2,427
Views
34
CrossRef citations to date
0
Altmetric
Review

Laser vaccine adjuvants

History, progress, and potential

, , &
Pages 1892-1907 | Received 14 Feb 2014, Accepted 09 Apr 2014, Published online: 29 Apr 2014

References

  • Cox JC, Coulter AR. Adjuvants--a classification and review of their modes of action. Vaccine 1997; 15:248 - 56; http://dx.doi.org/10.1016/S0264-410X(96)00183-1; PMID: 9139482
  • Harandi AM, Davies G, Olesen OF. Vaccine adjuvants: scientific challenges and strategic initiatives. Expert Rev Vaccines 2009; 8:293 - 8; http://dx.doi.org/10.1586/14760584.8.3.293; PMID: 19249971
  • Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 2010; 28:Suppl 3 C25 - 36; http://dx.doi.org/10.1016/j.vaccine.2010.07.021; PMID: 20713254
  • Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm 2008; 364:272 - 80; http://dx.doi.org/10.1016/j.ijpharm.2008.04.036; PMID: 18555624
  • Nichol KL, Nordin JD, Nelson DB, Mullooly JP, Hak E. Effectiveness of influenza vaccine in the community-dwelling elderly. N Engl J Med 2007; 357:1373 - 81; http://dx.doi.org/10.1056/NEJMoa070844; PMID: 17914038
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009; 30:23 - 32; http://dx.doi.org/10.1016/j.it.2008.09.006; PMID: 19059004
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010; 33:492 - 503; http://dx.doi.org/10.1016/j.immuni.2010.10.002; PMID: 21029960
  • Rappuoli R, Mandl CW, Black S, De Gregorio E. Vaccines for the twenty-first century society. Nat Rev Immunol 2011; 11:865 - 72; PMID: 22051890
  • Brunner R, Jensen-Jarolim E, Pali-Schöll I. The ABC of clinical and experimental adjuvants--a brief overview. Immunol Lett 2010; 128:29 - 35; http://dx.doi.org/10.1016/j.imlet.2009.10.005; PMID: 19895847
  • Aguilar JC, Rodríguez EG. Vaccine adjuvants revisited. Vaccine 2007; 25:3752 - 62; http://dx.doi.org/10.1016/j.vaccine.2007.01.111; PMID: 17336431
  • Tritto E, Mosca F, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine 2009; 27:3331 - 4; http://dx.doi.org/10.1016/j.vaccine.2009.01.084; PMID: 19200813
  • Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol Lett 2011; 203:97 - 105; http://dx.doi.org/10.1016/j.toxlet.2011.03.001; PMID: 21392560
  • Waddington CS, Walker WT, Oeser C, Reiner A, John T, Wilkins S, Casey M, Eccleston PE, Allen RJ, Okike I, et al. Safety and immunogenicity of AS03B adjuvanted split virion versus non-adjuvanted whole virion H1N1 influenza vaccine in UK children aged 6 months-12 years: open label, randomised, parallel group, multicentre study. BMJ 2010; 340:c2649; http://dx.doi.org/10.1136/bmj.c2649; PMID: 20508026
  • Villa M, Black S, Groth N, Rothman KJ, Apolone G, Weiss NS, Aquino I, Boldori L, Caramaschi F, Gattinoni A, et al. Safety of MF59-adjuvanted influenza vaccination in the elderly: results of a comparative study of MF59-adjuvanted vaccine versus nonadjuvanted influenza vaccine in northern Italy. Am J Epidemiol 2013; 178:1139 - 45; http://dx.doi.org/10.1093/aje/kwt078; PMID: 23863759
  • Poder A, Simurka P, Li P, Roy-Ghanta S, Vaughn D. An observer-blind, randomized, multi-center trial assessing long-term safety and immunogenicity of AS03-adjuvanted or unadjuvanted H1N1/2009 influenza vaccines in children 10-17 years of age. Vaccine 2014; 32:1121 - 9; http://dx.doi.org/10.1016/j.vaccine.2013.11.031; PMID: 24252703
  • Miller E, Andrews N, Stellitano L, Stowe J, Winstone AM, Shneerson J, Verity C. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ 2013; 346:f794; http://dx.doi.org/10.1136/bmj.f794; PMID: 23444425
  • Partinen M, Saarenpää-Heikkilä O, Ilveskoski I, Hublin C, Linna M, Olsén P, Nokelainen P, Alén R, Wallden T, Espo M, et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One 2012; 7:e33723; http://dx.doi.org/10.1371/journal.pone.0033723; PMID: 22470463
  • Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, Himanen S-L, Hublin C, Julkunen I, Olsén P, et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One 2012; 7:e33536; http://dx.doi.org/10.1371/journal.pone.0033536; PMID: 22470453
  • Dauvilliers Y, Arnulf I, Lecendreux M, Monaca Charley C, Franco P, Drouot X, d’Ortho MP, Launois S, Lignot S, Bourgin P, et al, Narcoflu-VF study group. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France. Brain 2013; 136:2486 - 96; http://dx.doi.org/10.1093/brain/awt187; PMID: 23884811
  • van der Most R, Van Mechelen M, Destexhe E, Wettendorff M, Hanon E. Narcolepsy and A(H1N1)pdm09 vaccination: Shaping the research on the observed signal. Hum Vaccin Immunother 2013; 10; In Press PMID: 24342916
  • la Herran-Arita De AK, Kornum BR, Mahlios J, Jiang W, Lin L, Hou T, Macaubas C, Einen M, Plazzi G, Crowe C, et al. CD4+ T cell autoimmunity to hypocretin/orexin and cross-reactivity to a 2009 H1N1 influenza A epitope in narcolepsy. Sci Transl Med 2013; 5:216ra176
  • Sticchi L, Alberti M, Alicino C, Crovari P. The intradermal vaccination: past experiences and current perspectives. J Prev Med Hyg 2010; 51:7 - 14; PMID: 20853670
  • Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-Based Vaccines. In: Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. pages 369–93.
  • Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration?. Vaccine 2008; 26:3197 - 208; http://dx.doi.org/10.1016/j.vaccine.2008.03.095; PMID: 18486285
  • Kaplan DH. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol 2010; 31:446 - 51; http://dx.doi.org/10.1016/j.it.2010.08.006; PMID: 21035396
  • Wahl M, Hermodsson S. Intradermal, subcutaneous or intramuscular administration of hepatitis B vaccine: side effects and antibody response. Scand J Infect Dis 1987; 19:617 - 21; http://dx.doi.org/10.3109/00365548709117195; PMID: 3441747
  • Vankerckhoven V, Van Damme P. Clinical studies assessing immunogenicity and safety of intradermally administered influenza vaccines. Expert Opin Drug Deliv 2010; 7:1109 - 25; http://dx.doi.org/10.1517/17425247.2010.507668; PMID: 20716021
  • Nicolas J-F, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines 2008; 7:1201 - 14; http://dx.doi.org/10.1586/14760584.7.8.1201; PMID: 18844594
  • Sangaré L, Manhart L, Zehrung D, Wang CC. Intradermal hepatitis B vaccination: a systematic review and meta-analysis. Vaccine 2009; 27:1777 - 86; http://dx.doi.org/10.1016/j.vaccine.2009.01.043; PMID: 19200451
  • Koutsonanos DG, del Pilar Martin M, Zarnitsyn VG, Jacob J, Prausnitz MR, Compans RW, Skountzou I. Serological memory and long-term protection to novel H1N1 influenza virus after skin vaccination. J Infect Dis 2011; 204:582 - 91; http://dx.doi.org/10.1093/infdis/jir094; PMID: 21685355
  • del Pilar Martin M, Weldon WC, Zarnitsyn VG, Koutsonanos DG, Akbari H, Skountzou I, Jacob J, Prausnitz MR, Compans RW. Local response to microneedle-based influenza immunization in the skin. MBio 2012; 3:e00012 - 12; http://dx.doi.org/10.1128/mBio.00012-12; PMID: 22396479
  • Ansaldi F, de Florentiis D, Durando P, Icardi G. Fluzone(®) Intradermal vaccine: a promising new chance to increase the acceptability of influenza vaccination in adults. Expert Rev Vaccines 2012; 11:17 - 25; http://dx.doi.org/10.1586/erv.11.154; PMID: 22149703
  • Hickling JK, Jones KR, Friede M, Zehrung D, Chen D, Kristensen D. Intradermal delivery of vaccines: potential benefits and current challenges. Bull World Health Organ 2011; 89:221 - 6; http://dx.doi.org/10.2471/BLT.10.079426; PMID: 21379418
  • Hickling J, Jones R. Intradermal delivery of vaccines: A Review of the Literature and the Potential for Development for Use in Low- and Middle-Income Countries. Program for Appropriate Technology in Health (PATH) resource 2009. Available from: http://www.path.org/publications/files/TS_opt_idd_review.pdf
  • Chen X, Pravetoni M, Bhayana B, Pentel PR, Wu MX. High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants. Vaccine 2012; 31:159 - 64; http://dx.doi.org/10.1016/j.vaccine.2012.10.069; PMID: 23123021
  • Chen X, Wu MX. Laser vaccine adjuvant for cutaneous immunization. Expert Rev Vaccines 2011; 10:1397 - 403; http://dx.doi.org/10.1586/erv.11.112; PMID: 21988305
  • Nelson EAS, Lam HS, Choi KC, Ho WCS, Fung LWE, Cheng FWT, Sung RYT, Royals M, Chan PKS. A pilot randomized study to assess immunogenicity, reactogenicity, safety and tolerability of two human papillomavirus vaccines administered intramuscularly and intradermally to females aged 18-26 years. Vaccine 2013; 31:3452 - 60; http://dx.doi.org/10.1016/j.vaccine.2013.06.034; PMID: 23770335
  • Rahman F, Dahmen A, Herzog-Hauff S, Böcher WO, Galle PR, Löhr HF. Cellular and humoral immune responses induced by intradermal or intramuscular vaccination with the major hepatitis B surface antigen. Hepatology 2000; 31:521 - 7; http://dx.doi.org/10.1002/hep.510310237; PMID: 10655280
  • Sherwood KA, Murray S, Kurban AK, Tan OT. Effect of wavelength on cutaneous pigment using pulsed irradiation. J Invest Dermatol 1989; 92:717 - 20; http://dx.doi.org/10.1111/1523-1747.ep12721505; PMID: 2715644
  • Kupper TS. Old and new: recent innovations in vaccine biology and skin T cells. J Invest Dermatol 2012; 132:829 - 34; http://dx.doi.org/10.1038/jid.2011.400; PMID: 22237702
  • Goldberg DJ, Silapunt S. Histologic evaluation of a Q-switched Nd:YAG laser in the nonablative treatment of wrinkles. Dermatol Surg 2001; 27:744 - 6; http://dx.doi.org/10.1046/j.1524-4725.2001.00353.x; PMID: 11493299
  • Tanzi EL, Alster TS. Comparison of a 1450-nm diode laser and a 1320-nm Nd:YAG laser in the treatment of atrophic facial scars: a prospective clinical and histologic study. Dermatol Surg 2004; 30:152 - 7; http://dx.doi.org/10.1111/j.1524-4725.2004.30078.x; PMID: 14756642
  • Prieto VG, Diwan AH, Shea CR, Zhang P, Sadick NS. Effects of intense pulsed light and the 1,064 nm Nd:YAG laser on sun-damaged human skin: histologic and immunohistochemical analysis. Dermatol Surg 2005; 31:522 - 5; http://dx.doi.org/10.1111/j.1524-4725.2005.31154; PMID: 15962734
  • Isbert C, Ritz J-P, Roggan A, Schuppan D, Rühl M, Buhr HJ, Germer C-T. Enhancement of the immune response to residual intrahepatic tumor tissue by laser-induced thermotherapy (LITT) compared to hepatic resection. Lasers Surg Med 2004; 35:284 - 92; http://dx.doi.org/10.1002/lsm.20097; PMID: 15493028
  • Ivarsson K, Myllymäki L, Jansner K, Stenram U, Tranberg K-G. Resistance to tumour challenge after tumour laser thermotherapy is associated with a cellular immune response. Br J Cancer 2005; 93:435 - 40; http://dx.doi.org/10.1038/sj.bjc.6602718; PMID: 16091763
  • Haen SP, Pereira PL, Salih HR, Rammensee H-G, Gouttefangeas C. More than just tumor destruction: immunomodulation by thermal ablation of cancer. Clin Dev Immunol. 2011; 2011:160250
  • Chen X, Wang J, Shah D, Wu MX. An update on the use of laser technology in skin vaccination. Expert Rev Vaccines 2013; 12:1313 - 23; http://dx.doi.org/10.1586/14760584.2013.844070; PMID: 24127871
  • Nickoloff BJ, Naidu Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J Am Acad Dermatol 1994; 30:535 - 46; http://dx.doi.org/10.1016/S0190-9622(94)70059-1; PMID: 7512582
  • Tsai JC, Feingold KR, Crumrine D, Wood LC, Grunfeld C, Elias PM. Permeability barrier disruption alters the localization and expression of TNF alpha/protein in the epidermis. Arch Dermatol Res 1994; 286:242 - 8; http://dx.doi.org/10.1007/BF00387595; PMID: 8060154
  • Scheiblhofer S, Thalhamer J, Weiss R. Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines. Expert Opin Drug Deliv 2013; 10:761 - 73; http://dx.doi.org/10.1517/17425247.2013.773970; PMID: 23425032
  • Kashiwagi S, Yuan J, Forbes B, Hibert ML, Lee EL, Whicher L, Goudie C, Yang Y, Chen T, Edelblute B, et al. Near-infrared laser adjuvant for influenza vaccine. PLoS One 2013; 8:e82899; http://dx.doi.org/10.1371/journal.pone.0082899; PMID: 24349390
  • Onikienko SB, Zemlyanoy AB, Margulis BA, Guzhova IV, Varlashova MB, Gornostaev VS, Tikhonova NV, Baranov GA, Lesnichiy VV. Diagnostics and correction of the metabolic and immune disorders. Interactions of bacterial endotoxins and lipophilic xenobiotics with receptors associated with innate immunity. Donosologiya (St Petersburg) 2007; 1:32 - 54
  • Chen X, Kim P, Farinelli B, Doukas A, Yun S-H, Gelfand JA, Anderson RR, Wu MX. A novel laser vaccine adjuvant increases the motility of antigen presenting cells. PLoS One 2010; 5:e13776; http://dx.doi.org/10.1371/journal.pone.0013776; PMID: 21048884
  • Huang Y-Y, Chen ACH, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response 2009; 7:358 - 83; http://dx.doi.org/10.2203/dose-response.09-027.Hamblin; PMID: 20011653
  • Huang Y-Y, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose Response 2011; 9:602 - 18; http://dx.doi.org/10.2203/dose-response.11-009.Hamblin; PMID: 22461763
  • Wu S, Xing D, Gao X, Chen WR. High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 2009; 218:603 - 11; http://dx.doi.org/10.1002/jcp.21636; PMID: 19006121
  • Wu S, Xing D, Wang F, Chen T, Chen WR. Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques. J Biomed Opt 2007; 12:064015; http://dx.doi.org/10.1117/1.2804923; PMID: 18163831
  • Wu S, Zhou F, Wei Y, Chen WR, Chen Q, Xing D. Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid Redox Signal 2014; 20:733 - 46; http://dx.doi.org/10.1089/ars.2013.5229; PMID: 23992126
  • Huang L, Wu S, Xing D. High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3β signaling pathway. J Cell Physiol 2011; 226:588 - 601; http://dx.doi.org/10.1002/jcp.22367; PMID: 20683916
  • Mester E, Szende B, Gärtner P. [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl) 1968; 9:621 - 6; PMID: 5732466
  • Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 1996; 23:492 - 6; http://dx.doi.org/10.1111/j.1600-051X.1996.tb00580.x; PMID: 8783057
  • Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 2005; 31:334 - 40; http://dx.doi.org/10.1111/j.1524-4725.2005.31086; PMID: 15841638
  • Averbakh MM, Sorkin MZ, Dobkin VG, Kosarev II, Ostapchenko EP. [Effect of helium-neon laser on the healing of aseptic experimental wounds]. Eksp Khir Anesteziol 1976; (3):56 - 9; PMID: 976175
  • Gerasimenko N, Poddubnyĭ BK, Kuvshinov IuP, Ivanov AV, Efimov ON. [Use of nonhazardous laser radiation for treating the complications of patients undergoing radical surgery for esophageal and stomach cancer]. Vopr Onkol 1984; 30:56 - 9; PMID: 6730417
  • Koliadenko VG, Shupen’ko NM. [Treatment of erosive-ulcerative processes in the skin with a low-intensity helium-neon laser]. Vrach Delo 1984; (10):98 - 100; PMID: 6516323
  • Aleksandrov MT, Baĭkova RA, Polnareva BD. [Use of helium-neon laser rays for treating diseases of the oral mucosa]. Stomatologiia (Mosk) 1977; 56:18 - 20; PMID: 268035
  • Kazaryan MA. Copper vapor lasers in oncology. In: Pulsed Metal Vapor Lasers. Netherlands: Kluwer Academic Publishers; 1996. pages 409–14.
  • Matiushichev VB, Soldatov AI. [High-energy laser irradiation in the combined treatment of duodenal ulcer]. Klin Med (Mosk) 1994; 72:15 - 6; PMID: 7990368
  • Matiushichev VB, Soldatov AI, Linkevich EL. [High-energy laser therapy of stomach ulcers]. Klin Med (Mosk) 1997; 75:41 - 4; PMID: 9503812
  • Matiushichev VB, Soldatov AI, Titov VV. [Possibilities of intragastric laser therapy of septic ulcer]. Klin Med (Mosk) 1987; 65:6 - 9; PMID: 3323654
  • Soldatov AI, Matiushichev VB, Titov VV. Use of the copper-vapor laser in the combined treatment of peptic ulcer. Klin Khir. 1988;(8):64
  • Cheremisina OV, Choinzonov EL, Yevtushenko VA, Soldatov AN, Pankova OV, Gerdt LV. Assessment of the efficacy of different treatments of the pre-cancerous changes of the bronchial epithelium. Siberian Oncology J 2002; 2:123 - 7
  • U.S. State Department. U. S. - Russia: BioIndustry Initiative New Collaboration to Reduce the Threat of Bioterrorism. 2003.
  • Chen X, Zeng Q, Wu MX. Improved efficacy of dendritic cell-based immunotherapy by cutaneous laser illumination. Clin Cancer Res 2012; 18:2240 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-11-2654; PMID: 22392913
  • Onikienko BA, Zemlyanoy AV, Baranov GA, Smirnova MP, Tarasov VA, Filatov MV. Laser-based vaccine technology for cancer immunotherapy. St. Petersburg, Russia: 2005. pages 52–3.
  • Onikienko SB. New Approaches to the Immunotherapy of the persistent infections. 1. Hepatitis B. Sevastopol, Russia: 2005.
  • 000 Npt Mbp Gormezis, Onikienko SB, Zemlyanoi, AV, Margulis BA, Guzhova, IV, Pimenova AA. Laser-based vaccine adjuvants. United States patent application US 12/754,081. 2008 Oct 6.
  • Bendixen G, Bendtzen K, Calusen JE, Kjaer M, Søborg M. Human leucocyte migration inhibition. Scand J Immunol 1976; Suppl 5 175 - 84; http://dx.doi.org/10.1111/j.1365-3083.1976.tb03867.x; PMID: 802432
  • Jungers P, Devillier P, Salomon H, Cerisier JE, Courouce AM. Randomised placebo-controlled trial of recombinant interleukin-2 in chronic uraemic patients who are non-responders to hepatitis B vaccine. Lancet 1994; 344:856 - 7; http://dx.doi.org/10.1016/S0140-6736(94)92829-0; PMID: 7916403
  • Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12:991 - 1045; http://dx.doi.org/10.1146/annurev.iy.12.040194.005015; PMID: 8011301
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124:783 - 801; http://dx.doi.org/10.1016/j.cell.2006.02.015; PMID: 16497588
  • Sharma SK, Christen P, Goloubinoff P. Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 2009; 10:432 - 46; http://dx.doi.org/10.2174/138920309789351930; PMID: 19538153
  • Horváth I, Multhoff G, Sonnleitner A, Vígh L.. Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta. 2008; 1778; 1653 - 64
  • Buzzard KA, Giaccia AJ, Killender M, Anderson RL. Heat shock protein 72 modulates pathways of stress-induced apoptosis. J Biol Chem 1998; 273:17147 - 53; http://dx.doi.org/10.1074/jbc.273.27.17147; PMID: 9642282
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005; 62:670 - 84; http://dx.doi.org/10.1007/s00018-004-4464-6; PMID: 15770419
  • Segal BH, Wang X-Y, Dennis CG, Youn R, Repasky EA, Manjili MH, Subjeck JR. Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discov Today 2006; 11:534 - 40; http://dx.doi.org/10.1016/j.drudis.2006.04.016; PMID: 16713905
  • Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8:279 - 89; http://dx.doi.org/10.1038/nri2215; PMID: 18340345
  • Srivastava PK, Amato RJ. Heat shock proteins: the ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine 2001; 19:2590 - 7; http://dx.doi.org/10.1016/S0264-410X(00)00492-8; PMID: 11257397
  • Manzerra P, Rush SJ, Brown IR. Tissue-specific differences in heat shock protein hsc70 and hsp70 in the control and hyperthermic rabbit. J Cell Physiol 1997; 170:130 - 7; http://dx.doi.org/10.1002/(SICI)1097-4652(199702)170:2<130::AID-JCP4>3.0.CO;2-P; PMID: 9009141
  • Trautinger F, Trautinger I, Kindas-Mügge I, Metze D, Luger TA. Human keratinocytes in vivo and in vitro constitutively express the 72-kD heat shock protein. J Invest Dermatol 1993; 101:334 - 8; http://dx.doi.org/10.1111/1523-1747.ep12365491; PMID: 8370970
  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 2003; 278:21601 - 6; http://dx.doi.org/10.1074/jbc.M302326200; PMID: 12682040
  • Mambula SS, Calderwood SK. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 2006; 177:7849 - 57; http://dx.doi.org/10.4049/jimmunol.177.11.7849; PMID: 17114456
  • Lancaster GI, Febbraio MA. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev 2005; 11:46 - 52; PMID: 16385843
  • Guebre-Xabier M, Hammond SA, Epperson DE, Yu J, Ellingsworth L, Glenn GM. Immunostimulant patch containing heat-labile enterotoxin from Escherichia coli enhances immune responses to injected influenza virus vaccine through activation of skin dendritic cells. J Virol 2003; 77:5218 - 25; http://dx.doi.org/10.1128/JVI.77.9.5218-5225.2003; PMID: 12692224
  • Glenn GM, Rao M, Matyas GR, Alving CR. Skin immunization made possible by cholera toxin. Nature 1998; 391:851; http://dx.doi.org/10.1038/36014; PMID: 9495336
  • Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity 2008; 29:325 - 42; http://dx.doi.org/10.1016/j.immuni.2008.08.006; PMID: 18799141
  • Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol 2009; 9:679 - 91; PMID: 19763149
  • Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 2007; 7:543 - 55; http://dx.doi.org/10.1038/nri2103; PMID: 17589544
  • Vitoriano-Souza J, Moreira Nd, Teixeira-Carvalho A, Carneiro CM, Siqueira FAM, Vieira PM de A, Giunchetti RC, Moura SA de L, Fujiwara RT, Melo MN, et al. Cell recruitment and cytokines in skin mice sensitized with the vaccine adjuvants: saponin, incomplete Freund’s adjuvant, and monophosphoryl lipid A. PLoS One 2012; 7:e40745; http://dx.doi.org/10.1371/journal.pone.0040745; PMID: 22829882
  • Batista-Duharte A, Portuondo D, Carlos IZ, Pérez O. An approach to local immunotoxicity induced by adjuvanted vaccines. Int Immunopharmacol 2013; 17:526 - 36; http://dx.doi.org/10.1016/j.intimp.2013.07.025; PMID: 23968848
  • Martín-Fontecha A, Lanzavecchia A, Sallusto F. Dendritic cell migration to peripheral lymph nodes. Handb Exp Pharmacol 2009; (188):31 - 49; http://dx.doi.org/10.1007/978-3-540-71029-5_2; PMID: 19031020
  • Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Aït-Yahia S, Vicari A, Kaiserlian D, et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2006; 24:191 - 201; http://dx.doi.org/10.1016/j.immuni.2006.01.005; PMID: 16473831
  • Dieu-Nosjean MC, Massacrier C, Homey B, Vanbervliet B, Pin JJ, Vicari A, Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, et al. Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 2000; 192:705 - 18; http://dx.doi.org/10.1084/jem.192.5.705; PMID: 10974036
  • Nakamura K, Williams IR, Kupper TS. Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J Invest Dermatol 1995; 105:635 - 43; http://dx.doi.org/10.1111/1523-1747.ep12324061; PMID: 7594634
  • Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA, Abbondanzo SJ, Niu XD, Chen SC, Manfra DJ, Wiekowski MT, et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000; 12:495 - 503; http://dx.doi.org/10.1016/S1074-7613(00)80201-0; PMID: 10843382
  • Platt AM, Randolph GJ. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv Immunol 2013; 120:51 - 68; http://dx.doi.org/10.1016/B978-0-12-417028-5.00002-8; PMID: 24070380
  • Peng Q, Juzeniene A, Chen J, Svaasand LO, Warloe T, Giercksky K-E, Moan J. Lasers in medicine. Rep Prog Phys 2008; 71:056701; http://dx.doi.org/10.1088/0034-4885/71/5/056701
  • Niemz MH. Laser-Tissue Interactions: Fundamentals and Applications (Biological and Medical Physics, Biomedical Engineering). 3rd ed. Springer; 2007.
  • Karu T. Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg 2010; 28:159 - 60; http://dx.doi.org/10.1089/pho.2010.2789; PMID: 20374017
  • Karu T. Is it time to consider photobiomodulation as a drug equivalent?. Photomed Laser Surg 2013; 31:189 - 91; http://dx.doi.org/10.1089/pho.2013.3510; PMID: 23600376
  • Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 2005; 23:355 - 61; http://dx.doi.org/10.1089/pho.2005.23.355; PMID: 16144476
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 2003; 19:267 - 94; http://dx.doi.org/10.1080/0265673031000119006; PMID: 12745972
  • Moritz AR, Henriques FC, Studies of Thermal Injury. Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns. Am J Pathol 1947; 23:695 - 720; PMID: 19970955
  • Stoll AM, Greene LC. Relationship between pain and tissue damage due to thermal radiation. J Appl Physiol 1959; 14:373 - 82; PMID: 13654166
  • Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983; 220:524 - 7; http://dx.doi.org/10.1126/science.6836297; PMID: 6836297
  • Anderson RR, Parrish JA. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med 1981; 1:263 - 76; http://dx.doi.org/10.1002/lsm.1900010310; PMID: 7341895
  • Anderson RR, Margolis RJ, Watenabe S, Flotte T, Hruza GJ, Dover JS. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm. J Invest Dermatol 1989; 93:28 - 32; http://dx.doi.org/10.1111/1523-1747.ep12277339; PMID: 2746004
  • Murphy GF, Shepard RS, Paul BS, Menkes A, Anderson RR, Parrish JA. Organelle-specific injury to melanin-containing cells in human skin by pulsed laser irradiation. Lab Invest 1983; 49:680 - 5; PMID: 6656199
  • Polla LL, Margolis RJ, Dover JS, Whitaker D, Murphy GF, Jacques SL, Anderson RR. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin. J Invest Dermatol 1987; 89:281 - 6; http://dx.doi.org/10.1111/1523-1747.ep12471397; PMID: 3624901
  • Phillips CM, Mizutani Y, Hochstrasser RM. Ultrafast thermally induced unfolding of RNase A. Proc Natl Acad Sci U S A 1995; 92:7292 - 6; http://dx.doi.org/10.1073/pnas.92.16.7292; PMID: 7638183
  • Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 1996; 35:691 - 7; http://dx.doi.org/10.1021/bi952217p; PMID: 8547249
  • Thompson CR, Gerstman BS, Jacques SL, Rogers ME. Melanin granule model for laser-induced thermal damage in the retina. Bull Math Biol 1996; 58:513 - 53; http://dx.doi.org/10.1007/BF02460595; PMID: 8688838
  • Brinkmann R, Hüttmann G, Rögener J, Roider J, Birngruber R, Lin CP. Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Lasers Surg Med 2000; 27:451 - 64; http://dx.doi.org/10.1002/1096-9101(2000)27:5<451::AID-LSM1006>3.0.CO;2-1; PMID: 11126439
  • Mills BM, Connor TM, Foltz MS, Stolarski J, Hayes KL, Denton ML, Eikum DM, Noojin GD, Rockwell BA. Microcavitation and spot size dependence for damage of artificially pigmented hTERT-RPE1 cells. Proc SPIE 2004; 5319: Laser Interaction with Tissue and Cells XV. 2004
  • Lukianova-Hleb EY, Oginsky AO, Olson JS, Lapotko DO. Short laser pulse-induced irreversible photothermal effects in red blood cells. Lasers Surg Med 2011; 43:249 - 60; http://dx.doi.org/10.1002/lsm.21043; PMID: 21290393
  • Chidlow G, Shibeeb O, Plunkett M, Casson RJ, Wood JP. Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser. Invest Ophthalmol Vis Sci 2013; 54:2319 - 32; http://dx.doi.org/10.1167/iovs.12-11204; PMID: 23439603
  • Douki T, Lee S, Dorey K, Flotte TJ, Deutsch TF, Doukas AG. Stress-wave-induced injury to retinal pigment epithelium cells in vitro. Lasers Surg Med 1996; 19:249 - 59; http://dx.doi.org/10.1002/(SICI)1096-9101(1996)19:3<249::AID-LSM1>3.0.CO;2-S; PMID: 8923421
  • Chen X, Shah D, Kositratna G, Manstein D, Anderson RR, Wu MX. Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J Control Release 2012; 159:43 - 51; http://dx.doi.org/10.1016/j.jconrel.2012.01.002; PMID: 22261281
  • Venugopalan V, Nishioka NS, Mikić BB. Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation. Biophys J 1996; 70:2981 - 93; http://dx.doi.org/10.1016/S0006-3495(96)79868-5; PMID: 8744336
  • Kuwahara K, Gladstone HB, Gupta V, Kireev V, Neel V, Moy RL. Rupture of fat cells using laser-generated ultra short stress waves. Lasers Surg Med 2003; 32:279 - 85; http://dx.doi.org/10.1002/lsm.10154; PMID: 12696095
  • Umebayashi Y, Miyamoto Y, Wakita M, Kobayashi A, Nishisaka T. Elevation of plasma membrane permeability on laser irradiation of extracellular latex particles. J Biochem 2003; 134:219 - 24; http://dx.doi.org/10.1093/jb/mvg132; PMID: 12966070
  • Ara G, Anderson RR, Mandel KG, Ottesen M, Oseroff AR. Irradiation of pigmented melanoma cells with high intensity pulsed radiation generates acoustic waves and kills cells. Lasers Surg Med 1990; 10:52 - 9; http://dx.doi.org/10.1002/lsm.1900100112; PMID: 2308465
  • Kim YG. Laser mediated production of reactive oxygen and nitrogen species; implications for therapy. Free Radic Res 2002; 36:1243 - 50; http://dx.doi.org/10.1080/1071576021000028389; PMID: 12607814
  • Lawley W, Doherty A, Denniss S, Chauhan D, Pruijn G, van Venrooij WJ, Lunec J, Herbert K. Rapid lupus autoantigen relocalization and reactive oxygen species accumulation following ultraviolet irradiation of human keratinocytes. Rheumatology (Oxford) 2000; 39:253 - 61; http://dx.doi.org/10.1093/rheumatology/39.3.253; PMID: 10788532
  • Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Blue laser irradiation generates intracellular reactive oxygen species in various types of cells. Photomed Laser Surg 2013; 31:95 - 104; http://dx.doi.org/10.1089/pho.2012.3361; PMID: 23390956
  • Jou MJ, Jou SB, Chen HM, Lin CH, Peng TI. Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J Biomed Sci 2002; 9:507 - 16; http://dx.doi.org/10.1007/BF02254977; PMID: 12372988
  • Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011; 6:e22453; http://dx.doi.org/10.1371/journal.pone.0022453; PMID: 21814580
  • Wang F, Chen T-S, Xing D, Wang J-J, Wu Y-X. Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg Med 2005; 36:2 - 7; http://dx.doi.org/10.1002/lsm.20130; PMID: 15662635
  • König K. Multiphoton microscopy in life sciences. J Microsc 2000; 200:83 - 104; http://dx.doi.org/10.1046/j.1365-2818.2000.00738.x; PMID: 11106949
  • Tirlapur UK, König K, Peuckert C, Krieg R, Halbhuber KJ. Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Res 2001; 263:88 - 97; http://dx.doi.org/10.1006/excr.2000.5082; PMID: 11161708
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279:L1005 - 28; PMID: 11076791
  • Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 2001; 106:675 - 83; http://dx.doi.org/10.1016/S0092-8674(01)00495-0; PMID: 11572774
  • Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med 2000; 28:463 - 99; http://dx.doi.org/10.1016/S0891-5849(99)00242-7; PMID: 10699758
  • Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol 2001; 166:3873 - 81; http://dx.doi.org/10.4049/jimmunol.166.6.3873; PMID: 11238631
  • Pilz RB, Casteel DE. Regulation of gene expression by cyclic GMP. Circ Res 2003; 93:1034 - 46; http://dx.doi.org/10.1161/01.RES.0000103311.52853.48; PMID: 14645134
  • Rubartelli A. Redox control of NLRP3 inflammasome activation in health and disease. J Leukoc Biol 2012; 92:951 - 8; http://dx.doi.org/10.1189/jlb.0512265; PMID: 22859832
  • Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 1998; 22:212 - 8; http://dx.doi.org/10.1002/(SICI)1096-9101(1998)22:4<212::AID-LSM5>3.0.CO;2-S; PMID: 9603282
  • Grange PA, Chéreau C, Raingeaud J, Nicco C, Weill B, Dupin N, Batteux F. Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathog 2009; 5:e1000527; http://dx.doi.org/10.1371/journal.ppat.1000527; PMID: 19629174
  • Cho KA, Suh JW, Lee KH, Kang JL, Woo SY. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol 2012; 24:147 - 58; http://dx.doi.org/10.1093/intimm/dxr110; PMID: 22207130
  • Kim DH, Byamba D, Wu WH, Kim TG, Lee MG. Different characteristics of reactive oxygen species production by human keratinocyte cell line cells in response to allergens and irritants. Exp Dermatol 2012; 21:99 - 103; http://dx.doi.org/10.1111/j.1600-0625.2011.01399.x; PMID: 22141451
  • Swindle EJ, Metcalfe DD. The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunol Rev 2007; 217:186 - 205; http://dx.doi.org/10.1111/j.1600-065X.2007.00513.x; PMID: 17498060
  • Sekar Y, Moon TC, Muñoz S, Befus AD. Role of nitric oxide in mast cells: controversies, current knowledge, and future applications. Immunol Res 2005; 33:223 - 39; PMID: 16462000
  • Gilchrist M, Savoie M, Nohara O, Wills FL, Wallace JL, Befus AD. Nitric oxide synthase and nitric oxide production in in vivo-derived mast cells. J Leukoc Biol 2002; 71:618 - 24; PMID: 11927648
  • Ashinoff R, Levine VJ, Soter NA. Allergic reactions to tattoo pigment after laser treatment. Dermatol Surg 1995; 21:291 - 4; http://dx.doi.org/10.1111/j.1524-4725.1995.tb00175.x; PMID: 7728477
  • England RW, Vogel P, Hagan L. Immediate cutaneous hypersensitivity after treatment of tattoo with Nd:YAG laser: a case report and review of the literature. Ann Allergy Asthma Immunol 2002; 89:215 - 7; http://dx.doi.org/10.1016/S1081-1206(10)61942-4; PMID: 12197582
  • Boulnois JL. Photophysical processes in recent medical laser developments: A review. Lasers Med Sci 1986; 1:47 - 66; http://dx.doi.org/10.1007/BF02030737
  • Sliney DH, Palmisano WA. The evaluation of laser hazards. Am Ind Hyg Assoc J 1968; 29:425 - 31; http://dx.doi.org/10.1080/00028896809343029; PMID: 5727078
  • Tanzi EL, Alster TS. Long-pulsed 1064-nm Nd:YAG laser-assisted hair removal in all skin types. Dermatol Surg 2004; 30:13 - 7; http://dx.doi.org/10.1111/j.1524-4725.2004.30007.x; PMID: 14692920
  • Leclère FM, Magalon G, Philandrianos C, Unglaub F, Servell P, Mordon S. Prospective ex-vivo study on thermal effects in human skin phototypes II, IV and VI: a comparison between the 808, 1064, 1210 and 1320-nm diode laser. J Cosmet Laser Ther 2012; 14:7 - 13; http://dx.doi.org/10.3109/14764172.2011.634419; PMID: 22129159
  • Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 2012; 351:77 - 112; http://dx.doi.org/10.1007/82_2011_123; PMID: 21472533
  • Kendall M. Getting under the skin. Mater Today 2006; 9:72; http://dx.doi.org/10.1016/S1369-7021(06)71771-0
  • Beresford B, Sadoff JC. Update on research and development pipeline: tuberculosis vaccines. Clin Infect Dis 2010; 50:Suppl 3 S178 - 83; http://dx.doi.org/10.1086/651489; PMID: 20397946
  • Furuya Y. Return of inactivated whole-virus vaccine for superior efficacy. Immunol Cell Biol 2012; 90:571 - 8; http://dx.doi.org/10.1038/icb.2011.70; PMID: 21844883
  • Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006; 367:1173 - 80; http://dx.doi.org/10.1016/S0140-6736(06)68507-3; PMID: 16616560
  • Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994; 271:698 - 702; http://dx.doi.org/10.1001/jama.1994.03510330076038; PMID: 8309034
  • Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995; 346:1339 - 45; http://dx.doi.org/10.1016/S0140-6736(95)92348-9; PMID: 7475776
  • Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med 2007; 13:1155 - 9; http://dx.doi.org/10.1038/nm1643; PMID: 17917664
  • Van Brussel I, Berneman ZN, Cools N. Optimizing Dendritic Cell-Based Immunotherapy: Tackling the Complexity of Different Arms of the Immune System. Mediators Inflamm 2012; 2012:690643
  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013; 39:38 - 48; http://dx.doi.org/10.1016/j.immuni.2013.07.004; PMID: 23890062
  • Gilboa E. DC-based cancer vaccines. J Clin Invest 2007; 117:1195 - 203; http://dx.doi.org/10.1172/JCI31205; PMID: 17476349
  • Lesterhuis WJ, de Vries IJM, Schreibelt G, Lambeck AJA, Aarntzen EHJG, Jacobs JFM, Scharenborg NM, van de Rakt MWMM, de Boer AJ, Croockewit S, et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 2011; 17:5725 - 35; http://dx.doi.org/10.1158/1078-0432.CCR-11-1261; PMID: 21771874
  • Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol 1995; 6:229 - 48; http://dx.doi.org/10.1007/978-1-4615-1823-5_8; PMID: 7551219
  • Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang X-F, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, et al. Persistent antigen at vaccination sites induces tumor-specific CD8⁺ T cell sequestration, dysfunction and deletion. Nat Med 2013; 19:465 - 72; http://dx.doi.org/10.1038/nm.3105; PMID: 23455713
  • Edelman R. An Overview of Adjuvant Use. Vaccine Adjuvants 2000; 42:1 - 27; http://dx.doi.org/10.1385/1-59259-083-7:1