4,014
Views
58
CrossRef citations to date
0
Altmetric
Review

Recent advances in oral vaccine development

Yeast-derived β-glucan particles

, &
Pages 1309-1318 | Received 30 Jan 2014, Accepted 10 Feb 2014, Published online: 19 Feb 2014

References

  • World Health Organization. Diarrhoeal disease, fact sheet number 330. 2013. Available from: http://www.who.int/mediacentre/factsheets/fs330/en/
  • Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, Jha P, Campbell H, Walker CF, Cibulskis R, et al, Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 2010; 375:1969 - 87; http://dx.doi.org/10.1016/S0140-6736(10)60549-1; PMID: 20466419
  • Levine MM. Immunization against bacterial diseases of the intestine. J Pediatr Gastroenterol Nutr 2000; 31:336 - 55; http://dx.doi.org/10.1097/00005176-200010000-00003; PMID: 11045827
  • Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25:5467 - 84; http://dx.doi.org/10.1016/j.vaccine.2006.12.001; PMID: 17227687
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med 2005; 11:Suppl S45 - 53; http://dx.doi.org/10.1038/nm1213; PMID: 15812489
  • From the Centers for Disease Control and Prevention. Acute flaccid paralysis associated with circulating vaccine-derived poliovirus--Philippines, 2001. JAMA 2002; 287:311
  • Centers for Disease Control and Prevention (CDC). Update: Outbreak of poliomyelitis--Dominican Republic and Haiti, 2000-2001. MMWR Morb Mortal Wkly Rep 2001; 50:855 - 6; PMID: 11665846
  • Greensfelder L. Infectious diseases. Polio outbreak raises questions about vaccine. Science 2000; 290:1867 - 9; http://dx.doi.org/10.1126/science.290.5498.1867b; PMID: 11187033
  • Mayer L, Shao L. Therapeutic potential of oral tolerance. Nat Rev Immunol 2004; 4:407 - 19; http://dx.doi.org/10.1038/nri1370; PMID: 15173830
  • O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2003; 2:727 - 35; http://dx.doi.org/10.1038/nrd1176; PMID: 12951579
  • Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 2003; 21:Suppl 2 S89 - 95; http://dx.doi.org/10.1016/S0264-410X(03)00206-8; PMID: 12763689
  • McNeela EA, Lavelle EC. Recent advances in microparticle and nanoparticle delivery vehicles for mucosal vaccination. Curr Top Microbiol Immunol 2012; 354:75 - 99; http://dx.doi.org/10.1007/82_2011_140; PMID: 21904984
  • Mann JFS, Acevedo R, Campo JD, Pérez O, Ferro VA. Delivery systems: a vaccine strategy for overcoming mucosal tolerance?. Expert Rev Vaccines 2009; 8:103 - 12; http://dx.doi.org/10.1586/14760584.8.1.103; PMID: 19093777
  • Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol Invest 2010; 39:303 - 55; http://dx.doi.org/10.3109/08820131003680369; PMID: 20450282
  • Barr IG, Mitchell GF. ISCOMs (immunostimulating complexes): the first decade. Immunol Cell Biol 1996; 74:8 - 25; http://dx.doi.org/10.1038/icb.1996.2; PMID: 8934649
  • Shi Y, Huang GH. Recent developments of biodegradable and biocompatible materials based micro/nanoparticles for delivering macromolecular therapeutics. Crit Rev Ther Drug Carrier Syst 2009; 26:29 - 84; http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i1.20; PMID: 19496747
  • Perrie Y, Obrenovic M, McCarthy D, Gregoriadis G. Liposome (Lipodine)-mediated DNA vaccination by the oral route. J Liposome Res 2002; 12:185 - 97; http://dx.doi.org/10.1081/LPR-120004792; PMID: 12604053
  • Ludwig C, Wagner R. Virus-like particles-universal molecular toolboxes. Curr Opin Biotechnol 2007; 18:537 - 45; http://dx.doi.org/10.1016/j.copbio.2007.10.013; PMID: 18083549
  • Jones MC, Ranger M, Leroux JC. pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Bioconjug Chem 2003; 14:774 - 81; http://dx.doi.org/10.1021/bc020041f; PMID: 12862430
  • Wang XQ, Dai JD, Chen Z, Zhang T, Xia GM, Nagai T, Zhang Q. Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration. J Control Release 2004; 97:421 - 9; http://dx.doi.org/10.1016/j.jconrel.2004.03.003; PMID: 15212874
  • Shen Y, Tang H, Radosz M, Van Kirk E, Murdoch WJ. pH-responsive nanoparticles for cancer drug delivery. Methods Mol Biol 2008; 437:183 - 216; http://dx.doi.org/10.1007/978-1-59745-210-6_10; PMID: 18369970
  • Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, Lewis AL, Battaglia G. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater 2007; 19:4238; http://dx.doi.org/10.1002/adma.200700941
  • De Jaeghere F, Allémann E, Kubel F, Galli B, Cozens R, Doelker E, Gurny R. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. J Control Release 2000; 68:291 - 8; http://dx.doi.org/10.1016/S0168-3659(00)00272-8; PMID: 10925137
  • Dai J, Nagai T, Wang X, Zhang T, Meng M, Zhang Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int J Pharm 2004; 280:229 - 40; http://dx.doi.org/10.1016/j.ijpharm.2004.05.006; PMID: 15265562
  • Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm 2009; 72:1 - 8; http://dx.doi.org/10.1016/j.ejpb.2008.12.013; PMID: 19348015
  • Yoo JW, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm 2011; 403:262 - 7; http://dx.doi.org/10.1016/j.ijpharm.2010.10.032; PMID: 20971177
  • Sajeesh S, Sharma CP. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res B Appl Biomater 2006; 76:298 - 305; http://dx.doi.org/10.1002/jbm.b.30372; PMID: 16130147
  • Shastri PN, Kim MC, Quan FS, D’Souza MJ, Kang SM. Immunogenicity and protection of oral influenza vaccines formulated into microparticles. J Pharm Sci 2012; 101:3623 - 35; http://dx.doi.org/10.1002/jps.23220; PMID: 22711602
  • Foster N, Clark MA, Jepson MA, Hirst BH. Ulex europaeus 1 lectin targets microspheres to mouse Peyer’s patch M-cells in vivo. Vaccine 1998; 16:536 - 41; http://dx.doi.org/10.1016/S0264-410X(97)00222-3; PMID: 9491509
  • Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH. Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 2001; 20:208 - 17; http://dx.doi.org/10.1016/S0264-410X(01)00258-4; PMID: 11567766
  • Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 2007; 15:701 - 13; http://dx.doi.org/10.1080/10611860701637982; PMID: 18041638
  • Finzi G, Cornaggia M, Capella C, Fiocca R, Bosi F, Solcia E, Samloff IM. Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry 1993; 99:201 - 11; http://dx.doi.org/10.1007/BF00269138; PMID: 8491674
  • Giannasca PJ, Giannasca KT, Leichtner AM, Neutra MR. Human intestinal M cells display the sialyl Lewis A antigen. Infect Immun 1999; 67:946 - 53; PMID: 9916113
  • Verbrugghe P, Kujala P, Waelput W, Peters PJ, Cuvelier CA. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells. Histochem Cell Biol 2008; 129:311 - 20; http://dx.doi.org/10.1007/s00418-007-0369-4; PMID: 18097679
  • Hunter SK, Andracki ME, Krieg AM. Biodegradable microspheres containing group B Streptococcus vaccine: immune response in mice. Am J Obstet Gynecol 2001; 185:1174 - 9; http://dx.doi.org/10.1067/mob.2001.117658; PMID: 11717653
  • Singh M, Ott G, Kazzaz J, Ugozzoli M, Briones M, Donnelly J, O’Hagan DT. Cationic microparticles are an effective delivery system for immune stimulatory cpG DNA. Pharm Res 2001; 18:1476 - 9; http://dx.doi.org/10.1023/A:1012269226066; PMID: 11697476
  • Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 2008; 26:1626 - 37; http://dx.doi.org/10.1016/j.vaccine.2008.01.030; PMID: 18295941
  • Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res 2004; 21:43 - 9; http://dx.doi.org/10.1023/B:PHAM.0000012150.60180.e3; PMID: 14984256
  • Bal SM, Slütter B, van Riet E, Kruithof AC, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release 2010; 142:374 - 83; http://dx.doi.org/10.1016/j.jconrel.2009.11.018; PMID: 19932723
  • Baudner BC, Morandi M, Giuliani MM, Verhoef JC, Junginger HE, Costantino P, Rappuoli R, Del Giudice G. Modulation of immune response to group C meningococcal conjugate vaccine given intranasally to mice together with the LTK63 mucosal adjuvant and the trimethyl chitosan delivery system. J Infect Dis 2004; 189:828 - 32; http://dx.doi.org/10.1086/381708; PMID: 14976599
  • Suksamran T, Ngawhirunpat T, Rojanarata T, Sajomsang W, Pitaksuteepong T, Opanasopit P. Methylated N-(4-N,N-dimethylaminocinnamyl) chitosan-coated electrospray OVA-loaded microparticles for oral vaccination. Int J Pharm 2013; 448:19 - 27; http://dx.doi.org/10.1016/j.ijpharm.2013.03.015; PMID: 23524125
  • Huang HB, Ostroff GR, Lee CK, Specht CA, Levitz SM. Robust Stimulation of Humoral and Cellular Immune Responses following Vaccination with Antigen-Loaded beta-Glucan Particles. Mbio 2010; 1.
  • Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 2006; 117:78 - 88; http://dx.doi.org/10.1111/j.1365-2567.2005.02268.x; PMID: 16423043
  • Lattanzi L, Federico M. A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine 2012; 30:7229 - 37; http://dx.doi.org/10.1016/j.vaccine.2012.10.010; PMID: 23099330
  • Dierendonck M, De Koker S, De Rycke R, Bogaert P, Grooten J, Vervaet C, Remon JP, De Geest BG. Single-step formation of degradable intracellular biomolecule microreactors. ACS Nano 2011; 5:6886 - 93; http://dx.doi.org/10.1021/nn200901g; PMID: 21866940
  • De Koker S, De Geest BG, Singh SK, De Rycke R, Naessens T, Van Kooyk Y, Demeester J, De Smedt SC, Grooten J. Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angew Chem Int Ed Engl 2009; 48:8485 - 9; http://dx.doi.org/10.1002/anie.200903769; PMID: 19810070
  • Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, Louw C, Ngwira B, Victor JC, Gillard PH, Cheuvart BB, et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med 2010; 362:289 - 98; http://dx.doi.org/10.1056/NEJMoa0904797; PMID: 20107214
  • Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine 2005; 23:3369 - 85; http://dx.doi.org/10.1016/j.vaccine.2004.12.029; PMID: 15837361
  • Jaensson-Gyllenbäck E, Kotarsky K, Zapata F, Persson EK, Gundersen TE, Blomhoff R, Agace WW. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol 2011; 4:438 - 47; http://dx.doi.org/10.1038/mi.2010.91; PMID: 21289617
  • Villamor E, Fawzi WW. Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev 2005; 18:446 - 64; http://dx.doi.org/10.1128/CMR.18.3.446-464.2005; PMID: 16020684
  • Rahman MM, Mahalanabis D, Hossain S, Wahed MA, Alvarez JO, Siber GR, Thompson C, Santosham M, Fuchs GJ. Simultaneous vitamin A administration at routine immunization contact enhances antibody response to diphtheria vaccine in infants younger than six months. J Nutr 1999; 129:2192 - 5; PMID: 10573548
  • Bhaskaram P, Rao KV. Enhancement in seroconversion to measles vaccine with simultaneous administration of vitamin A in 9-months-old Indian infants. Indian J Pediatr 1997; 64:503 - 9; http://dx.doi.org/10.1007/BF02737757; PMID: 10771879
  • Jaensson-Gyllenbäck E, Kotarsky K, Zapata F, Persson EK, Gundersen TE, Blomhoff R, Agace WW. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol 2011; 4:438 - 47; http://dx.doi.org/10.1038/mi.2010.91; PMID: 21289617
  • Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007; 204:1757 - 64; http://dx.doi.org/10.1084/jem.20070590; PMID: 17620361
  • Jani PU, Mccarthy DE, Florence AT. Nanosphere and Microsphere Uptake Via Peyer Patches - Observation of the Rate of Uptake in the Rat after a Single Oral Dose. Int J Pharm 1992; 86:239 - 46; http://dx.doi.org/10.1016/0378-5173(92)90202-D
  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13:1838 - 45; http://dx.doi.org/10.1023/A:1016085108889; PMID: 8987081
  • Shakweh M, Besnard M, Nicolas V, Fattal E. Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by peyer’s patches in mice. Eur J Pharm Biopharm 2005; 61:1 - 13; http://dx.doi.org/10.1016/j.ejpb.2005.04.006; PMID: 16005619
  • Newman KD, Elamanchili P, Kwon GS, Samuel J. Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J Biomed Mater Res 2002; 60:480 - 6; http://dx.doi.org/10.1002/jbm.10019; PMID: 11920673
  • Dierendonck M, De Koker S, Cuvelier C, Grooten J, Vervaet C, Remon JP, De Geest BG. Facile two-step synthesis of porous antigen-loaded degradable polyelectrolyte microspheres. Angew Chem Int Ed Engl 2010; 49:8620 - 4; http://dx.doi.org/10.1002/anie.201001046; PMID: 20922728
  • De Smet R, Demoor T, Verschuere S, Dullaers M, Ostroff GR, Leclercq G, Allais L, Pilette C, Dierendonck M, De Geest BG, et al. β-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J Control Release 2013; 172:671 - 8; http://dx.doi.org/10.1016/j.jconrel.2013.09.007; PMID: 24041710
  • Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 2004; 1:141 - 63; http://dx.doi.org/10.1517/17425247.1.1.141; PMID: 16296726
  • Florence AT. Nanoparticle uptake by the oral route: fulfilling its potential?. Drug Discov Today Technol 2005; 2:75 - 81; http://dx.doi.org/10.1016/j.ddtec.2005.05.019
  • Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled Vaccine Release in the Gut-Associated Lymphoid-Tissues. 1. Orally-Administered Biodegradable Microspheres Target the Peyers Patches. J Control Release 1990; 11:205 - 14; http://dx.doi.org/10.1016/0168-3659(90)90133-E
  • Tabata Y, Ikada Y. Phagocytosis of Polymer Microspheres by Macrophages. Adv Polym Sci 1990; 94:107 - 41; http://dx.doi.org/10.1007/BFb0043062
  • Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake?. Eur J Pharm Biopharm 2000; 50:147 - 60; http://dx.doi.org/10.1016/S0939-6411(00)00084-9; PMID: 10840198
  • Nakanishi T, Kunisawa J, Hayashi A, Tsutsumi Y, Kubo K, Nakagawa S, Nakanishi M, Tanaka K, Mayumi T. Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J Control Release 1999; 61:233 - 40; http://dx.doi.org/10.1016/S0168-3659(99)00097-8; PMID: 10469918
  • Samuelsen AB, Schrezenmeir J, Knutsen SH. Effects of orally administered yeast-derived beta-glucans: A review. Mol Nutr Food Res 2013; 58:183 - 93; http://dx.doi.org/10.1002/mnfr.201300338; PMID: 24019098
  • Olson EJ, Standing JE, Griego-Harper N, Hoffman OA, Limper AH. Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect Immun 1996; 64:3548 - 54; PMID: 8751898
  • Wakshull E, Brunke-Reese D, Lindermuth J, Fisette L, Nathans RS, Crowley JJ, Tufts JC, Zimmerman J, Mackin W, Adams DS. PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor. Immunopharmacology 1999; 41:89 - 107; http://dx.doi.org/10.1016/S0162-3109(98)00059-9; PMID: 10102791
  • LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007; 8:630 - 8; http://dx.doi.org/10.1038/ni1460; PMID: 17450144
  • Leibundgut-Landmann S, Osorio F, Brown GD, Reis e Sousa C. Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood 2008; 112:4971 - 80; http://dx.doi.org/10.1182/blood-2008-05-158469; PMID: 18818389
  • Markova N, Kussovski V, Drandarska I, Nikolaeva S, Georgieva N, Radoucheva T. Protective activity of Lentinan in experimental tuberculosis. Int Immunopharmacol 2003; 3:1557 - 62; http://dx.doi.org/10.1016/S1567-5769(03)00178-4; PMID: 12946453
  • Hetland G, Ohno N, Aaberge IS, Lovik M. Protective effect of beta-glucan against systemic Streptococcus pneumoniae infection in mice. FEMS Immunol Med Microbiol 2000; 27:111 - 6; PMID: 10640605
  • Wang SC, Bligh SWA, Zhu CL, Shi SS, Wang ZT, Hu ZB, Crowder J, Branford-White C, Vella C. Sulfated beta-glucan derived from oat bran with potent anti-HIV activity. J Agric Food Chem 2008; 56:2624 - 9; http://dx.doi.org/10.1021/jf072888h; PMID: 18376844
  • Kournikakis B, Mandeville R, Brousseau P, Ostroff G. Anthrax-protective effects of yeast beta 1,3 glucans. MedGenMed 2003; 5:1; PMID: 12827062
  • Kodama N, Komuta K, Nanba H. Effect of Maitake (Grifola frondosa) D-Fraction on the activation of NK cells in cancer patients. J Med Food 2003; 6:371 - 7; http://dx.doi.org/10.1089/109662003772519949; PMID: 14977447
  • Inoue M, Tanaka Y, Sugita N, Yamasaki M, Yamanaka T, Minagawa J, Nakamuro K, Tani T, Okudaira Y, Karita T, et al. Improvement of long-term prognosis in patients with ovarian cancers by adjuvant sizofiran immunotherapy: a prospective randomized controlled study. Biotherapy 1993; 6:13 - 8; http://dx.doi.org/10.1007/BF01877381; PMID: 8507540
  • Young SH, Ostroff GR, Zeidler-Erdely PC, Roberts JR, Antonini JM, Castranova V. A comparison of the pulmonary inflammatory potential of different components of yeast cell wall. J Toxicol Environ Health A 2007; 70:1116 - 24; http://dx.doi.org/10.1080/15287390701212224; PMID: 17558806
  • Willment JA, Marshall ASJ, Reid DM, Williams DL, Wong SYC, Gordon S, Brown GD. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol 2005; 35:1539 - 47; http://dx.doi.org/10.1002/eji.200425725; PMID: 15816015
  • Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 2002; 169:3876 - 82; PMID: 12244185
  • Thornton BP, Vĕtvicka V, Pitman M, Goldman RC, Ross GD. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol 1996; 156:1235 - 46; PMID: 8558003
  • Xia Y, Vetvicka V, Yan J, Hanikýrová M, Mayadas T, Ross GD. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol 1999; 162:2281 - 90; PMID: 9973505
  • Xia Y, Ross GD. Generation of recombinant fragments of CD11b expressing the functional beta-glucan-binding lectin site of CR3 (CD11b/CD18). J Immunol 1999; 162:7285 - 93; PMID: 10358177
  • Zimmerman JW, Lindermuth J, Fish PA, Palace GP, Stevenson TT, DeMong DE. A novel carbohydrate-glycosphingolipid interaction between a beta-(1-3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem 1998; 273:22014 - 20; http://dx.doi.org/10.1074/jbc.273.34.22014; PMID: 9705343
  • Vera J, Fenutría R, Cañadas O, Figueras M, Mota R, Sarrias MR, Williams DL, Casals C, Yelamos J, Lozano F. The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc Natl Acad Sci U S A 2009; 106:1506 - 11; http://dx.doi.org/10.1073/pnas.0805846106; PMID: 19141631
  • Gallin EK, Green SW, Patchen ML. Comparative effects of particulate and soluble glucan on macrophages of C3H/HeN and C3H/HeJ mice. Int J Immunopharmacol 1992; 14:173 - 83; http://dx.doi.org/10.1016/0192-0561(92)90028-J; PMID: 1320591
  • Hunter KW Jr., Gault RA, Berner MD. Preparation of microparticulate beta-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett Appl Microbiol 2002; 35:267 - 71; http://dx.doi.org/10.1046/j.1472-765X.2002.01201.x; PMID: 12358685
  • Hunter KW Jr., DuPre’ S, Redelman D. Microparticulate beta-glucan upregulates the expression of B7.1, B7.2, B7-H1, but not B7-DC on cultured murine peritoneal macrophages. Immunol Lett 2004; 93:71 - 8; http://dx.doi.org/10.1016/j.imlet.2004.02.006; PMID: 15134902
  • Berner MD, Sura ME, Alves BN, Hunter KW Jr.. IFN-gamma primes macrophages for enhanced TNF-alpha expression in response to stimulatory and non-stimulatory amounts of microparticulate beta-glucan. Immunol Lett 2005; 98:115 - 22; http://dx.doi.org/10.1016/j.imlet.2004.10.020; PMID: 15790516
  • Berner VK, Sura ME, Hunter KW Jr.. Conjugation of protein antigen to microparticulate beta-glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl Microbiol Biotechnol 2008; 80:1053 - 61; http://dx.doi.org/10.1007/s00253-008-1618-8; PMID: 18677470
  • Hoffman OA, Olson EJ, Limper AH. Fungal beta-glucans modulate macrophage release of tumor necrosis factor-alpha in response to bacterial lipopolysaccharide. Immunol Lett 1993; 37:19 - 25; http://dx.doi.org/10.1016/0165-2478(93)90127-N; PMID: 8225403
  • Abel G, Czop JK. Stimulation of human monocyte beta-glucan receptors by glucan particles induces production of TNF-alpha and IL-1 beta. Int J Immunopharmacol 1992; 14:1363 - 73; http://dx.doi.org/10.1016/0192-0561(92)90007-8; PMID: 1334474
  • Huang H, Ostroff GR, Lee CK, Wang JP, Specht CA, Levitz SM. Distinct patterns of dendritic cell cytokine release stimulated by fungal beta-glucans and toll-like receptor agonists. Infect Immun 2009; 77:1774 - 81; http://dx.doi.org/10.1128/IAI.00086-09; PMID: 19273561
  • Hurtgen BJ, Hung CY, Ostroff GR, Levitz SM, Cole GT. Construction and evaluation of a novel recombinant T cell epitope-based vaccine against Coccidioidomycosis. Infect Immun 2012; 80:3960 - 74; http://dx.doi.org/10.1128/IAI.00566-12; PMID: 22949556
  • Hong F, Hansen RD, Yan J, Allendorf DJ, Baran JT, Ostroff GR, Ross GD. Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res 2003; 63:9023 - 31; PMID: 14695221
  • Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, Xing PX, Cheung NK, Ross GD. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol 2004; 173:797 - 806; PMID: 15240666
  • Li B, Cai Y, Qi C, Hansen R, Ding C, Mitchell TC, Yan J. Orally administered particulate beta-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin Cancer Res 2010; 16:5153 - 64; http://dx.doi.org/10.1158/1078-0432.CCR-10-0820; PMID: 20855461
  • Agarwal S, Specht CA, Haibin H, Ostroff GR, Ram S, Rice PA, Levitz SM. Linkage specificity and role of properdin in activation of the alternative complement pathway by fungal glycans. mBio 2011; 2.
  • Huang H, Ostroff GR, Lee CK, Agarwal S, Ram S, Rice PA, Specht CA, Levitz SM. Relative contributions of dectin-1 and complement to immune responses to particulate β-glucans. J Immunol 2012; 189:312 - 7; http://dx.doi.org/10.4049/jimmunol.1200603; PMID: 22649195
  • Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech MP. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009; 458:1180 - 4; http://dx.doi.org/10.1038/nature07774; PMID: 19407801
  • Soto ER, Caras AC, Kut LC, Castle MK, Ostroff GR. Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv. 2012;2012:143524.
  • Huang H, Ostroff GR, Lee CK, Specht CA, Levitz SM. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. MBio 2010; 1:e00164 - 10; http://dx.doi.org/10.1128/mBio.00164-10; PMID: 20802824
  • Tesz GJ, Aouadi M, Prot M, Nicoloro SM, Boutet E, Amano SU, Goller A, Wang M, Guo CA, Salomon WE, et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem J 2011; 436:351 - 62; http://dx.doi.org/10.1042/BJ20110352; PMID: 21418037
  • Soto ER, Ostroff GR. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug Chem 2008; 19:840 - 8; http://dx.doi.org/10.1021/bc700329p; PMID: 18376856
  • Aouadi M, Tesz GJ, Nicoloro SM, Wang MX, Chouinard M, Soto E, Ostroff GR, Czech MP. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009; 458:1180 - 4; http://dx.doi.org/10.1038/nature07774; PMID: 19407801
  • Tesz GJ, Aouadi M, Prot M, Nicoloro SM, Boutet E, Amano SU, Goller A, Wang M, Guo CA, Salomon WE, et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem J 2011; 436:351 - 62; http://dx.doi.org/10.1042/BJ20110352; PMID: 21418037
  • Tauseef Ahmad. Michael P. Czech DJB. Uptake and translocation of yeast-derived glucan microparticles across an in vitro M-cell model. In: 37th Annual meeting and exposition of the controlled release society UCD, Ireland, Portland, Oregon, USA, 2010, pp. 40, ed., 2010.
  • Beier R, Gebert A. Kinetics of particle uptake in the domes of Peyer’s patches. Am J Physiol 1998; 275:G130 - 7; PMID: 9655693
  • Huang H, Ostroff GR, Lee CK, Specht CA, Levitz SM. Characterization and optimization of the glucan particle-based vaccine platform. Clin Vaccine Immunol 2013; 20:1585 - 91; http://dx.doi.org/10.1128/CVI.00463-13; PMID: 23945157
  • Franzusoff A, Duke RC, King TH, Lu YN, Rodell TC. Yeasts encoding tumour antigens in cancer immunotherapy. Expert Opin Biol Ther 2005; 5:565 - 75; http://dx.doi.org/10.1517/14712598.5.4.565; PMID: 15934834
  • Munson S, Parker J, King TH, Lu Y, Kelley V, Guo Z, Borges V, Franzusoff A. Coupling Innate and Adaptive Immunity with Yeast-Based Cancer Immunotherapy. In: eds R. Orentas JWHaBDJ, ed. Cancer Vaccines and Tumor Immunity: John Wiley & Sons, Inc., Hoboken, NJ, USA., 2007.
  • Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans. Physiol Behav 2008; 94:276 - 84; http://dx.doi.org/10.1016/j.physbeh.2007.11.045; PMID: 18222501

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.