2,307
Views
27
CrossRef citations to date
0
Altmetric
Special Focus Commentary

Current biodefense vaccine programs and challenges

, &
Pages 1591-1597 | Received 30 Jan 2013, Accepted 21 Feb 2013, Published online: 21 Feb 2013

References

  • Tan KS, Chen Y, Lim YC, Tan GY, Liu Y, Lim YT, et al. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J Immunol 2010; 184:5160 - 71; http://dx.doi.org/10.4049/jimmunol.0902663; PMID: 20335533
  • Galyov EE, Brett PJ, DeShazer D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol 2010; 64:495 - 517; http://dx.doi.org/10.1146/annurev.micro.112408.134030; PMID: 20528691
  • Peacock SJ. Melioidosis. Curr Opin Infect Dis 2006; 19:421 - 8; http://dx.doi.org/10.1097/01.qco.0000244046.31135.b3; PMID: 16940864
  • AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, et al. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One 2012; 7:e35386; http://dx.doi.org/10.1371/journal.pone.0035386; PMID: 22530013
  • Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun 2011; 79:1512 - 25; http://dx.doi.org/10.1128/IAI.01218-10; PMID: 21300775
  • Sitthidet C, Korbsrisate S, Layton AN, Field TR, Stevens MP, Stevens JM. Identification of motifs of Burkholderia pseudomallei BimA required for intracellular motility, actin binding, and actin polymerization. J Bacteriol 2011; 193:1901 - 10; http://dx.doi.org/10.1128/JB.01455-10; PMID: 21335455
  • Utaisincharoen P, Anuntagool N, Limposuwan K, Chaisuriya P, Sirisinha S. Involvement of beta interferon in enhancing inducible nitric oxide synthase production and antimicrobial activity of Burkholderia pseudomallei-infected macrophages. Infect Immun 2003; 71:3053 - 7; http://dx.doi.org/10.1128/IAI.71.6.3053-3057.2003; PMID: 12761082
  • Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 2005; 26:5864 - 71; http://dx.doi.org/10.1016/j.biomaterials.2005.02.027; PMID: 15949552
  • Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods 2008; 14:157 - 66; http://dx.doi.org/10.1089/ten.tec.2007.0392; PMID: 18544030
  • Byers AM, Tapia TM, Sassano ER, Wittman V. In vitro antibody response to tetanus in the MIMIC system is a representative measure of vaccine immunogenicity. Biologicals 2009; 37:148 - 51; http://dx.doi.org/10.1016/j.biologicals.2009.02.018; PMID: 19272794
  • Geisbert TW, Jahrling PB. Towards a vaccine against Ebola virus. Expert Rev Vaccines 2003; 2:777 - 89; http://dx.doi.org/10.1586/14760584.2.6.777; PMID: 14711361
  • Daddario-DiCaprio KM, Geisbert TW, Geisbert JB, Ströher U, Hensley LE, Grolla A, et al. Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine. J Virol 2006; 80:9659 - 66; http://dx.doi.org/10.1128/JVI.00959-06; PMID: 16973570
  • Warfield KL, Swenson DL, Olinger GG, Kalina WV, Aman MJ, Bavari S. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge. J Infect Dis 2007; 196:Suppl 2 S430 - 7; http://dx.doi.org/10.1086/520583; PMID: 17940980
  • Dupuy LC, Richards MJ, Ellefsen B, Chau L, Luxembourg A, Hannaman D, et al. A DNA vaccine for venezuelan equine encephalitis virus delivered by intramuscular electroporation elicits high levels of neutralizing antibodies in multiple animal models and provides protective immunity to mice and nonhuman primates. Clin Vaccine Immunol 2011; 18:707 - 16; http://dx.doi.org/10.1128/CVI.00030-11; PMID: 21450977
  • Paessler S, Weaver SC. Vaccines for Venezuelan equine encephalitis. Vaccine 2009; 27:Suppl 4 D80 - 5; http://dx.doi.org/10.1016/j.vaccine.2009.07.095; PMID: 19837294
  • Martin SS, Bakken RR, Lind CM, Garcia P, Jenkins E, Glass PJ, et al. Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB. Vaccine 2010; 28:1031 - 40; http://dx.doi.org/10.1016/j.vaccine.2009.10.126; PMID: 19914193
  • Carra JH, Wannemacher RW, Tammariello RF, Lindsey CY, Dinterman RE, Schokman RD, et al. Improved formulation of a recombinant ricin A-chain vaccine increases its stability and effective antigenicity. Vaccine 2007; 25:4149 - 58; http://dx.doi.org/10.1016/j.vaccine.2007.03.011; PMID: 17408819
  • Smallshaw JE, Vitetta ES. Ricin vaccine development. Curr Top Microbiol Immunol 2012; 357:259 - 72; http://dx.doi.org/10.1007/82_2011_156; PMID: 21805396
  • Bellanti JA, Lin FY, Chu C, Shiloach J, Leppla SH, Benavides GA, et al. Phase 1 study of a recombinant mutant protective antigen of Bacillus anthracis. Clin Vaccine Immunol 2012; 19:140 - 5; http://dx.doi.org/10.1128/CVI.05556-11; PMID: 22190398
  • Jia Q, Lee BY, Clemens DL, Bowen RA, Horwitz MA. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis. Vaccine 2009; 27:1216 - 29; http://dx.doi.org/10.1016/j.vaccine.2008.12.014; PMID: 19126421
  • Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A 2004; 101:13832 - 7; http://dx.doi.org/10.1073/pnas.0406035101; PMID: 15365184
  • Lai XH, Golovliov I, Sjöstedt A. Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis. Microb Pathog 2004; 37:225 - 30; http://dx.doi.org/10.1016/j.micpath.2004.07.002; PMID: 15519043
  • Pearson T, Giffard P, Beckstrom-Sternberg S, Auerbach R, Hornstra H, Tuanyok A, et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol 2009; 7:78 - 91; http://dx.doi.org/10.1186/1741-7007-7-78; PMID: 19922616
  • Srisurat N, Sermswan RW, Tatawasart U, Wongratanacheewin S. Bacterial loads and antibody responses in BALB/c mice infected with low and high doses of Burkholderia pseudomallei. Am J Trop Med Hyg 2010; 82:1102 - 5; http://dx.doi.org/10.4269/ajtmh.2010.09-0567; PMID: 20519607
  • Conejero L, Patel N, de Reynal M, Oberdorf S, Prior J, Felgner PL, et al. Low-dose exposure of C57BL/6 mice to burkholderia pseudomallei mimics chronic human melioidosis. Am J Pathol 2011; 179:270 - 80; http://dx.doi.org/10.1016/j.ajpath.2011.03.031; PMID: 21703409
  • Soffler C, Bosco-Lauth AM, Aboellail TA, Marolf AJ, Bowen RA. Development and characterization of a caprine aerosol infection model of melioidosis. PLoS One 2012; 7:e43207; http://dx.doi.org/10.1371/journal.pone.0043207; PMID: 22916225
  • Yeager JJ, Facemire P, Dabisch PA, Robinson CG, Nyakiti D, Beck K, et al. Natural history of inhalation melioidosis in rhesus macaques (Macaca mulatta) and African green monkeys (Chlorocebus aethiops). Infect Immun 2012; 80:3332 - 40; http://dx.doi.org/10.1128/IAI.00675-12; PMID: 22778104
  • Wamala JF, Lukwago L, Malimbo M, Nguku P, Yoti Z, Musenero M, et al. Ebola hemorrhagic fever associated with novel virus strain, Uganda, 2007-2008. Emerg Infect Dis 2010; 16:1087 - 92; http://dx.doi.org/10.3201/eid1607.091525; PMID: 20587179
  • Grard G, Fair JN, Lee D, Slikas E, Steffen I, Muyembe JJ, et al. A novel rhabdovirus associated with acute hemorrhagic fever in central Africa. PLoS Pathog 2012; 8:e1002924; http://dx.doi.org/10.1371/journal.ppat.1002924; PMID: 23028323
  • Smith HO, Hutchison CA 3rd, Pfannkoch C, Venter JC. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A 2003; 100:15440 - 5; http://dx.doi.org/10.1073/pnas.2237126100; PMID: 14657399
  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008; 319:1215 - 20; http://dx.doi.org/10.1126/science.1151721; PMID: 18218864
  • Presidential Commission for the Study of Bioethical Issues. New Directions: The Ethics of Synthetic Biology and Emerging Technologies. Washington, DC. 2010. Retrieved from http://www.bioethics.gov/documents/synthetic-biology/PCSBI-Synthetic-Biology-Report-12.16.10.pdf