2,282
Views
56
CrossRef citations to date
0
Altmetric
Review

Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection

&
Pages 86-95 | Received 11 Sep 2013, Accepted 08 Nov 2013, Published online: 11 Dec 2013

References

  • Hall JC, O'Toole E. Intestinal flora in new-born infants with a description of a new pathogenic anaerobe, Bacillus difficilis.. Am J Dis Child 1935; 49:390 - 402; http://dx.doi.org/10.1001/archpedi.1935.01970020105010
  • Bartlett JG, Gorbach SL. Pseudomembranous enterocolitis (antibiotic-related colitis). Adv Intern Med 1977; 22:455 - 76; PMID: 320848
  • Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis 2012; 55:Suppl 2 S88 - 92; http://dx.doi.org/10.1093/cid/cis335; PMID: 22752870
  • Lucado J, Gould C, Elixhauser A. in Healthcare Cost and Utilization Project (HCUP) Statistical Briefs (2006).
  • Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection.. Clin Infect Dis 2008; 46:Suppl 1 S12 - 8; http://dx.doi.org/10.1086/521863; PMID: 18177217
  • Freeman J, Wilcox MH. Antibiotics and Clostridium difficile.. Microbes Infect 1999; 1:377 - 84; http://dx.doi.org/10.1016/S1286-4579(99)80054-9; PMID: 10602670
  • Pépin J, Saheb N, Coulombe MA, Alary ME, Corriveau MP, Authier S, Leblanc M, Rivard G, Bettez M, Primeau V, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005; 41:1254 - 60; http://dx.doi.org/10.1086/496986; PMID: 16206099
  • Baxter R, Ray GT, Fireman BH. Case-control study of antibiotic use and subsequent Clostridium difficile-associated diarrhea in hospitalized patients. Infect Control Hosp Epidemiol 2008; 29:44 - 50; http://dx.doi.org/10.1086/524320; PMID: 18171186
  • Gifford AH, Kirkland KB. Risk factors for Clostridium difficile-associated diarrhea on an adult hematology-oncology ward. Eur J Clin Microbiol Infect Dis 2006; 25:751 - 5; http://dx.doi.org/10.1007/s10096-006-0220-1; PMID: 17072575
  • McFarland LV. Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol 2008; 3:563 - 78; http://dx.doi.org/10.2217/17460913.3.5.563; PMID: 18811240
  • van der Waaij D, Berghuis-de Vries JM, Lekkerkerk Lekkerkerk-v. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 1971; 69:405 - 11; http://dx.doi.org/10.1017/S0022172400021653; PMID: 4999450
  • Vollaard EJ, Clasener HA. Colonization resistance. Antimicrob Agents Chemother 1994; 38:409 - 14; http://dx.doi.org/10.1128/AAC.38.3.409; PMID: 8203832
  • Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009; 77:2367 - 75; http://dx.doi.org/10.1128/IAI.01520-08; PMID: 19307217
  • Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6:e280; http://dx.doi.org/10.1371/journal.pbio.0060280; PMID: 19018661
  • Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488:621 - 6; http://dx.doi.org/10.1038/nature11400; PMID: 22914093
  • Antunes LC, Han J, Ferreira RB, Lolić P, Borchers CH, Finlay BB. Effect of antibiotic treatment on the intestinal metabolome. Antimicrob Agents Chemother 2011; 55:1494 - 503; http://dx.doi.org/10.1128/AAC.01664-10; PMID: 21282433
  • Kinross JM, Darzi AW, Nicholson JK. Gut microbiome-host interactions in health and disease. Genome Med 2011; 3:14; http://dx.doi.org/10.1186/gm228; PMID: 21392406
  • Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 2011; 108:Suppl 1 4523 - 30; http://dx.doi.org/10.1073/pnas.1006734107; PMID: 20837534
  • Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 2008; 190:2505 - 12; http://dx.doi.org/10.1128/JB.01765-07; PMID: 18245298
  • Karlsson S, Burman LG, Akerlund T. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology 2008; 154:3430 - 6; http://dx.doi.org/10.1099/mic.0.2008/019778-0; PMID: 18957596
  • Nakamura S, Nakashio S, Yamakawa K, Tanabe N, Nishida S. Carbohydrate fermentation by Clostridium difficile.. Microbiol Immunol 1982; 26:107 - 11; http://dx.doi.org/10.1111/j.1348-0421.1982.tb00159.x; PMID: 6806571
  • Giel JL, Sorg JA, Sonenshein AL, Zhu J. Metabolism of bile salts in mice influences spore germination in Clostridium difficile.. PLoS One 2010; 5:e8740; http://dx.doi.org/10.1371/journal.pone.0008740; PMID: 20090901
  • Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977; 31:107 - 33; http://dx.doi.org/10.1146/annurev.mi.31.100177.000543; PMID: 334036
  • Freter R. In vivo and in vitro antagonism of intestinal bacteria against Shigellaflexneri. II. The inhibitory mechanism. J Infect Dis 1962; 110:38 - 46; http://dx.doi.org/10.1093/infdis/110.1.38; PMID: 13895061
  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355 - 9; http://dx.doi.org/10.1126/science.1124234; PMID: 16741115
  • Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307:1955 - 9; http://dx.doi.org/10.1126/science.1109051; PMID: 15790854
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3:289 - 306; http://dx.doi.org/10.4161/gmic.19897; PMID: 22572875
  • Rogers TE, Pudlo NA, Koropatkin NM, Bell JS, Moya Balasch M, Jasker K, Martens EC. Dynamic responses of Bacteroides thetaiotaomicron during growth on glycan mixtures. Mol Microbiol 2013; 88:876 - 90; http://dx.doi.org/10.1111/mmi.12228; PMID: 23646867
  • Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci (Landmark Ed) 2011; 16:1768 - 86; http://dx.doi.org/10.2741/3820; PMID: 21196263
  • Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 1991; 70:443 - 59; http://dx.doi.org/10.1111/j.1365-2672.1991.tb02739.x; PMID: 1938669
  • Silvester KR, Englyst HN, Cummings JH. Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent. Am J Clin Nutr 1995; 62:403 - 11; PMID: 7625349
  • Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95:50 - 60; http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane; PMID: 22468341
  • Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 2011; 14:82 - 91; http://dx.doi.org/10.1016/j.mib.2010.10.003; PMID: 21036098
  • Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci (Landmark Ed) 2011; 16:1768 - 86; http://dx.doi.org/10.2741/3820; PMID: 21196263
  • Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 2011; 17:1519 - 28; http://dx.doi.org/10.3748/wjg.v17.i12.1519; PMID: 21472114
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47:241 - 59; http://dx.doi.org/10.1194/jlr.R500013-JLR200; PMID: 16299351
  • Chiang JY. Bile acids: regulation of synthesis. J Lipid Res 2009; 50:1955 - 66; http://dx.doi.org/10.1194/jlr.R900010-JLR200; PMID: 19346330
  • Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr 1974; 27:1341 - 7; PMID: 4217103
  • Wells JE, Hylemon PB. Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces. Appl Environ Microbiol 2000; 66:1107 - 13; http://dx.doi.org/10.1128/AEM.66.3.1107-1113.2000; PMID: 10698778
  • Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ, Bushman FD, Artis D. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 2010; 3:148 - 58; http://dx.doi.org/10.1038/mi.2009.132; PMID: 19940845
  • Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009; 77:2367 - 75; http://dx.doi.org/10.1128/IAI.01520-08; PMID: 19307217
  • Young VB, Schmidt TM. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol 2004; 42:1203 - 6; http://dx.doi.org/10.1128/JCM.42.3.1203-1206.2004; PMID: 15004076
  • Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011; 108:Suppl 1 4554 - 61; http://dx.doi.org/10.1073/pnas.1000087107; PMID: 20847294
  • Zhao Y, Wu J, Li JV, Zhou NY, Tang H, Wang Y. Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res 2013; 12:2987 - 99; http://dx.doi.org/10.1021/pr400263n; PMID: 23631562
  • Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, et al. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 2008; 7:3718 - 28; http://dx.doi.org/10.1021/pr700864x; PMID: 18698804
  • Romick-Rosendale LE, Goodpaster AM, Hanwright PJ, Patel NB, Wheeler ET, Chona DL, Kennedy MA. NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). Magn Reson Chem 2009; 47:Suppl 1 S36 - 46; http://dx.doi.org/10.1002/mrc.2511; PMID: 19768747
  • Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 2011; 10:5512 - 22; http://dx.doi.org/10.1021/pr2007945; PMID: 21970572
  • Høverstad T, Carlstedt-Duke B, Lingaas E, Midtvedt T, Norin KE, Saxerholt H, Steinbakk M. Influence of ampicillin, clindamycin, and metronidazole on faecal excretion of short-chain fatty acids in healthy subjects. Scand J Gastroenterol 1986; 21:621 - 6; http://dx.doi.org/10.3109/00365528609003109; PMID: 3749800
  • Wilson KH, Kennedy MJ, Fekety FR. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile.. J Clin Microbiol 1982; 15:443 - 6; PMID: 7076817
  • Wilson KH. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 1983; 18:1017 - 9; PMID: 6630458
  • Sorg JA, Sonenshein AL. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 2010; 192:4983 - 90; http://dx.doi.org/10.1128/JB.00610-10; PMID: 20675492
  • Sorg JA, Sonenshein AL. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 2009; 191:1115 - 7; http://dx.doi.org/10.1128/JB.01260-08; PMID: 19060152
  • Wheeldon LJ, Worthington T, Lambert PA. Histidine acts as a co-germinant with glycine and taurocholate for Clostridium difficile spores. J Appl Microbiol 2011; http://dx.doi.org/10.1111/j.1365-2672.2011.04953.x; PMID: 21261795
  • Howerton A, Ramirez N, Abel-Santos E. Mapping interactions between germinants and Clostridium difficile spores. J Bacteriol 2011; 193:274 - 82; http://dx.doi.org/10.1128/JB.00980-10; PMID: 20971909
  • Heeg D, Burns DA, Cartman ST, Minton NP. Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. PLoS One 2012; 7:e32381; http://dx.doi.org/10.1371/journal.pone.0032381; PMID: 22384234
  • Carlson PE Jr., Walk ST, Bourgis AE, Liu MW, Kopliku F, Lo E, Young VB, Aronoff DM, Hanna PC. The relationship between phenotype, ribotype, and clinical disease in human Clostridium difficile isolates. Anaerobe 2013; 24:109 - 16; http://dx.doi.org/10.1016/j.anaerobe.2013.04.003; PMID: 23608205
  • Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17:225 - 35; http://dx.doi.org/10.1016/j.cmet.2013.01.003; PMID: 23395169
  • Köpke M, Straub M, Dürre P. Clostridium difficile is an autotrophic bacterial pathogen. PLoS One 2013; 8:e62157; http://dx.doi.org/10.1371/journal.pone.0062157; PMID: 23626782
  • Poilane I, Karjalainen T, Barc MC, Bourlioux P, Collignon A. Protease activity of Clostridium difficile strains. Can J Microbiol 1998; 44:157 - 61; PMID: 9543717
  • Karasawa T, Ikoma S, Yamakawa K, Nakamura S. A defined growth medium for Clostridium difficile.. Microbiology 1995; 141:371 - 5; http://dx.doi.org/10.1099/13500872-141-2-371; PMID: 7704267
  • Bouillaut L, Self WT, Sonenshein AL. Proline-dependent regulation of Clostridium difficile Stickland metabolism. J Bacteriol 2013; 195:844 - 54; http://dx.doi.org/10.1128/JB.01492-12; PMID: 23222730
  • Karlsson S, Lindberg A, Norin E, Burman LG, Akerlund T. Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile.. Infect Immun 2000; 68:5881 - 8; http://dx.doi.org/10.1128/IAI.68.10.5881-5888.2000; PMID: 10992498
  • Antunes A, Martin-Verstraete I, Dupuy B. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol 2011; 79:882 - 99; http://dx.doi.org/10.1111/j.1365-2958.2010.07495.x; PMID: 21299645
  • Dupuy B, Sonenshein AL. Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 1998; 27:107 - 20; http://dx.doi.org/10.1046/j.1365-2958.1998.00663.x; PMID: 9466260
  • Karasawa T, Maegawa T, Nojiri T, Yamakawa K, Nakamura S. Effect of arginine on toxin production by Clostridium difficile in defined medium. Microbiol Immunol 1997; 41:581 - 5; http://dx.doi.org/10.1111/j.1348-0421.1997.tb01895.x; PMID: 9310936
  • Ikeda D, Karasawa T, Yamakawa K, Tanaka R, Namiki M, Nakamura S. Effect of isoleucine on toxin production by Clostridium difficile in a defined medium. Zentralbl Bakteriol 1998; 287:375 - 86; http://dx.doi.org/10.1016/S0934-8840(98)80174-6; PMID: 9638867
  • Karlsson S, Lindberg A, Norin E, Burman LG, Akerlund T. Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile.. Infect Immun 2000; 68:5881 - 8; http://dx.doi.org/10.1128/IAI.68.10.5881-5888.2000; PMID: 10992498
  • Yamakawa K, Karasawa T, Ikoma S, Nakamura S. Enhancement of Clostridium difficile toxin production in biotin-limited conditions. J Med Microbiol 1996; 44:111 - 4; http://dx.doi.org/10.1099/00222615-44-2-111; PMID: 8642571
  • Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL. Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 2007; 66:206 - 19; http://dx.doi.org/10.1111/j.1365-2958.2007.05906.x; PMID: 17725558
  • Dineen SS, McBride SM, Sonenshein AL. Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 2010; 192:5350 - 62; http://dx.doi.org/10.1128/JB.00341-10; PMID: 20709897
  • Braun V, Hundsberger T, Leukel P, Sauerborn M, von Eichel-Streiber C. Definition of the single integration site of the pathogenicity locus in Clostridium difficile.. Gene 1996; 181:29 - 38; http://dx.doi.org/10.1016/S0378-1119(96)00398-8; PMID: 8973304
  • Hammond GA, Lyerly DM, Johnson JL. Transcriptional analysis of the toxigenic element of Clostridium difficile.. Microb Pathog 1997; 22:143 - 54; http://dx.doi.org/10.1006/mpat.1996.0100; PMID: 9075217
  • Antunes A, Camiade E, Monot M, Courtois E, Barbut F, Sernova NV, Rodionov DA, Martin-Verstraete I, Dupuy B. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile.. Nucleic Acids Res 2012; 40:10701 - 18; http://dx.doi.org/10.1093/nar/gks864; PMID: 22989714
  • Antunes A, Martin-Verstraete I, Dupuy B. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol 2011; 79:882 - 99; http://dx.doi.org/10.1111/j.1365-2958.2010.07495.x; PMID: 21299645
  • Janoir C, et al. Insights into the adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Infect Immun 2013; http://dx.doi.org/10.1128/IAI.00515-13
  • Scaria J, Janvilisri T, Fubini S, Gleed RD, McDonough SP, Chang YF. Clostridium difficile transcriptome analysis using pig ligated loop model reveals modulation of pathways not modulated in vitro. J Infect Dis 2011; 203:1613 - 20; http://dx.doi.org/10.1093/infdis/jir112; PMID: 21592991
  • Wilson KH, Perini F. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun 1988; 56:2610 - 4; PMID: 3417352
  • Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, Kelly CP. A mouse model of Clostridium difficile-associated disease. Gastroenterology 2008; 135:1984 - 92; http://dx.doi.org/10.1053/j.gastro.2008.09.002; PMID: 18848941
  • Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes 2011; 2:326 - 34; http://dx.doi.org/10.4161/gmic.19142; PMID: 22198617
  • Steele J, Feng H, Parry N, Tzipori S. Piglet models of acute or chronic Clostridium difficile illness. J Infect Dis 2010; 201:428 - 34; http://dx.doi.org/10.1086/649799; PMID: 20039803
  • Bartlett JG, Onderdonk AB, Cisneros RL, Kasper DL. Commentary: Bartlett JG, Onderdonk AB, Cisneros RL, Kasper DL. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 1977; 136:701.. J Infect Dis 2004; 190:202 - 9; http://dx.doi.org/10.1086/421470; PMID: 15195263
  • Fekety R, Silva J, Toshniwal R, Allo M, Armstrong J, Browne R, Ebright J, Rifkin G. Antibiotic-associated colitis: effects of antibiotics on Clostridium difficile and the disease in hamsters. Rev Infect Dis 1979; 1:386 - 97; http://dx.doi.org/10.1093/clinids/1.2.386; PMID: 549190
  • Reeves AE, Theriot CM, Bergin IL, Huffnagle GB, Schloss PD, Young VB. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes 2011; 2:145 - 58; http://dx.doi.org/10.4161/gmic.2.3.16333; PMID: 21804357
  • Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2012; 80:62 - 73; http://dx.doi.org/10.1128/IAI.05496-11; PMID: 22006564
  • Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiber F, Brandt C, et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 2012; 8:e1002995; http://dx.doi.org/10.1371/journal.ppat.1002995; PMID: 23133377
  • Jump RL, Li Y, Pultz MJ, Kypriotakis G, Donskey CJ. Tigecycline exhibits inhibitory activity against Clostridium difficile in the colon of mice and does not promote growth or toxin production. Antimicrob Agents Chemother 2011; 55:546 - 9; http://dx.doi.org/10.1128/AAC.00839-10; PMID: 21135181
  • Peterfreund GL, Vandivier LE, Sinha R, Marozsan AJ, Olson WC, Zhu J, Bushman FD. Succession in the gut microbiome following antibiotic and antibody therapies for Clostridium difficile.. PLoS One 2012; 7:e46966; http://dx.doi.org/10.1371/journal.pone.0046966; PMID: 23071679
  • Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol 2013; 51:2884 - 92; http://dx.doi.org/10.1128/JCM.00845-13; PMID: 23804381
  • Rea MC, O’Sullivan O, Shanahan F, O’Toole PW, Stanton C, Ross RP, Hill C. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J Clin Microbiol 2012; 50:867 - 75; http://dx.doi.org/10.1128/JCM.05176-11; PMID: 22162545
  • Manges AR, Labbe A, Loo VG, Atherton JK, Behr MA, Masson L, Tellis PA, Brousseau R. Comparative metagenomic study of alterations to the intestinal microbiota and risk of nosocomial Clostridum difficile-associated disease. J Infect Dis 2010; 202:1877 - 84; http://dx.doi.org/10.1086/657319; PMID: 21050115
  • Hopkins MJ, Macfarlane GT. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 2002; 51:448 - 54; PMID: 11990498
  • Skraban J., et al. Gut microbiota patterns associated with colonization of different Clostridium difficile ribotypes. PloS one 2013; 8:e58005
  • Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 2008; 197:435 - 8; http://dx.doi.org/10.1086/525047; PMID: 18199029
  • Maroo S, Lamont JT. Recurrent clostridium difficile.. Gastroenterology 2006; 130:1311 - 6; http://dx.doi.org/10.1053/j.gastro.2006.02.044; PMID: 16618421
  • Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 2011; 53:994 - 1002; http://dx.doi.org/10.1093/cid/cir632; PMID: 22002980
  • Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 2013; 4:125 - 35; http://dx.doi.org/10.4161/gmic.23571; PMID: 23333862
  • Kelly CR, de Leon L, Jasutkar N. Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J Clin Gastroenterol 2012; 46:145 - 9; http://dx.doi.org/10.1097/MCG.0b013e318234570b; PMID: 22157239
  • Mattila E, Uusitalo-Seppälä R, Wuorela M, Lehtola L, Nurmi H, Ristikankare M, Moilanen V, Salminen K, Seppälä M, Mattila PS, et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology 2012; 142:490 - 6; http://dx.doi.org/10.1053/j.gastro.2011.11.037; PMID: 22155369
  • Tvede M, Rask-Madsen J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1989; 1:1156 - 60; http://dx.doi.org/10.1016/S0140-6736(89)92749-9; PMID: 2566734
  • Petrof EO, et al. Stool Substitute transplant therapy for the eradication of Clostridium difficile infection: “RePOOPulating” the gut. Microbiome 2013; 1.
  • Corthier G, Dubos F, Raibaud P. Modulation of cytotoxin production by Clostridium difficile in the intestinal tracts of gnotobiotic mice inoculated with various human intestinal bacteria. Appl Environ Microbiol 1985; 49:250 - 2; PMID: 3977313
  • Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun 2012; 80:3786 - 94; http://dx.doi.org/10.1128/IAI.00647-12; PMID: 22890996
  • Nagaro KJ, Phillips ST, Cheknis AK, Sambol SP, Zukowski WE, Johnson S, Gerding DN. Nontoxigenic Clostridium difficile protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile. Antimicrob Agents Chemother 2013; 57:5266 - 70; http://dx.doi.org/10.1128/AAC.00580-13; PMID: 23939887
  • Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125:1401 - 12; PMID: 7782892
  • Sullivan A, Nord CE. Probiotics in human infections. J Antimicrob Chemother 2002; 50:625 - 7; http://dx.doi.org/10.1093/jac/dkf194; PMID: 12407117
  • Johnston BC, Ma SS, Goldenberg JZ, Thorlund K, Vandvik PO, Loeb M, Guyatt GH. Probiotics for the prevention of Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Ann Intern Med 2012; 157:878 - 88; http://dx.doi.org/10.7326/0003-4819-157-12-201212180-00563; PMID: 23362517

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.