985
Views
5
CrossRef citations to date
0
Altmetric
Digested Disorder

Digested disorder

Quarterly intrinsic disorder digest (July–August–September, 2013)

, &
Article: e27833 | Received 13 Jan 2014, Accepted 13 Jan 2014, Published online: 19 May 2014

References

  • Uversky VN. Digested disorder: Quarterly intrinsic disorder digest (January/February/ March, 2013). Intrinsically Disord Proteins 2013; 1:e25496; http://dx.doi.org/10.4161/idp.25496
  • DeForte S, Reddy KD, Uversky VN. Digested disorder, issue #2: Quarterly intrinsic disorder digest (April/May/June, 2013). Intrinsically Disord Proteins 2013; 1:e27454; http://dx.doi.org/10.4161/idp.27454
  • Forman-Kay JD, Mittag T. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure 2013; 21:1492 - 9; http://dx.doi.org/10.1016/j.str.2013.08.001; PMID: 24010708
  • López-Montero I, López-Navajas P, Mingorance J, Rivas G, Vélez M, Vicente M, Monroy F. Intrinsic disorder of the bacterial cell division protein ZipA: coil-to-brush conformational transition. FASEB J 2013; 27:3363 - 75; http://dx.doi.org/10.1096/fj.12-224337; PMID: 23660966
  • Bozoky Z, Krzeminski M, Chong PA, Forman-Kay JD. Structural changes of CFTR R region upon phosphorylation: a plastic platform for intramolecular and intermolecular interactions. FEBS J 2013; 280:4407 - 16; http://dx.doi.org/10.1111/febs.12422; PMID: 23826884
  • Kurzbach D, Platzer G, Schwarz TC, Henen MA, Konrat R, Hinderberger D. Cooperative unfolding of compact conformations of the intrinsically disordered protein osteopontin. Biochemistry 2013; 52:5167 - 75; http://dx.doi.org/10.1021/bi400502c; PMID: 23848319
  • Chandak MS, Nakamura T, Makabe K, Takenaka T, Mukaiyama A, Chaudhuri TK, Kato K, Kuwajima K. The H/D-exchange kinetics of the Escherichia coli co-chaperonin GroES studied by 2D NMR and DMSO-quenched exchange methods. J Mol Biol 2013; 425:2541 - 60; http://dx.doi.org/10.1016/j.jmb.2013.04.008; PMID: 23583779
  • Communie G, Habchi J, Yabukarski F, Blocquel D, Schneider R, Tarbouriech N, Papageorgiou N, Ruigrok RW, Jamin M, Jensen MR, et al. Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus. PLoS Pathog 2013; 9:e1003631; http://dx.doi.org/10.1371/journal.ppat.1003631; PMID: 24086133
  • Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 2013; 110:13392 - 7; http://dx.doi.org/10.1073/pnas.1304749110; PMID: 23901099
  • Perovic I, Mandal T, Evans JS. A pearl protein self-assembles to form protein complexes that amplify mineralization. Biochemistry 2013; 52:5696 - 703; http://dx.doi.org/10.1021/bi400808j; PMID: 23865482
  • Phillips MC. New insights into the determination of HDL structure by apolipoproteins: Thematic review series: high density lipoprotein structure, function, and metabolism. J Lipid Res 2013; 54:2034 - 48; http://dx.doi.org/10.1194/jlr.R034025; PMID: 23230082
  • Rydberg J, Baltzer L, Sarojini V. Intrinsically unstructured proteins by design-electrostatic interactions can control binding, folding, and function of a helix-loop-helix heterodimer. J Pept Sci 2013; 19:461 - 9; http://dx.doi.org/10.1002/psc.2520; PMID: 23813758
  • Simons SS Jr., Kumar R. Variable steroid receptor responses: Intrinsically disordered AF1 is the key. Mol Cell Endocrinol 2013; 376:81 - 4; http://dx.doi.org/10.1016/j.mce.2013.06.007; PMID: 23792173
  • Song J, Ng SC, Tompa P, Lee KA, Chan HS. Polycation-π interactions are a driving force for molecular recognition by an intrinsically disordered oncoprotein family. PLoS Comput Biol 2013; 9:e1003239; http://dx.doi.org/10.1371/journal.pcbi.1003239; PMID: 24086122
  • Sotomayor-Pérez AC, Subrini O, Hessel A, Ladant D, Chenal A. Molecular crowding stabilizes both the intrinsically disordered calcium-free state and the folded calcium-bound state of a repeat in toxin (RTX) protein. J Am Chem Soc 2013; 135:11929 - 34; http://dx.doi.org/10.1021/ja404790f; PMID: 23941183
  • Wang W, Lim L, Baskaran Y, Manser E, Song J. NMR binding and crystal structure reveal that intrinsically-unstructured regulatory domain auto-inhibits PAK4 by a mechanism different from that of PAK1. Biochem Biophys Res Commun 2013; 438:169 - 74; http://dx.doi.org/10.1016/j.bbrc.2013.07.047; PMID: 23876315
  • Elgeti M, Rose AS, Bartl FJ, Hildebrand PW, Hofmann KP, Heck M. Precision vs flexibility in GPCR signaling. J Am Chem Soc 2013; 135:12305 - 12; http://dx.doi.org/10.1021/ja405133k; PMID: 23883288
  • Geist L, Henen MA, Haiderer S, Schwarz TC, Kurzbach D, Zawadzka-Kazimierczuk A, Saxena S, Zerko S, Koźmiński W, Hinderberger D, et al. Protonation-dependent conformational variability of intrinsically disordered proteins. Protein Sci 2013; 22:1196 - 205; http://dx.doi.org/10.1002/pro.2304; PMID: 23821606
  • Giri R, Morrone A, Toto A, Brunori M, Gianni S. Structure of the transition state for the binding of c-Myb and KIX highlights an unexpected order for a disordered system. Proc Natl Acad Sci U S A 2013; 110:14942 - 7; http://dx.doi.org/10.1073/pnas.1307337110; PMID: 23980173
  • Graham LD, Glattauer V, Li D, Tyler MJ, Ramshaw JA. The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastidae) has similarities to the prey capture glue of Euperipatoides sp. velvet worms (Onychophora: Peripatopsidae). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:250 - 9; http://dx.doi.org/10.1016/j.cbpb.2013.04.008; PMID: 23665109
  • Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32:1037 - 49; http://dx.doi.org/10.1093/nar/gkh253; PMID: 14960716
  • Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta 2010; 1804:1231 - 64; http://dx.doi.org/10.1016/j.bbapap.2010.01.017; PMID: 20117254
  • Uversky VN. Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 2013; 19:4191 - 213; http://dx.doi.org/10.2174/1381612811319230005; PMID: 23170892
  • Grosely R, Kopanic JL, Nabors S, Kieken F, Spagnol G, Al-Mugotir M, Zach S, Sorgen PL. Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered connexin43 C-terminal domain. J Biol Chem 2013; 288:24857 - 70; http://dx.doi.org/10.1074/jbc.M113.454389; PMID: 23828237
  • Haba NY, Gross R, Novacek J, Shaked H, Zidek L, Barda-Saad M, Chill JH. NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein. Biophys J 2013; 105:481 - 93; http://dx.doi.org/10.1016/j.bpj.2013.05.046; PMID: 23870269
  • Heim M, Elsner MB, Scheibel T. Lipid-specific β-sheet formation in a mussel byssus protein domain. Biomacromolecules 2013; 14:3238 - 45; http://dx.doi.org/10.1021/bm400860y; PMID: 23947342
  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 2005; 272:5129 - 48; http://dx.doi.org/10.1111/j.1742-4658.2005.04948.x; PMID: 16218947
  • Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 2005; 18:343 - 84; http://dx.doi.org/10.1002/jmr.747; PMID: 16094605
  • Li T, Lucius AL. Examination of the polypeptide substrate specificity for Escherichia coli ClpA. Biochemistry 2013; 52:4941 - 54; http://dx.doi.org/10.1021/bi400178q; PMID: 23773038
  • Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U, Popelka H, Yip CK, Klionsky DJ. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci U S A 2013; 110:E2875 - 84; http://dx.doi.org/10.1073/pnas.1300064110; PMID: 23858448
  • Choi UB, Kazi R, Stenzoski N, Wollmuth LP, Uversky VN, Bowen ME. Modulating the intrinsic disorder in the cytoplasmic domain alters the biological activity of the N-methyl-D-aspartate-sensitive glutamate receptor. J Biol Chem 2013; 288:22506 - 15; http://dx.doi.org/10.1074/jbc.M113.477810; PMID: 23782697
  • Akimoto M, Selvaratnam R, McNicholl ET, Verma G, Taylor SS, Melacini G. Signaling through dynamic linkers as revealed by PKA. Proc Natl Acad Sci U S A 2013; 110:14231 - 6; http://dx.doi.org/10.1073/pnas.1312644110; PMID: 23946424
  • Gardner KA, Moore DA, Erickson HP. The C-terminal linker of Escherichia coli FtsZ functions as an intrinsically disordered peptide. Mol Microbiol 2013; 89:264 - 75; http://dx.doi.org/10.1111/mmi.12279; PMID: 23714328
  • Buske PJ, Levin PA. A flexible C-terminal linker is required for proper FtsZ assembly in vitro and cytokinetic ring formation in vivo. Mol Microbiol 2013; 89:249 - 63; http://dx.doi.org/10.1111/mmi.12272; PMID: 23692518
  • Ng AH, Fang NN, Comyn SA, Gsponer J, Mayor T. System-wide analysis reveals intrinsically disordered proteins are prone to ubiquitylation after misfolding stress. Mol Cell Proteomics 2013; 12:2456 - 67; http://dx.doi.org/10.1074/mcp.M112.023416; PMID: 23716602
  • Adamovich Y, Shlomai A, Tsvetkov P, Umansky KB, Reuven N, Estall JL, Spiegelman BM, Shaul Y. The protein level of PGC-1α, a key metabolic regulator, is controlled by NADH-NQO1. Mol Cell Biol 2013; 33:2603 - 13; http://dx.doi.org/10.1128/MCB.01672-12; PMID: 23648480
  • Nunomura W, Jinbo Y, Isozumi N, Ohki S, Izumi Y, Matsushima N, Takakuwa Y. Novel mechanism of regulation of protein 4.1G binding properties through Ca2+/calmodulin-mediated structural changes. Cell Biochem Biophys 2013; 66:545 - 58; http://dx.doi.org/10.1007/s12013-012-9502-7; PMID: 23354586
  • Hirai Y, Louvet E, Oda T, Kumeta M, Watanabe Y, Horigome T, Takeyasu K. Nucleolar scaffold protein, WDR46, determines the granular compartmental localization of nucleolin and DDX21. Genes Cells 2013; 18:780 - 97; http://dx.doi.org/10.1111/gtc.12077; PMID: 23848194
  • Wald T, Osickova A, Sulc M, Benada O, Semeradtova A, Rezabkova L, Veverka V, Bednarova L, Maly J, Macek P, et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J Biol Chem 2013; 288:22333 - 45; http://dx.doi.org/10.1074/jbc.M113.456012; PMID: 23782691
  • Valsecchi I, Guittard-Crilat E, Maldiney R, Habricot Y, Lignon S, Lebrun R, Miginiac E, Ruelland E, Jeannette E, Lebreton S. The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain. Mol Biosyst 2013; 9:2282 - 95; http://dx.doi.org/10.1039/c3mb70128j; PMID: 23760157
  • Cumberworth A, Lamour G, Babu MM, Gsponer J. Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem J 2013; 454:361 - 9; http://dx.doi.org/10.1042/BJ20130545; PMID: 23988124
  • Gast K, Damaschun H, Eckert K, Schulze-Forster K, Maurer HR, Müller-Frohne M, Zirwer D, Czarnecki J, Damaschun G. Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry 1995; 34:13211 - 8; http://dx.doi.org/10.1021/bi00040a037; PMID: 7548085
  • Uversky VN, Gillespie JR, Millett IS, Khodyakova AV, Vasiliev AM, Chernovskaya TV, Vasilenko RN, Kozlovskaya GD, Dolgikh DA, Fink AL, et al. Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH. Biochemistry 1999; 38:15009 - 16; http://dx.doi.org/10.1021/bi990752+; PMID: 10555983
  • Ferrara D, Pariante P, Di Matteo L, Serino I, Oko R, Minucci S. First evidence of prothymosin α localization in the acrosome of mammalian male gametes. J Cell Physiol 2013; 228:1629 - 37; http://dx.doi.org/10.1002/jcp.24332; PMID: 23359453
  • Frye JJ, Brown NG, Petzold G, Watson ER, Grace CR, Nourse A, Jarvis MA, Kriwacki RW, Peters JM, Stark H, et al. Electron microscopy structure of human APC/C(CDH1)-EMI1 reveals multimodal mechanism of E3 ligase shutdown. Nat Struct Mol Biol 2013; 20:827 - 35; http://dx.doi.org/10.1038/nsmb.2593; PMID: 23708605
  • Hegde ML, Tsutakawa SE, Hegde PM, Holthauzen LM, Li J, Oezguen N, Hilser VJ, Tainer JA, Mitra S. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions. J Mol Biol 2013; 425:2359 - 71; http://dx.doi.org/10.1016/j.jmb.2013.03.030; PMID: 23542007
  • Khan K, Madhavan TP, Kshirsagar R, Boosi KN, Sadhale P, Muniyappa K. N-terminal disordered domain of Saccharomyces cerevisiae Hop1 protein is dispensable for DNA binding, bridging, and synapsis of double-stranded DNA molecules but is necessary for spore formation. Biochemistry 2013; 52:5265 - 79; http://dx.doi.org/10.1021/bi4005528; PMID: 23841450
  • Rosenman DJ, Connors CR, Chen W, Wang C, García AE. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. J Mol Biol 2013; 425:3338 - 59; http://dx.doi.org/10.1016/j.jmb.2013.06.021; PMID: 23811057
  • Dibenedetto D, Rossetti G, Caliandro R, Carloni P. A molecular dynamics simulation-based interpretation of nuclear magnetic resonance multidimensional heteronuclear spectra of α-synuclein·dopamine adducts. Biochemistry 2013; 52:6672 - 83; http://dx.doi.org/10.1021/bi400367r; PMID: 23964651
  • Sethi A, Anunciado D, Tian J, Vu DM, Gnanakaran S. Deducing conformational variability of intrinsically disordered proteins from infrared spectroscopy with Bayesian statistics. Chem Phys 2013; 422:143; http://dx.doi.org/10.1016/j.chemphys.2013.05.005; PMID: 24187427
  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradović Z. Intrinsic disorder and protein function. Biochemistry 2002; 41:6573 - 82; http://dx.doi.org/10.1021/bi012159+; PMID: 12022860
  • Nishi H, Fong JH, Chang C, Teichmann SA, Panchenko AR. Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Mol Biosyst 2013; 9:1620 - 6; http://dx.doi.org/10.1039/c3mb25514j; PMID: 23364837
  • Lyle N, Das RK, Pappu RV. A quantitative measure for protein conformational heterogeneity. J Chem Phys 2013; 139:121907; http://dx.doi.org/10.1063/1.4812791; PMID: 24089719
  • Peng Z, Xue B, Kurgan L, Uversky VN. Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 2013; 20:1257 - 67; http://dx.doi.org/10.1038/cdd.2013.65; PMID: 23764774
  • Sebastian A, Rishishwar L, Wang J, Bernard KF, Conley AB, McCarty NA, Jordan IK. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain. Gene 2013; 523:137 - 46; http://dx.doi.org/10.1016/j.gene.2013.02.050; PMID: 23578801
  • Wong ET, Na D, Gsponer J. On the importance of polar interactions for complexes containing intrinsically disordered proteins. PLoS Comput Biol 2013; 9:e1003192; http://dx.doi.org/10.1371/journal.pcbi.1003192; PMID: 23990768
  • Seeger MA, Rice SE. Intrinsic Disorder in the Kinesin Superfamily. Biophys Rev 2013; 5; http://dx.doi.org/10.1007/s12551-012-0096-5; PMID: 24244223
  • Pantoja-Uceda D, Santoro J. A suite of amino acid residue type classification pulse sequences for 13C-detected NMR of proteins. J Magn Reson 2013; 234:190 - 6; http://dx.doi.org/10.1016/j.jmr.2013.06.023; PMID: 23892405
  • Pantoja-Uceda D, Santoro J. Direct correlation of consecutive C’-N groups in proteins: a method for the assignment of intrinsically disordered proteins. J Biomol NMR 2013; 57:57 - 63; http://dx.doi.org/10.1007/s10858-013-9765-3; PMID: 23929272
  • Nováček J, Janda L, Dopitová R, Žídek L, Sklenář V. Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J Biomol NMR 2013; 56:291 - 301; http://dx.doi.org/10.1007/s10858-013-9761-7; PMID: 23877929
  • Leftin A, Job C, Beyer K, Brown MF. Solid-state ¹³C NMR reveals annealing of raft-like membranes containing cholesterol by the intrinsically disordered protein α-Synuclein. J Mol Biol 2013; 425:2973 - 87; http://dx.doi.org/10.1016/j.jmb.2013.04.002; PMID: 23583776
  • Roche J, Ying J, Maltsev AS, Bax A. Impact of hydrostatic pressure on an intrinsically disordered protein: a high-pressure NMR study of α-synuclein. Chembiochem 2013; 14:1754 - 61; http://dx.doi.org/10.1002/cbic.201300244; PMID: 23813793
  • Nishida N, Yagi-Utsumi M, Motojima F, Yoshida M, Shimada I, Kato K. Nuclear magnetic resonance approaches for characterizing interactions between the bacterial chaperonin GroEL and unstructured proteins. J Biosci Bioeng 2013; 116:160 - 4; http://dx.doi.org/10.1016/j.jbiosc.2013.02.012; PMID: 23567152
  • Libich DS, Fawzi NL, Ying J, Clore GM. Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. Proc Natl Acad Sci U S A 2013; 110:11361 - 6; http://dx.doi.org/10.1073/pnas.1305715110; PMID: 23798407
  • Amata I, Maffei M, Igea A, Gay M, Vilaseca M, Nebreda AR, Pons M. Multi-phosphorylation of the intrinsically disordered unique domain of c-Src studied by in-cell and real-time NMR spectroscopy. Chembiochem 2013; 14:1820 - 7; http://dx.doi.org/10.1002/cbic.201300139; PMID: 23744817
  • Iešmantavičius V, Jensen MR, Ozenne V, Blackledge M, Poulsen FM, Kjaergaard M. Modulation of the intrinsic helix propensity of an intrinsically disordered protein reveals long-range helix-helix interactions. J Am Chem Soc 2013; 135:10155 - 63; http://dx.doi.org/10.1021/ja4045532; PMID: 23758617
  • Diana D, Smaldone G, De Antonellis P, Pirone L, Carotenuto M, Alonzi A, Di Gaetano S, Zollo M, Pedone EM, Fattorusso R. Mapping functional interaction sites of human prune C-terminal domain by NMR spectroscopy in human cell lysates. Chemistry 2013; 19:12217 - 20; http://dx.doi.org/10.1002/chem.201302168; PMID: 23939913
  • Theillet FX, Rose HM, Liokatis S, Binolfi A, Thongwichian R, Stuiver M, Selenko P. Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nat Protoc 2013; 8:1416 - 32; http://dx.doi.org/10.1038/nprot.2013.083; PMID: 23807285
  • Kumar D. Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins. J Struct Funct Genomics 2013; 14:109 - 18; http://dx.doi.org/10.1007/s10969-013-9161-y; PMID: 23982149
  • Hofmann H, Nettels D, Schuler B. Single-molecule spectroscopy of the unexpected collapse of an unfolded protein at low pH. J Chem Phys 2013; 139:121930; http://dx.doi.org/10.1063/1.4820490; PMID: 24089742
  • Gruet A, Dosnon M, Vassena A, Lombard V, Gerlier D, Bignon C, Longhi S. Dissecting partner recognition by an intrinsically disordered protein using descriptive random mutagenesis. J Mol Biol 2013; 425:3495 - 509; http://dx.doi.org/10.1016/j.jmb.2013.06.025; PMID: 23811056
  • Gray TA, Murray E, Nowicki MW, Remnant L, Scherl A, Muller P, Vojtesek B, Hupp TR. Development of a fluorescent monoclonal antibody-based assay to measure the allosteric effects of synthetic peptides on self-oligomerization of AGR2 protein. Protein Sci 2013; 22:1266 - 78; http://dx.doi.org/10.1002/pro.2299; PMID: 23780840
  • Jain R, Petri M, Kirschbaum S, Feindt H, Steltenkamp S, Sonnenkalb S, Becker S, Griesinger C, Menzel A, Burg TP, et al. X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. Eur Phys J E Soft Matter 2013; 36:109; http://dx.doi.org/10.1140/epje/i2013-13109-9; PMID: 24092048
  • Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr.. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 1996; 35:13709 - 15; http://dx.doi.org/10.1021/bi961799n; PMID: 8901511
  • Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 2001; 276:10737 - 44; http://dx.doi.org/10.1074/jbc.M010907200; PMID: 11152691
  • Uversky VN. A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 2003; 21:211 - 34; http://dx.doi.org/10.1080/07391102.2003.10506918; PMID: 12956606
  • Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 2007; 103:17 - 37; PMID: 17623039
  • Uversky VN. Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 2008; 9:507 - 40; http://dx.doi.org/10.2174/138920308785915218; PMID: 18855701
  • Uversky VN, Eliezer D. Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 2009; 10:483 - 99; http://dx.doi.org/10.2174/138920309789351921; PMID: 19538146
  • Breydo L, Wu JW, Uversky VN. Α-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 2012; 1822:261 - 85; http://dx.doi.org/10.1016/j.bbadis.2011.10.002; PMID: 22024360
  • Silva BA, Breydo L, Fink AL, Uversky VN. Agrochemicals, α-synuclein, and Parkinson’s disease. Mol Neurobiol 2013; 47:598 - 612; http://dx.doi.org/10.1007/s12035-012-8333-2; PMID: 22933040
  • Illes-Toth E, Dalton CF, Smith DP. Binding of Dopamine to Alpha-Synuclein is Mediated by Specific Conformational States. J Am Soc Mass Spectrom 2013; 24:1346 - 54; http://dx.doi.org/10.1007/s13361-013-0676-z; PMID: 23817832
  • Esteban-Martín S, Silvestre-Ryan J, Bertoncini CW, Salvatella X. Identification of fibril-like tertiary contacts in soluble monomeric α-synuclein. Biophys J 2013; 105:1192 - 8; http://dx.doi.org/10.1016/j.bpj.2013.07.044; PMID: 24010662
  • Wu C, Shea JE. Structural similarities and differences between amyloidogenic and non-amyloidogenic islet amyloid polypeptide (IAPP) sequences and implications for the dual physiological and pathological activities of these peptides. PLoS Comput Biol 2013; 9:e1003211; http://dx.doi.org/10.1371/journal.pcbi.1003211; PMID: 24009497
  • Lauck M, Sibley SD, Lara J, Purdy MA, Khudyakov Y, Hyeroba D, Tumukunde A, Weny G, Switzer WM, Chapman CA, et al. A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate. J Virol 2013; 87:8971 - 81; http://dx.doi.org/10.1128/JVI.00888-13; PMID: 23740998
  • Schwarten M, Sólyom Z, Feuerstein S, Aladağ A, Hoffmann S, Willbold D, Brutscher B. Interaction of nonstructural protein 5A of the hepatitis C virus with Src homology 3 domains using noncanonical binding sites. Biochemistry 2013; 52:6160 - 8; http://dx.doi.org/10.1021/bi400363v; PMID: 23947833
  • Creamer TP. Transient disorder: Calcineurin as an example. Intrinsically Disord Proteins 2013; 1:e26412; http://dx.doi.org/10.4161/idp.26412
  • Uversky VN. Disorder in the lifetime of a protein. Intrinsically Disord Proteins 2013; 1:e26782; http://dx.doi.org/10.4161/idp.26782
  • Jacob U, Kriwacki RW, Uversky VN. Conditionally and transiently disordered proteins: Awakening cryptic disorder to regulate protein function. Chem Rev 2014; Forthcoming http://dx.doi.org/10.1021/cr400459c
  • Wang J, Ptacek JB, Kirkegaard K, Bullitt E. Double-membraned liposomes sculpted by poliovirus 3AB protein. J Biol Chem 2013; 288:27287 - 98; http://dx.doi.org/10.1074/jbc.M113.498899; PMID: 23908350
  • Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211 - 59; http://dx.doi.org/10.1007/s00018-011-0859-3; PMID: 22033837
  • Casu F, Duggan BM, Hennig M. The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding. Biophys J 2013; 105:1004 - 17; http://dx.doi.org/10.1016/j.bpj.2013.07.022; PMID: 23972852
  • Nicolau N Jr., Giuliatti S. Modeling and molecular dynamics of the intrinsically disordered e7 proteins from high- and low-risk types of human papillomavirus. J Mol Model 2013; 19:4025 - 37; http://dx.doi.org/10.1007/s00894-013-1915-8; PMID: 23864166
  • Uversky VN, Roman A, Oldfield CJ, Dunker AK. Protein intrinsic disorder and human papillomaviruses: increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res 2006; 5:1829 - 42; http://dx.doi.org/10.1021/pr0602388; PMID: 16889404
  • Xue B, Ganti K, Rabionet A, Banks L, Uversky VN. Disordered Interactome of Human Papillomavirus. Curr Pharm Des 2013; PMID: 23713779
  • Jürgens MC, Vörös J, Rautureau GJ, Shepherd DA, Pye VE, Muldoon J, Johnson CM, Ashcroft AE, Freund SM, Ferguson N. The hepatitis B virus preS1 domain hijacks host trafficking proteins by motif mimicry. Nat Chem Biol 2013; 9:540 - 7; http://dx.doi.org/10.1038/nchembio.1294; PMID: 23851574
  • Myung JK, Banuelos CA, Fernandez JG, Mawji NR, Wang J, Tien AH, Yang YC, Tavakoli I, Haile S, Watt K, et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J Clin Invest 2013; 123:2948 - 60; http://dx.doi.org/10.1172/JCI66398; PMID: 23722902
  • Zhu M, De Simone A, Schenk D, Toth G, Dobson CM, Vendruscolo M. Identification of small-molecule binding pockets in the soluble monomeric form of the Aβ42 peptide. J Chem Phys 2013; 139:035101; http://dx.doi.org/10.1063/1.4811831; PMID: 23883055