal necrotizing enteritis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis 2005; 15:78 - 83; http://dx.doi.org/10.1086/429829
  • Carman RJ. Clostridium perfringens in spontaneous and antibiotic-associated diarrhoea of man and other animals. Rev Med Microbiol. 1997; 8:supplement 1 S43 - 5; http://dx.doi.org/10.1097/00013542-199712001-00024
  • Sarker MR, Carman RJ, McClane BA. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol 1999; 33:946 - 58; http://dx.doi.org/10.1046/j.1365-2958.1999.01534.x; PMID: 10476029
  • Uzal FA, McClane BA. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet Microbiol 2011; 153:37 - 43; http://dx.doi.org/10.1016/j.vetmic.2011.02.048; PMID: 21420802
  • Ma M, Li J, McClane BA. Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany. Infect Immun 2012; 80:4354 - 63; http://dx.doi.org/10.1128/IAI.00818-12; PMID: 23027533
  • Lawrence GW. (1997) The pathogenesis of enteritis necroticans. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The Clostridia: Molecular Genetics and Pathogenesis. London: Academic Press. pp. 198-207.
  • Petrillo TM, Beck-Sagué CM, Songer JG, Abramowsky C, Fortenberry JD, Meacham L, Dean AG, Lee H, Bueschel DM, Nesheim SR. Enteritis necroticans (pigbel) in a diabetic child. N Engl J Med 2000; 342:1250 - 3; http://dx.doi.org/10.1056/NEJM200004273421704; PMID: 10781621
  • Smedley JG 3rd, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of Clostridium perfringens.. Rev Physiol Biochem Pharmacol 2004; 152:183 - 204; http://dx.doi.org/10.1007/s10254-004-0036-2; PMID: 15517462
  • Nagahama M, Hayashi S, Morimitsu S, Sakurai J. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J Biol Chem 2003; 278:36934 - 41; http://dx.doi.org/10.1074/jbc.M306562200; PMID: 12851396
  • Autheman D, Wyder M, Popoff M, D’Herde K, Christen S, Posthaus H. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells. PLoS One 2013; 8:e64644; http://dx.doi.org/10.1371/journal.pone.0064644; PMID: 23734212
  • Yan XX, Porter CJ, Hardy SP, Steer D, Smith AI, Quinsey NS, Hughes V, Cheung JK, Keyburn AL, Kaldhusdal M, et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. MBio 2013; 4:e00019 - 13; http://dx.doi.org/10.1128/mBio.00019-13; PMID: 23386432
  • Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y, Gupta P, Rood JI, McClane BA. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol 2008; 67:15 - 30; http://dx.doi.org/10.1111/j.1365-2958.2007.06007.x; PMID: 18078439
  • Garcia JP, Beingesser J, Fisher DJ, Sayeed S, McClane BA, Posthaus H, Uzal FA. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats. Vet Microbiol 2012; 157:412 - 9; http://dx.doi.org/10.1016/j.vetmic.2012.01.005; PMID: 22296994
  • Vidal JE, McClane BA, Saputo J, Parker J, Uzal FA. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect Immun 2008; 76:4396 - 404; http://dx.doi.org/10.1128/IAI.00547-08; PMID: 18625730
  • Uzal FA, Saputo J, Sayeed S, Vidal JE, Fisher DJ, Poon R, Adams V, Fernandez-Miyakawa ME, Rood JI, McClane BA. Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C Enterotoxemias. Infect Immun 2009; 77:5291 - 9; http://dx.doi.org/10.1128/IAI.00825-09; PMID: 19805537
  • Garcia JP, Adams V, Beingesser J, Hughes ML, Poon R, Lyras D, Hill A, McClane BA, Rood JI, Uzal FA. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infect Immun 2013; 81:2405 - 14; http://dx.doi.org/10.1128/IAI.00238-13; PMID: 23630957
  • Cole AR, Gibert M, Popoff M, Moss DS, Titball RW, Basak AK. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat Struct Mol Biol 2004; 11:797 - 8; http://dx.doi.org/10.1038/nsmb804; PMID: 15258571
  • Miyata S, Matsushita O, Minami J, Katayama S, Shimamoto S, Okabe A. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane. J Biol Chem 2001; 276:13778 - 83; PMID: 11278924
  • Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol Immunol 1997; 41:527 - 35; PMID: 9272698
  • Harkness JM, Li J, McClane BA. Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe 2012; 18:546 - 52; http://dx.doi.org/10.1016/j.anaerobe.2012.09.001; PMID: 22982043
  • Ivie SE, McClain MS. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1. Biochemistry 2012; 51:7588 - 95; http://dx.doi.org/10.1021/bi300690a; PMID: 22938730
  • Popoff MR. Epsilon toxin: a fascinating pore-forming toxin. FEBS J 2011; 278:4602 - 15; http://dx.doi.org/10.1111/j.1742-4658.2011.08145.x; PMID: 21535407
  • Stiles BG, Wigelsworth DJ, Popoff MR, Barth H. Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect Microbiol 2011; 1:11; http://dx.doi.org/10.3389/fcimb.2011.00011; PMID: 22919577
  • Capra EJ, Laub MT. Evolution of two-component signal transduction systems. Annu Rev Microbiol 2012; 66:325 - 47; http://dx.doi.org/10.1146/annurev-micro-092611-150039; PMID: 22746333
  • Yuan Y, Ohtani K, Yoshizawa S, Shimizu T. Complex transcriptional regulation of citrate metabolism in Clostridium perfringens.. Anaerobe 2012; 18:48 - 54; http://dx.doi.org/10.1016/j.anaerobe.2011.09.004; PMID: 21945821
  • Shimizu T, Ba-Thein W, Tamaki M, Hayashi H. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens.. J Bacteriol 1994; 176:1616 - 23; PMID: 8132455
  • Lyristis M, Bryant AE, Sloan J, Awad MM, Nisbet IT, Stevens DL, Rood JI. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens.. Mol Microbiol 1994; 12:761 - 77; http://dx.doi.org/10.1111/j.1365-2958.1994.tb01063.x; PMID: 8052128
  • Cheung JK, Dupuy B, Deveson DS, Rood JI. The spatial organization of the VirR boxes is critical for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens.. J Bacteriol 2004; 186:3321 - 30; http://dx.doi.org/10.1128/JB.186.11.3321-3330.2004; PMID: 15150217
  • Okumura K, Ohtani K, Hayashi H, Shimizu T. Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens.. J Bacteriol 2008; 190:7719 - 27; http://dx.doi.org/10.1128/JB.01573-07; PMID: 18790863
  • Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayashi H. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 2002; 43:257 - 65; http://dx.doi.org/10.1046/j.1365-2958.2002.02743.x; PMID: 11849553
  • Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet 2008; 42:541 - 64; http://dx.doi.org/10.1146/annurev.genet.42.110807.091640; PMID: 18713030
  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev 2011; 111:117 - 51; http://dx.doi.org/10.1021/cr100370n; PMID: 21174435
  • Gray B, Hall P, Gresham H. Targeting agr- and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors (Basel) 2013; 13:5130 - 66; http://dx.doi.org/10.3390/s130405130; PMID: 23598501
  • Ohtani K, Yuan Y, Hassan S, Wang R, Wang Y, Shimizu T. Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol 2009; 191:3919 - 27; http://dx.doi.org/10.1128/JB.01455-08; PMID: 19363118
  • Vidal JE, Chen J, Li J, McClane BA. Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS One 2009; 4:e6232; http://dx.doi.org/10.1371/journal.pone.0006232; PMID: 19597556
  • Vidal JE, Ma M, Saputo J, Garcia J, Uzal FA, McClane BA. Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol 2012; 83:179 - 94; http://dx.doi.org/10.1111/j.1365-2958.2011.07925.x; PMID: 22150719
  • Li J, Chen J, Vidal JE, McClane BA. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 2011; 79:2451 - 9; http://dx.doi.org/10.1128/IAI.00169-11; PMID: 21464088
  • Awad MM, Ellemor DM, Boyd RL, Emmins JJ, Rood JI. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect Immun 2001; 69:7904 - 10; http://dx.doi.org/10.1128/IAI.69.12.7904-7910.2001; PMID: 11705975
  • Chen J, Rood JI, McClane BA. Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. MBio 2011; 2:e00275 - 300275; http://dx.doi.org/10.1128/mBio.00275-11; PMID: 22167225
  • Chen J, McClane BA. Role of the Agr-like quorum-sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795. Infect Immun 2012; 80:3008 - 17; http://dx.doi.org/10.1128/IAI.00438-12; PMID: 22689820
  • Li J, McClane BA. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect Immun 2010; 78:4286 - 93; http://dx.doi.org/10.1128/IAI.00528-10; PMID: 20643850
  • Huang IH, Waters M, Grau RR, Sarker MR. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett 2004; 233:233 - 40; http://dx.doi.org/10.1111/j.1574-6968.2004.tb09487.x; PMID: 15063491
  • Ba-Thein W, Lyristis M, Ohtani K, Nisbet IT, Hayashi H, Rood JI, Shimizu T. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens.. J Bacteriol 1996; 178:2514 - 20; PMID: 8626316
  • Ohtani K, Kawsar HI, Okumura K, Hayashi H, Shimizu T. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol Lett 2003; 222:137 - 41; http://dx.doi.org/10.1016/S0378-1097(03)00255-6; PMID: 12757957
  • Vidal JE, Ohtani K, Shimizu T, McClane BA. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell Microbiol 2009; 11:1306 - 28; http://dx.doi.org/10.1111/j.1462-5822.2009.01332.x; PMID: 19438515
  • Ma M, Vidal J, Saputo J, McClane BA, Uzal F. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. MBio 2011; 2:e00338 - 10; http://dx.doi.org/10.1128/mBio.00338-10; PMID: 21264065
  • Li J, Sayeed S, Robertson S, Chen J, McClane BA. Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718. PLoS Pathog 2011; 7:e1002429; http://dx.doi.org/10.1371/journal.ppat.1002429; PMID: 22174687
  • van Gestel J, Nowak MA, Tarnita CE. The evolution of cell-to-cell communication in a sporulating bacterium. PLoS Comput Biol 2012; 8:e1002818; http://dx.doi.org/10.1371/journal.pcbi.1002818; PMID: 23284278
  • Harry KH, Zhou R, Kroos L, Melville SB. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J Bacteriol 2009; 191:2728 - 42; http://dx.doi.org/10.1128/JB.01839-08; PMID: 19201796
  • Cheung JK, Keyburn AL, Carter GP, Lanckriet AL, Van Immerseel F, Moore RJ, Rood JI. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens.. Infect Immun 2010; 78:3064 - 72; http://dx.doi.org/10.1128/IAI.00123-10; PMID: 20457789

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.