4,918
Views
163
CrossRef citations to date
0
Altmetric
Review

Recent progress in adjuvant discovery for peptide-based subunit vaccines

, , &
Pages 778-796 | Received 19 Aug 2013, Accepted 25 Nov 2013, Published online: 03 Dec 2013

References

  • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 2007; 6:404 - 14; http://dx.doi.org/10.1038/nrd2224; PMID: 17473845
  • Levine MM, Sztein MB. Vaccine development strategies for improving immunization: the role of modern immunology. Nat Immunol 2004; 5:460 - 4; http://dx.doi.org/10.1038/ni0504-460; PMID: 15116108
  • Skwarczynski M, Toth I. Peptide-based subunit nanovaccines. Curr Drug Deliv 2011; 8:282 - 9; http://dx.doi.org/10.2174/156720111795256192; PMID: 21291373
  • Pruksakorn S, Currie B, Brandt E, Phornphutkul C, Hunsakunachai S, Manmontri A, Robinson JH, Kehoe MA, Galbraith A, Good MF. Identification of T cell autoepitopes that cross-react with the C-terminal segment of the M protein of group A streptococci. Int Immunol 1994; 6:1235 - 44; http://dx.doi.org/10.1093/intimm/6.8.1235; PMID: 7981150
  • Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 2010; 9:157 - 73; http://dx.doi.org/10.1586/erv.09.160; PMID: 20109027
  • Vogel FR, Powell MF. A compendium of vaccine adjuvants and excipients. Pharm Biotechnol 1995; 6:141 - 228; http://dx.doi.org/10.1007/978-1-4615-1823-5_7; PMID: 7551218
  • Mata E, Igartua M, Hernández RM, Rosas JE, Patarroyo ME, Pedraz JL. Comparison of the adjuvanticity of two different delivery systems on the induction of humoral and cellular responses to synthetic peptides. Drug Deliv 2010; 17:490 - 9; http://dx.doi.org/10.3109/10717544.2010.483254; PMID: 20500129
  • Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol 2012; 12:557 - 69; http://dx.doi.org/10.1038/nri3254; PMID: 22790179
  • McGuinness DH, Dehal PK, Pleass RJ. Pattern recognition molecules and innate immunity to parasites. Trends Parasitol 2003; 19:312 - 9; http://dx.doi.org/10.1016/S1471-4922(03)00123-5; PMID: 12855382
  • Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T, Pulendran B. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 2003; 171:4984 - 9; PMID: 14607893
  • Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 2007; 5:505 - 17; http://dx.doi.org/10.1038/nrmicro1681; PMID: 17558426
  • Cox JC, Coulter AR. Adjuvants--a classification and review of their modes of action. Vaccine 1997; 15:248 - 56; http://dx.doi.org/10.1016/S0264-410X(96)00183-1; PMID: 9139482
  • Foti M, Granucci F, Ricciardi-Castagnoli P. A central role for tissue-resident dendritic cells in innate responses. Trends Immunol 2004; 25:650 - 4; http://dx.doi.org/10.1016/j.it.2004.10.007; PMID: 15530834
  • Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O’Hagan DT, Pétrilli V, Tschopp J, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A 2009; 106:870 - 5; http://dx.doi.org/10.1073/pnas.0804897106; PMID: 19139407
  • Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 2009; 229:337 - 55; http://dx.doi.org/10.1111/j.1600-065X.2009.00773.x; PMID: 19426232
  • Batzloff MR, Pandey M, Olive C, Good MF. Advances in potential M-protein peptide-based vaccines for preventing rheumatic fever and rheumatic heart disease. Immunol Res 2006; 35:233 - 48; http://dx.doi.org/10.1385/IR:35:3:233; PMID: 17172649
  • Skwarczynski M, Kamaruzaman KA, Srinivasan S, Zaman M, Lin IC, Batzloff MR, Good MF, Toth I. M-protein-derived conformational peptide epitope vaccine candidate against Group A Streptococcus. Curr Drug Deliv 2013; 10:39 - 45; http://dx.doi.org/10.2174/1567201811310010007; PMID: 22998043
  • Skwarczynski M, Zaman M, Urbani CN, Lin IC, Jia Z, Batzloff MR, Good MF, Monteiro MJ, Toth I. Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew Chem Int Ed Engl 2010; 49:5742 - 5; http://dx.doi.org/10.1002/anie.201002221; PMID: 20818757
  • Skwarczynski M, Dougall AM, Khoshnejad M, Chandrudu S, Pearson MS, Loukas A, Toth I. Peptide-based subunit vaccine against hookworm infection. PLoS One 2012; 7:e46870; http://dx.doi.org/10.1371/journal.pone.0046870; PMID: 23056500
  • Hickman HD, Luis AD, Buchli R, Few SR, Sathiamurthy M, VanGundy RS, Giberson CF, Hildebrand WH. Toward a definition of self: proteomic evaluation of the class I peptide repertoire. J Immunol 2004; 172:2944 - 52; PMID: 14978097
  • Alexander J, del Guercio MF, Maewal A, Qiao L, Fikes J, Chesnut RW, Paulson J, Bundle DR, DeFrees S, Sette A. Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. J Immunol 2000; 164:1625 - 33; PMID: 10640784
  • Glenny AT. Insoluble Precipitates in Diphtheria and Tetanus Immunization. Br Med J 1930; 2:244 - 5; http://dx.doi.org/10.1136/bmj.2.3632.244; PMID: 20775638
  • Romero Méndez IZ, Shi Y, HogenEsch H, Hem SL. Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 2007; 25:825 - 33; http://dx.doi.org/10.1016/j.vaccine.2006.09.039; PMID: 17014935
  • Morefield GL, HogenEsch H, Robinson JP, Hem SL. Distribution of adsorbed antigen in mono-valent and combination vaccines. Vaccine 2004; 22:1973 - 84; http://dx.doi.org/10.1016/j.vaccine.2003.10.040; PMID: 15121310
  • Morefield GL, Sokolovska A, Jiang D, HogenEsch H, Robinson JP, Hem SL. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine 2005; 23:1588 - 95; http://dx.doi.org/10.1016/j.vaccine.2004.07.050; PMID: 15694511
  • Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines 2007; 6:685 - 98; http://dx.doi.org/10.1586/14760584.6.5.685; PMID: 17931150
  • Kool M, Soullié T, van Nimwegen M, Willart MAM, Muskens F, Jung S, Hoogsteden HC, Hammad H, Lambrecht BN. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 2008; 205:869 - 82; http://dx.doi.org/10.1084/jem.20071087; PMID: 18362170
  • Ramanathan VD, Badenoch-Jones P, Turk JL. Complement activation by aluminium and zirconium compounds. Immunology 1979; 37:881 - 8; PMID: 500133
  • Wack A, Baudner BC, Hilbert AK, Manini I, Nuti S, Tavarini S, Scheffczik H, Ugozzoli M, Singh M, Kazzaz J, et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 2008; 26:552 - 61; http://dx.doi.org/10.1016/j.vaccine.2007.11.054; PMID: 18162266
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008; 453:1122 - 6; http://dx.doi.org/10.1038/nature06939; PMID: 18496530
  • Franchi L, Núñez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol 2008; 38:2085 - 9; http://dx.doi.org/10.1002/eji.200838549; PMID: 18624356
  • Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 2011; 17:996 - 1002; http://dx.doi.org/10.1038/nm.2403; PMID: 21765404
  • Davenport FM, Hennessy AV, Askin FB. Lack of adjuvant effect of A1PO4 on purified influenza virus hemagglutinins in man. J Immunol 1968; 100:1139 - 40; PMID: 5648476
  • Cvjetanovic B, Uemura K. The Present Status of Field and Laboratory Studies of Typhoid and Paratyphoid Vaccines with Special Reference to Studies Sponsored by World Health Organization. Bull World Health Organ 1965; 32:29 - 36; PMID: 14290077
  • Lindblad EB. Aluminium adjuvants--in retrospect and prospect. Vaccine 2004; 22:3658 - 68; http://dx.doi.org/10.1016/j.vaccine.2004.03.032; PMID: 15315845
  • Lew AM, Anders RF, Edwards SJ, Langford CJ. Comparison of antibody avidity and titre elicited by peptide as a protein conjugate or as expressed in vaccinia. Immunology 1988; 65:311 - 4; PMID: 3056855
  • Geerligs HJ, Weijer WJ, Welling GW, Welling-Wester S. The influence of different adjuvants on the immune response to a synthetic peptide comprising amino acid residues 9-21 of herpes simplex virus type 1 glycoprotein D. J Immunol Methods 1989; 124:95 - 102; http://dx.doi.org/10.1016/0022-1759(89)90190-7; PMID: 2553820
  • Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine 2001; 19:2666 - 72; http://dx.doi.org/10.1016/S0264-410X(00)00498-9; PMID: 11257407
  • Tindle RW, Fernando GJP, Sterling JC, Frazer IH. A “public” T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc Natl Acad Sci U S A 1991; 88:5887 - 91; http://dx.doi.org/10.1073/pnas.88.13.5887; PMID: 1712110
  • Oscherwitz J, Hankenson FC, Yu F, Cease KB. Low-dose intraperitoneal Freund’s adjuvant: toxicity and immunogenicity in mice using an immunogen targeting amyloid-beta peptide. Vaccine 2006; 24:3018 - 25; http://dx.doi.org/10.1016/j.vaccine.2005.10.046; PMID: 16307832
  • Graham BS, McElrath MJ, Keefer MC, Rybczyk K, Berger D, Weinhold KJ, Ottinger J, Ferarri G, Montefiori DC, Stablein D, et al, AIDS Vaccine Evaluation Group. Immunization with cocktail of HIV-derived peptides in montanide ISA-51 is immunogenic, but causes sterile abscesses and unacceptable reactogenicity. PLoS One 2010; 5:e11995; http://dx.doi.org/10.1371/journal.pone.0011995; PMID: 20706632
  • Langermans JAM, Schmidt A, Vervenne RAW, Birkett AJ, Calvo-Calle JM, Hensmann M, Thornton GB, Dubovsky F, Weiler H, Nardin E, et al. Effect of adjuvant on reactogenicity and long-term immunogenicity of the malaria Vaccine ICC-1132 in macaques. Vaccine 2005; 23:4935 - 43; http://dx.doi.org/10.1016/j.vaccine.2005.05.036; PMID: 15998554
  • Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, Druilhe P, Spertini F. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun 2005; 73:8017 - 26; http://dx.doi.org/10.1128/IAI.73.12.8017-8026.2005; PMID: 16299295
  • Iseki K, Matsunaga H, Komatsu N, Suekane S, Noguchi M, Itoh K, Yamada A. Evaluation of a new oil adjuvant for use in peptide-based cancer vaccination. Cancer Sci 2010; 101:2110 - 4; http://dx.doi.org/10.1111/j.1349-7006.2010.01653.x; PMID: 20678155
  • O’Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 2007; 6:699 - 710; http://dx.doi.org/10.1586/14760584.6.5.699; PMID: 17931151
  • Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G. MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm Biotechnol 1995; 6:277 - 96; http://dx.doi.org/10.1007/978-1-4615-1823-5_10; PMID: 7551221
  • O’Hagan DT, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 2012; 30:4341 - 8; http://dx.doi.org/10.1016/j.vaccine.2011.09.061; PMID: 22682289
  • Hu JJ, Wang HQ, Qu HG, Xu J, Yao ZB. [Antibody production and its neutralization of Abeta42's cytoxicity in BALB/c mice induced by Abeta42 and its subunit vaccines]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 2004; 20:178-81.
  • Roman F, Vaman T, Gerlach B, Markendorf A, Gillard P, Devaster JM. Immunogenicity and safety in adults of one dose of influenza A H1N1v 2009 vaccine formulated with and without AS03A-adjuvant: preliminary report of an observer-blind, randomised trial. Vaccine 2010; 28:1740 - 5; http://dx.doi.org/10.1016/j.vaccine.2009.12.014; PMID: 20034605
  • Garçon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 2012; 11:349 - 66; http://dx.doi.org/10.1586/erv.11.192; PMID: 22380826
  • De la Fuente M, Hernanz A, Guayerbas N, Victor VM, Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic Res 2008; 42:272 - 80; http://dx.doi.org/10.1080/10715760801898838; PMID: 18344122
  • Cheung YK, Cheng SCS, Ke Y, Xie Y. Two novel HLA-A*0201 T-cell epitopes in avian H5N1 viral nucleoprotein induced specific immune responses in HHD mice. Vet Res 2010; 41:24; http://dx.doi.org/10.1051/vetres/2009071; PMID: 19941812
  • Swinkels WJC, Hoeboer J, Sikkema R, Vervelde L, Koets AD. Vaccination induced antibodies to recombinant avian influenza A virus M2 protein or synthetic M2e peptide do not bind to the M2 protein on the virus or virus infected cells. Virol J 2013; 10:206; http://dx.doi.org/10.1186/1743-422X-10-206; PMID: 23800100
  • Almanzar G, Herndler-Brandstetter D, Chaparro SV, Jenewein B, Keller M, Grubeck-Loebenstein B. Immunodominant peptides from conserved influenza proteins--a tool for more efficient vaccination in the elderly?. Wien Med Wochenschr 2007; 157:116 - 21; http://dx.doi.org/10.1007/s10354-007-0393-y; PMID: 17427008
  • Cui C, Stevens VC, Schwendeman SP. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine. Vaccine 2007; 25:500 - 9; http://dx.doi.org/10.1016/j.vaccine.2006.07.055; PMID: 16996662
  • Lutsiak MEC, Robinson DR, Coester C, Kwon GS, Samuel J. Analysis of poly(D,L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 2002; 19:1480 - 7; http://dx.doi.org/10.1023/A:1020452531828; PMID: 12425465
  • Ma W, Chen M, Kaushal S, McElroy M, Zhang Y, Ozkan C, Bouvet M, Kruse C, Grotjahn D, Ichim T, et al. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomedicine 2012; 7:1475 - 87; http://dx.doi.org/10.2147/IJN.S29506; PMID: 22619507
  • Lambert JS, Keefer M, Mulligan MJ, Schwartz D, Mestecky J, Weinhold K, Smith C, Hsieh R, Moldoveanu Z, Fast P, et al. A Phase I safety and immunogenicity trial of UBI microparticulate monovalent HIV-1 MN oral peptide immunogen with parenteral boost in HIV-1 seronegative human subjects. Vaccine 2001; 19:3033 - 42; http://dx.doi.org/10.1016/S0264-410X(01)00051-2; PMID: 11311997
  • Sáenz L, Neira-Carrillo A, Paredes R, Cortés M, Bucarey S, Arias JL. Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. Int J Pharm 2009; 369:64 - 71; http://dx.doi.org/10.1016/j.ijpharm.2008.10.033; PMID: 19041932
  • Jiang HL, Kang ML, Quan JS, Kang SG, Akaike T, Yoo HS, Cho CS. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization. Biomaterials 2008; 29:1931 - 9; http://dx.doi.org/10.1016/j.biomaterials.2007.12.025; PMID: 18221992
  • Li X, Min M, Du N, Gu Y, Hode T, Naylor M, Chen D, Nordquist RE, Chen WR. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013; 2013:387023; http://dx.doi.org/10.1155/2013/387023; PMID: 23533454
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004; 33:43 - 63; http://dx.doi.org/10.1039/b309043b; PMID: 14737508
  • Ahmad Fuaad AA, Jia Z, Hartas J, Ziora ZM, Lin I, Moyle PM, Batzloff MR, Good MF, Monteiro MJ, Istvan T. Polymer–peptide hybrids as a highly immunogenic single-dose nanovaccine. nanomedicine (Lond) 2013.
  • Zaman M, Skwarczynski M, Malcolm JM, Urbani CN, Jia Z, Batzloff MR, Good MF, Monteiro MJ, Toth I. Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomedicine 2011; 7:168 - 73; PMID: 21034860
  • Liu TY, Hussein WM, Jia Z, Ziora ZM, McMillan NAJ, Monteiro MJ, Toth I, Skwarczynski M. Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 2013; 14:2798 - 806; http://dx.doi.org/10.1021/bm400626w; PMID: 23837675
  • Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 2007; 28:5344 - 57; http://dx.doi.org/10.1016/j.biomaterials.2007.08.015; PMID: 17825905
  • Chong CSW, Cao M, Wong WW, Fischer KP, Addison WR, Kwon GS, Tyrrell DL, Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 2005; 102:85 - 99; http://dx.doi.org/10.1016/j.jconrel.2004.09.014; PMID: 15653136
  • Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O’Hagan DT. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 2006; 110:566 - 73; http://dx.doi.org/10.1016/j.jconrel.2005.10.010; PMID: 16360956
  • Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine (Lond) 2012; 7:1877 - 93; http://dx.doi.org/10.2217/nnm.12.157; PMID: 23249332
  • Lincopan N, Espíndola NM, Vaz AJ, da Costa MHB, Faquim-Mauro E, Carmona-Ribeiro AM. Novel immunoadjuvants based on cationic lipid: Preparation, characterization and activity in vivo. Vaccine 2009; 27:5760 - 71; http://dx.doi.org/10.1016/j.vaccine.2009.07.066; PMID: 19664738
  • Schwendener RA, Ludewig B, Cerny A, Engler O. Liposome-Based Vaccines. Liposomes: Methods and Protocols, Vol 1 2010; 605:163-75.
  • Ohno S, Kohyama S, Taneichi M, Moriya O, Hayashi H, Oda H, Mori M, Kobayashi A, Akatsuka T, Uchida T, et al. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine 2009; 27:3912 - 20; http://dx.doi.org/10.1016/j.vaccine.2009.04.001; PMID: 19490987
  • Espuelas S, Roth A, Thumann C, Frisch B, Schuber F. Effect of synthetic lipopeptides formulated in liposomes on the maturation of human dendritic cells (vol 42, pg 721, 2005). Mol Immunol 2006; 43:772; http://dx.doi.org/10.1016/j.molimm.2005.04.003
  • Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen CS, Geisler C, Andersen P. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 2007; 121:216 - 26; http://dx.doi.org/10.1111/j.1365-2567.2007.02560.x; PMID: 17302734
  • Brgles M, Habjanec L, Halassy B, Tomasić J. Liposome fusogenicity and entrapment efficiency of antigen determine the Th1/Th2 bias of antigen-specific immune response. Vaccine 2009; 27:5435 - 42; http://dx.doi.org/10.1016/j.vaccine.2009.07.012; PMID: 19632317
  • Mann JFS, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 2009; 27:3643 - 9; http://dx.doi.org/10.1016/j.vaccine.2009.03.040; PMID: 19464545
  • Korsholm KS, Petersen RV, Agger EM, Andersen P. T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology 2010; 129:75 - 86; http://dx.doi.org/10.1111/j.1365-2567.2009.03164.x; PMID: 19824919
  • Andersen CS, Agger EM, Rosenkrands I, Gomes JM, Bhowruth V, Gibson KJC, Petersen RV, Minnikin DE, Besra GS, Andersen P. A simple mycobacterial monomycolated glycerol lipid has potent immunostimulatory activity. J Immunol 2009; 182:424 - 32; PMID: 19109174
  • Tanaka T, Legat A, Adam E, Steuve J, Gatot JS, Vandenbranden M, Ulianov L, Lonez C, Ruysschaert JM, Muraille E, et al. DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. Eur J Immunol 2008; 38:1351 - 7; http://dx.doi.org/10.1002/eji.200737998; PMID: 18389479
  • Thomann JS, Heurtault B, Weidner S, Brayé M, Beyrath J, Fournel S, Schuber F, Frisch B. Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials 2011; 32:4574 - 83; http://dx.doi.org/10.1016/j.biomaterials.2011.03.015; PMID: 21474175
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4:145 - 60; http://dx.doi.org/10.1038/nrd1632; PMID: 15688077
  • Ruedl C, Storni T, Lechner F, Bächi T, Bachmann MF. Cross-presentation of virus-like particles by skin-derived CD8(-) dendritic cells: a dispensable role for TAP. Eur J Immunol 2002; 32:818 - 25; http://dx.doi.org/10.1002/1521-4141(200203)32:3<818::AID-IMMU818>3.0.CO;2-U; PMID: 11870626
  • Lo-Man R, Rueda P, Sedlik C, Deriaud E, Casal I, Leclerc C. A recombinant virus-like particle system derived from parvovirus as an efficient antigen carrier to elicit a polarized Th1 immune response without adjuvant. Eur J Immunol 1998; 28:1401 - 7; http://dx.doi.org/10.1002/(SICI)1521-4141(199804)28:04<1401::AID-IMMU1401>3.0.CO;2-M; PMID: 9565380
  • Guillen G, Aguilar JC, Duenas S, Hermida L, Guzman MG, Penton E, Iglesias E, Junco J, Torrens I, Lobaina Y, et al. Virus-Like Particles as vaccine antigens and adjuvants: application to chronic disease, cancer immunotherapy and infectious disease preventive strategies. Procedia Vaccinol 2010; 2:128 - 33; http://dx.doi.org/10.1016/j.provac.2010.07.004
  • Pejawar-Gaddy S, Rajawat Y, Hilioti Z, Xue J, Gaddy DF, Finn OJ, Viscidi RP, Bossis I. Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol Immunother 2010; 59:1685 - 96; http://dx.doi.org/10.1007/s00262-010-0895-0; PMID: 20652244
  • FDA Licensure of Bivalent Human Papillomavirus Vaccine. (HPV2, Cervarix) for Use in Females and Updated HPV Vaccination Recommendations From the Advisory Committee on Immunization Practices (ACIP) (Reprinted from MMWR, vol 59, pg 626-629, 2010). Jama-J Am Med Assoc 2010; 304:632 - 4
  • Liu TY, Hussein WM, Toth I, Skwarczynski M. Advances in peptide-based human papillomavirus therapeutic vaccines. Curr Top Med Chem 2012; 12:1581 - 92; http://dx.doi.org/10.2174/156802612802652402; PMID: 22827526
  • Homhuan A, Prakongpan S, Poomvises P, Maas RA, Crommelin DJA, Kersten GFA, Jiskoot W. Virosome and ISCOM vaccines against Newcastle disease: preparation, characterization and immunogenicity. Eur J Pharm Sci 2004; 22:459 - 68; http://dx.doi.org/10.1016/j.ejps.2004.05.005; PMID: 15265516
  • Felnerova D, Viret JF, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004; 15:518 - 29; http://dx.doi.org/10.1016/j.copbio.2004.10.005; PMID: 15560978
  • Bungener L, Huckriede A, de Mare A, de Vries-Idema J, Wilschut J, Daemen T. Virosome-mediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity. Vaccine 2005; 23:1232 - 41; http://dx.doi.org/10.1016/j.vaccine.2004.09.002; PMID: 15652665
  • Angel J, Chaperot L, Molens JP, Mezin P, Amacker M, Zurbriggen R, Grichine A, Plumas J. Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells. Vaccine 2007; 25:3913 - 21; http://dx.doi.org/10.1016/j.vaccine.2007.01.101; PMID: 17336432
  • Bachmann MF, Hengartner H, Zinkernagel RM. T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction?. Eur J Immunol 1995; 25:3445 - 51; http://dx.doi.org/10.1002/eji.1830251236; PMID: 8566036
  • Okitsu SL, Silvie O, Westerfeld N, Curcic M, Kammer AR, Mueller MS, Sauerwein RW, Robinson JA, Genton B, Mazier D, et al. A virosomal malaria peptide vaccine elicits a long-lasting sporozoite-inhibitory antibody response in a phase 1a clinical trial. PLoS One 2007; 2:e1278; http://dx.doi.org/10.1371/journal.pone.0001278; PMID: 18060072
  • Hunziker IP, Zurbriggen R, Glueck R, Engler OB, Reichen J, Dai WJ, Pichler WJ, Cerny A. Perspectives: towards a peptide-based vaccine against hepatitis C virus. Mol Immunol 2001; 38:475 - 84; http://dx.doi.org/10.1016/S0161-5890(01)00083-9; PMID: 11741697
  • Cho JE, Kim HS, Ahn WS, Park YS. Enhanced cytotoxicity of doxorubicin encapsulated in liposomes with reconstituted Sendai F-proteins. J Microencapsul 2001; 18:421 - 31; http://dx.doi.org/10.1080/02652040010019550; PMID: 11428672
  • Genton B, Pluschke G, Degen L, Kammer AR, Westerfeld N, Okitsu SL, Schroller S, Vounatsou P, Mueller MM, Tanner M, et al. A randomized placebo-controlled phase Ia malaria vaccine trial of two virosome-formulated synthetic peptides in healthy adult volunteers. PLoS One 2007; 2:e1018; http://dx.doi.org/10.1371/journal.pone.0001018; PMID: 17925866
  • Duewell P, Kisser U, Heckelsmiller K, Hoves S, Stoitzner P, Koernig S, Morelli AB, Clausen BE, Dauer M, Eigler A, et al. ISCOMATRIX adjuvant combines immune activation with antigen delivery to dendritic cells in vivo leading to effective cross-priming of CD8+ T cells. J Immunol 2011; 187:55 - 63; http://dx.doi.org/10.4049/jimmunol.1004114; PMID: 21613613
  • Furrie E, Smith RE, Turner MW, Strobel S, Mowat AM. Induction of local innate immune responses and modulation of antigen uptake as mechanisms underlying the mucosal adjuvant properties of immune stimulating complexes (ISCOMS). Vaccine 2002; 20:2254 - 62; http://dx.doi.org/10.1016/S0264-410X(02)00106-8; PMID: 12009281
  • Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci U S A 2004; 101:10697 - 702; http://dx.doi.org/10.1073/pnas.0403572101; PMID: 15252201
  • Kensil CR, Wu JY, Soltysik S. Structural and immunological characterization of the vaccine adjuvant QS-21. Pharm Biotechnol 1995; 6:525 - 41; http://dx.doi.org/10.1007/978-1-4615-1823-5_22; PMID: 7551234
  • Liu G, Anderson C, Scaltreto H, Barbon J, Kensil CR. QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine 2002; 20:2808 - 15; http://dx.doi.org/10.1016/S0264-410X(02)00209-8; PMID: 12034108
  • Marciani DJ. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today 2003; 8:934 - 43; http://dx.doi.org/10.1016/S1359-6446(03)02864-2; PMID: 14554157
  • Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 2000; 151:673 - 84; http://dx.doi.org/10.1083/jcb.151.3.673; PMID: 11062267
  • Marciani DJ, Press JB, Reynolds RC, Pathak AK, Pathak V, Gundy LE, Farmer JT, Koratich MS, May RD. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Vaccine 2000; 18:3141 - 51; http://dx.doi.org/10.1016/S0264-410X(00)00118-3; PMID: 10856794
  • Marciani DJ, Pathak AK, Reynolds RC, Seitz L, May RD. Altered immunomodulating and toxicological properties of degraded Quillaja saponaria Molina saponins. Int Immunopharmacol 2001; 1:813 - 8; http://dx.doi.org/10.1016/S1567-5769(01)00016-9; PMID: 11357894
  • Kim SK, Ragupathi G, Cappello S, Kagan E, Livingston PO. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine 2000; 19:530 - 7; http://dx.doi.org/10.1016/S0264-410X(00)00195-X; PMID: 11027818
  • Jung JP, Nagaraj AK, Fox EK, Rudra JS, Devgun JM, Collier JH. Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 2009; 30:2400 - 10; http://dx.doi.org/10.1016/j.biomaterials.2009.01.033; PMID: 19203790
  • Malashkevich VN, Kammerer RA, Efimov VP, Schulthess T, Engel J. The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel?. Science 1996; 274:761 - 5; http://dx.doi.org/10.1126/science.274.5288.761; PMID: 8864111
  • Burkhard P, Meier M, Lustig A. Design of a minimal protein oligomerization domain by a structural approach. Protein Sci 2000; 9:2294 - 301; http://dx.doi.org/10.1110/ps.9.12.2294; PMID: 11206050
  • Kaba SA, Brando C, Guo Q, Mittelholzer C, Raman S, Tropel D, Aebi U, Burkhard P, Lanar DE. A nonadjuvanted polypeptide nanoparticle vaccine confers long-lasting protection against rodent malaria. J Immunol 2009; 183:7268 - 77; http://dx.doi.org/10.4049/jimmunol.0901957; PMID: 19915055
  • Pimentel T, Yan Z, Jeffers SA, Holmes KV, Hodges RS, Burkhard P. Peptide nanoparticles as novel immunogens: Design and biophysical analysis of a prototype SARS vaccine. Abstr Pap Am Chem S 2009; 237:443
  • Rudra JS, Tian YF, Jung JP, Collier JH. A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A 2010; 107:622 - 7; http://dx.doi.org/10.1073/pnas.0912124107; PMID: 20080728
  • Rudra JS, Mishra S, Chong AS, Mitchell RA, Nardin EH, Nussenzweig V, Collier JH. Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 2012; 33:6476 - 84; http://dx.doi.org/10.1016/j.biomaterials.2012.05.041; PMID: 22695068
  • Skwarczynski M, Kowapradit J, Ziora ZM, Toth I. pH-triggered peptide self-assembly into fibrils: a potential peptide-based subunit vaccine delivery platform. Bio Chem Comp 2013; 1.
  • Baldridge JR, Crane RT. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 1999; 19:103 - 7; http://dx.doi.org/10.1006/meth.1999.0834; PMID: 10525445
  • Ismaili J, Rennesson J, Aksoy E, Vekemans J, Vincart B, Amraoui Z, Van Laethem F, Goldman M, Dubois PM. Monophosphoryl lipid A activates both human dendritic cells and T cells. J Immunol 2002; 168:926 - 32; PMID: 11777991
  • Jiang ZH, Budzynski WA, Qiu D, Yalamati D, Koganty RR. Monophosphoryl lipid A analogues with varying 3-O-substitution: synthesis and potent adjuvant activity. Carbohydr Res 2007; 342:784 - 96; http://dx.doi.org/10.1016/j.carres.2007.01.012; PMID: 17300769
  • Blunck R, Scheel O, Müller M, Brandenburg K, Seitzer U, Seydel U. New insights into endotoxin-induced activation of macrophages: involvement of a K+ channel in transmembrane signaling. J Immunol 2001; 166:1009 - 15; PMID: 11145680
  • Sigalov AB. “Monovalent” ligands that trigger TLR-4 and TCR are not necessarily truly monovalent. Mol Immunol 2012; 51:356 - 62; http://dx.doi.org/10.1016/j.molimm.2012.03.031; PMID: 22520974
  • Seydel U, Hawkins L, Schromm AB, Heine H, Scheel O, Koch MHJ, Brandenburg K. The generalized endotoxic principle. Eur J Immunol 2003; 33:1586 - 92; http://dx.doi.org/10.1002/eji.200323649; PMID: 12778476
  • Fujita Y, Taguchi H. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles. Chem Cent J 2011; 5:48; http://dx.doi.org/10.1186/1752-153X-5-48; PMID: 21861904
  • Moyle PM, Toth I. Self-adjuvanting lipopeptide vaccines. Curr Med Chem 2008; 15:506 - 16; http://dx.doi.org/10.2174/092986708783503249; PMID: 18289006
  • Tabatabai LB, Pugh GW Jr.. Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine 1994; 12:919 - 24; http://dx.doi.org/10.1016/0264-410X(94)90035-3; PMID: 7526568
  • Bojang KA, Olodude F, Pinder M, Ofori-Anyinam O, Vigneron L, Fitzpatrick S, Njie F, Kassanga A, Leach A, Milman J, et al. Safety and immunogenicty of RTS,S/AS02A candidate malaria vaccine in Gambian children. Vaccine 2005; 23:4148 - 57; http://dx.doi.org/10.1016/j.vaccine.2005.03.019; PMID: 15964483
  • Reed S, Lobet Y. Tuberculosis vaccine development; from mouse to man. Microbes Infect 2005; 7:922 - 31; http://dx.doi.org/10.1016/j.micinf.2005.03.011; PMID: 15935717
  • Adar Y, Singer Y, Levi R, Tzehoval E, Perk S, Banet-Noach C, Nagar S, Arnon R, Ben-Yedidia T. A universal epitope-based influenza vaccine and its efficacy against H5N1. Vaccine 2009; 27:2099 - 107; http://dx.doi.org/10.1016/j.vaccine.2009.02.011; PMID: 19356612
  • Nguyen CT, Hong SH, Ung TT, Verma V, Kim SY, Rhee JH, Lee SE. Intranasal immunization with a flagellin-adjuvanted peptide anticancer vaccine prevents tumor development by enhancing specific cytotoxic T lymphocyte response in a mouse model. Clin Exp Vaccine Res 2013; 2:128 - 34; http://dx.doi.org/10.7774/cevr.2013.2.2.128; PMID: 23858404
  • Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009; 61:195 - 204; http://dx.doi.org/10.1016/j.addr.2008.12.008; PMID: 19211030
  • Vabulas RM, Pircher H, Lipford GB, Häcker H, Wagner H. CpG-DNA activates in vivo T cell epitope presenting dendritic cells to trigger protective antiviral cytotoxic T cell responses. J Immunol 2000; 164:2372 - 8; PMID: 10679072
  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2011; 10:499 - 511; http://dx.doi.org/10.1586/erv.10.174; PMID: 21506647
  • Daftarian P, Sharan R, Haq W, Ali S, Longmate J, Termini J, Diamond DJ. Novel conjugates of epitope fusion peptides with CpG-ODN display enhanced immunogenicity and HIV recognition. Vaccine 2005; 23:3453 - 68; http://dx.doi.org/10.1016/j.vaccine.2005.01.093; PMID: 15837369
  • Meshcheryakova E, Makarov E, Philpott D, Andronova T, Ivanov V. Evidence for correlation between the intensities of adjuvant effects and NOD2 activation by monomeric, dimeric and lipophylic derivatives of N-acetylglucosaminyl-N-acetylmuramyl peptides. Vaccine 2007; 25:4515 - 20; http://dx.doi.org/10.1016/j.vaccine.2007.04.006; PMID: 17481783
  • Moreira LO, Smith AM, DeFreitas AA, Qualls JE, El Kasmi KC, Murray PJ. Modulation of adaptive immunity by different adjuvant-antigen combinations in mice lacking Nod2. Vaccine 2008; 26:5808 - 13; http://dx.doi.org/10.1016/j.vaccine.2008.08.038; PMID: 18789992
  • Zaman M, Skwarczynski M, Toth I. Toll-Like Receptor 2 Mediated Dendritic Cell Activation-Key Target for Lipopeptide Vaccines Design. Cell Bio Res Prog 2010:63-80.
  • Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006; 440:808 - 12; http://dx.doi.org/10.1038/nature04596; PMID: 16489357
  • Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC. Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J Immunol 2002; 169:4905 - 12; PMID: 12391202
  • Deres K, Schild H, Wiesmüller KH, Jung G, Rammensee HG. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 1989; 342:561 - 4; http://dx.doi.org/10.1038/342561a0; PMID: 2586628
  • Eriksson EMY, Jackson DC. Recent advances with TLR2-targeting lipopeptide-based vaccines. Curr Protein Pept Sci 2007; 8:412 - 7; http://dx.doi.org/10.2174/138920307781369436; PMID: 17696872
  • Chua BY, Eriksson EM, Brown LE, Zeng W, Gowans EJ, Torresi J, Jackson DC. A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine 2008; 26:4866 - 75; http://dx.doi.org/10.1016/j.vaccine.2008.03.032; PMID: 18455278
  • Kamo K, Jordan R, Hsu H, Hudson D. Development of a monoclonal antibody to the conserved region of p34cdc2 protein kinase. J Immunol Methods 1992; 156:163 - 70; http://dx.doi.org/10.1016/0022-1759(92)90022-L; PMID: 1474253
  • Skwarczynski M, Zaman M, Toth I. Lipo-peptides/saccharides in peptide vaccine delivery. In handbook of the biologically active peptides 2013:571-9.
  • Zaman M, Abdel-Aal AB, Phillipps KSM, Fujita Y, Good MF, Toth I. Structure-activity relationship of lipopeptide Group A streptococcus (GAS) vaccine candidates on toll-like receptor 2. Vaccine 2010; 28:2243 - 8; http://dx.doi.org/10.1016/j.vaccine.2009.12.046; PMID: 20045502
  • Olive C, Hsien K, Horváth A, Clair T, Yarwood P, Toth I, Good MF. Protection against group A streptococcal infection by vaccination with self-adjuvanting lipid core M protein peptides. Vaccine 2005; 23:2298 - 303; http://dx.doi.org/10.1016/j.vaccine.2005.01.041; PMID: 15755615
  • Zhong W, Skwarczynski M, Toth I. Lipid Core Peptide System for Gene, Drug, and Vaccine Delivery. Aust J Chem 2009; 62:956 - 67; http://dx.doi.org/10.1071/CH09149
  • Moyle PM, Olive C, Ho M-F, Pandey M, Dyer J, Suhrbier A, Fujita Y, Toth I. Toward the development of prophylactic and therapeutic human papillomavirus type-16 lipopeptide vaccines. J Med Chem 2007; 50:4721 - 7; http://dx.doi.org/10.1021/jm070287b; PMID: 17705361
  • Apte SH, Groves PL, Skwarczynski M, Fujita Y, Chang C, Toth I, Doolan DL. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model. PloS one 2012; 7:e40928-e.
  • Lau YF, Deliyannis G, Zeng W, Mansell A, Jackson DC, Brown LE. Lipid-containing mimetics of natural triggers of innate immunity as CTL-inducing influenza vaccines. Int Immunol 2006; 18:1801 - 13; http://dx.doi.org/10.1093/intimm/dxl114; PMID: 17077175
  • Kumar A, Arora R, Kaur P, Chauhan VS, Sharma P. “Universal” T helper cell determinants enhance immunogenicity of a Plasmodium falciparum merozoite surface antigen peptide. J Immunol 1992; 148:1499 - 505; PMID: 1371529
  • Zaman M, Abdel-Aal ABM, Fujita Y, Phillipps KSM, Batzloff MR, Good MF, Toth I. Immunological evaluation of lipopeptide group A streptococcus (GAS) vaccine: structure-activity relationship. PLoS One 2012; 7:e30146; http://dx.doi.org/10.1371/journal.pone.0030146; PMID: 22253911
  • Brown LE, Jackson DC. Lipid-based self-adjuvanting vaccines. Curr Drug Deliv 2005; 2:383 - 93; http://dx.doi.org/10.2174/156720105774370258; PMID: 16305441

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.