1,878
Views
80
CrossRef citations to date
0
Altmetric
Review

In vivo dynamics of innate immune sentinels in the CNS

, , &
Pages 95-106 | Received 31 Aug 2012, Accepted 07 Nov 2012, Published online: 01 Oct 2012

References

  • Ransohoff RM, Cardona AE. The myeloid cells of the central nervous system parenchyma. Nature 2010; 468:253 - 62; http://dx.doi.org/10.1038/nature09615; PMID: 21068834
  • Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 2011; 14:1227 - 35; http://dx.doi.org/10.1038/nn.2923; PMID: 21952260
  • Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012; 12:623 - 35; http://dx.doi.org/10.1038/nri3265; PMID: 22903150
  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330:841 - 5; http://dx.doi.org/10.1126/science.1194637; PMID: 20966214
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308:1314 - 8; http://dx.doi.org/10.1126/science.1110647; PMID: 15831717
  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000; 20:4106 - 14; http://dx.doi.org/10.1128/MCB.20.11.4106-4114.2000; PMID: 10805752
  • Faust N, Varas F, Kelly LM, Heck S, Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 2000; 96:719 - 26; PMID: 10887140
  • Lauterbach H, Zuniga EI, Truong P, Oldstone MB, McGavern DB. Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J Exp Med 2006; 203:1963 - 75; http://dx.doi.org/10.1084/jem.20060039; PMID: 16847068
  • D’Agostino PM, Kwak C, Vecchiarelli HA, Toth JG, Miller JM, Masheeb Z, et al. Viral-induced encephalitis initiates distinct and functional CD103+ CD11b+ brain dendritic cell populations within the olfactory bulb. Proc Natl Acad Sci U S A 2012; 109:6175 - 80; http://dx.doi.org/10.1073/pnas.1203941109; PMID: 22474352
  • Anandasabapathy N, Victora GD, Meredith M, Feder R, Dong B, Kluger C, et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 2011; 208:1695 - 705; http://dx.doi.org/10.1084/jem.20102657; PMID: 21788405
  • Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, et al. Visualizing dendritic cell networks in vivo. Nat Immunol 2004; 5:1243 - 50; http://dx.doi.org/10.1038/ni1139; PMID: 15543150
  • Bulloch K, Miller MM, Gal-Toth J, Milner TA, Gottfried-Blackmore A, Waters EM, et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 2008; 508:687 - 710; http://dx.doi.org/10.1002/cne.21668; PMID: 18386786
  • Prodinger C, Bunse J, Krüger M, Schiefenhövel F, Brandt C, Laman JD, et al. CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 2011; 121:445 - 58; http://dx.doi.org/10.1007/s00401-010-0774-y; PMID: 21076838
  • Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, et al. Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 2001; 98:6295 - 300; http://dx.doi.org/10.1073/pnas.111152498; PMID: 11371643
  • D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol 2012; 124:599 - 614; http://dx.doi.org/10.1007/s00401-012-1018-0; PMID: 22825593
  • McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol 2011; 11:318 - 29; http://dx.doi.org/10.1038/nri2971; PMID: 21508982
  • Herz J, Zinselmeyer BH, McGavern DB. Two-photon imaging of microbial immunity in living tissues. Microsc Microanal 2012; 18:730 - 41; http://dx.doi.org/10.1017/S1431927612000281; PMID: 22846498
  • Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990; 248:73 - 6; http://dx.doi.org/10.1126/science.2321027; PMID: 2321027
  • Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature 1995; 375:682 - 4; http://dx.doi.org/10.1038/375682a0; PMID: 7791901
  • Kleinfeld D, Mitra PP, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 1998; 95:15741 - 6; http://dx.doi.org/10.1073/pnas.95.26.15741; PMID: 9861040
  • Schiller J, Schiller Y, Clapham DE. NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat Neurosci 1998; 1:114 - 8; http://dx.doi.org/10.1038/363; PMID: 10195125
  • Lendvai B, Stern EA, Chen B, Svoboda K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 2000; 404:876 - 81; http://dx.doi.org/10.1038/35009107; PMID: 10786794
  • Chaigneau E, Oheim M, Audinat E, Charpak S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci U S A 2003; 100:13081 - 6; http://dx.doi.org/10.1073/pnas.2133652100; PMID: 14569029
  • Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005; 433:597 - 603; http://dx.doi.org/10.1038/nature03274; PMID: 15660108
  • Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 2006; 126:389 - 402; http://dx.doi.org/10.1016/j.cell.2006.06.038; PMID: 16873068
  • Kim JV, Kang SS, Dustin ML, McGavern DB. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2009; 457:191 - 5; http://dx.doi.org/10.1038/nature07591; PMID: 19011611
  • Bartholomäus I, Kawakami N, Odoardi F, Schläger C, Miljkovic D, Ellwart JW, et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009; 462:94 - 8; http://dx.doi.org/10.1038/nature08478; PMID: 19829296
  • Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schläger C, Lodygin D, et al. T cells become licensed in the lung to enter the central nervous system. Nature 2012; 488:675 - 9; http://dx.doi.org/10.1038/nature11337; PMID: 22914092
  • Denk W, Sugimori M, Llinás R. Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 1995; 92:8279 - 82; http://dx.doi.org/10.1073/pnas.92.18.8279; PMID: 7667282
  • Denk W, Holt JR, Shepherd GMG, Corey DP. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 1995; 15:1311 - 21; http://dx.doi.org/10.1016/0896-6273(95)90010-1; PMID: 8845155
  • Potter SM, Wang C-M, Garrity PA, Fraser SE. Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy. Gene 1996; 173:1 Spec No 25 - 31; http://dx.doi.org/10.1016/0378-1119(95)00681-8; PMID: 8707052
  • Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods 2005; 2:905 - 9; http://dx.doi.org/10.1038/nmeth819; PMID: 16299475
  • Mainen ZF, Maletic-Savatic M, Shi SH, Hayashi Y, Malinow R, Svoboda K. Two-photon imaging in living brain slices. Methods 1999; 18:231 - 9, 181; http://dx.doi.org/10.1006/meth.1999.0776; PMID: 10356355
  • Kleinfeld D, Mitra PP, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 1998; 95:15741 - 6; http://dx.doi.org/10.1073/pnas.95.26.15741; PMID: 9861040
  • Svoboda K, Denk W, Kleinfeld D, Tank DW. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 1997; 385:161 - 5; http://dx.doi.org/10.1038/385161a0; PMID: 8990119
  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300:1434 - 6; http://dx.doi.org/10.1126/science.1083780; PMID: 12775841
  • Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 2004; 1:31 - 7; http://dx.doi.org/10.1038/nmeth706; PMID: 15782150
  • Appaix F, Girod S, Boisseau S, Römer J, Vial JC, Albrieux M, et al. Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes. PLoS One 2012; 7:e35169; http://dx.doi.org/10.1371/journal.pone.0035169; PMID: 22509398
  • Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 2003; 100:7075 - 80; http://dx.doi.org/10.1073/pnas.0832308100; PMID: 12756303
  • Witte S, Negrean A, Lodder JC, de Kock CP, Testa Silva G, Mansvelder HD, et al. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci U S A 2011; 108:5970 - 5; http://dx.doi.org/10.1073/pnas.1018743108; PMID: 21444784
  • Del Rio-Hortega P. Microglia. In: Penfield W, ed. Cytology and Cellular Pathology of the Nervous System. New York: P.B. Hoeber, inc, 1937:481–534.
  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011; 91:461 - 553; http://dx.doi.org/10.1152/physrev.00011.2010; PMID: 21527731
  • Booth PL, Thomas WE. Evidence for motility and pinocytosis in ramified microglia in tissue culture. Brain Res 1991; 548:163 - 71; http://dx.doi.org/10.1016/0006-8993(91)91118-K; PMID: 1868330
  • Ward SA, Ransom PA, Booth PL, Thomas WE. Characterization of ramified microglia in tissue culture: pinocytosis and motility. J Neurosci Res 1991; 29:13 - 28; http://dx.doi.org/10.1002/jnr.490290103; PMID: 1886165
  • Brockhaus J, Möller T, Kettenmann H. Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 1996; 16:81 - 90; http://dx.doi.org/10.1002/(SICI)1098-1136(199601)16:1<81::AID-GLIA9>3.0.CO;2-E; PMID: 8787776
  • Dailey ME, Waite M. Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods 1999; 18:222 - 30, 177; http://dx.doi.org/10.1006/meth.1999.0775; PMID: 10356354
  • Stence N, Waite M, Dailey ME. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001; 33:256 - 66; http://dx.doi.org/10.1002/1098-1136(200103)33:3<256::AID-GLIA1024>3.0.CO;2-J; PMID: 11241743
  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8:752 - 8; http://dx.doi.org/10.1038/nn1472; PMID: 15895084
  • Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 2011; 11:201 - 12; http://dx.doi.org/10.1038/nri2938; PMID: 21331080
  • Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. Age-related alterations in the dynamic behavior of microglia. Aging Cell 2011; 10:263 - 76; http://dx.doi.org/10.1111/j.1474-9726.2010.00660.x; PMID: 21108733
  • Eichhoff G, Brawek B, Garaschuk O. Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta 2011; 1813:1014 - 24; http://dx.doi.org/10.1016/j.bbamcr.2010.10.018; PMID: 21056596
  • Xu HT, Pan F, Yang G, Gan WB. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 2007; 10:549 - 51; http://dx.doi.org/10.1038/nn1883; PMID: 17417634
  • Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 2010; 5:201 - 8; http://dx.doi.org/10.1038/nprot.2009.222; PMID: 20134419
  • Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 2008; 451:720 - 4; http://dx.doi.org/10.1038/nature06616; PMID: 18256671
  • Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2009; 12:1361 - 3; http://dx.doi.org/10.1038/nn.2432; PMID: 19838177
  • Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM, Mitteregger G, et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 2010; 13:411 - 3; http://dx.doi.org/10.1038/nn.2511; PMID: 20305648
  • Liu Z, Condello C, Schain A, Harb R, Grutzendler J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J Neurosci 2010; 30:17091 - 101; http://dx.doi.org/10.1523/JNEUROSCI.4403-10.2010; PMID: 21159979
  • Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 2010; 107:6058 - 63; http://dx.doi.org/10.1073/pnas.0909586107; PMID: 20231476
  • Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006; 49:489 - 502; http://dx.doi.org/10.1016/j.neuron.2006.01.022; PMID: 16476660
  • Rosidi NL, Zhou J, Pattanaik S, Wang P, Jin W, Brophy M, et al. Cortical microhemorrhages cause local inflammation but do not trigger widespread dendrite degeneration. PLoS One 2011; 6:e26612; http://dx.doi.org/10.1371/journal.pone.0026612; PMID: 22028924
  • Masuda T, Croom D, Hida H, Kirov SA. Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia 2011; 59:1744 - 53; http://dx.doi.org/10.1002/glia.21220; PMID: 21800362
  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009; 29:3974 - 80; http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009; PMID: 19339593
  • Tremblay ME, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010; 8:e1000527; http://dx.doi.org/10.1371/journal.pbio.1000527; PMID: 21072242
  • Shapiro EM, Sharer K, Skrtic S, Koretsky AP. In vivo detection of single cells by MRI. Magn Reson Med 2006; 55:242 - 9; http://dx.doi.org/10.1002/mrm.20718; PMID: 16416426
  • Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology 2000; 55:1052 - 4; http://dx.doi.org/10.1212/WNL.55.7.1052; PMID: 11061271
  • Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, et al. In vivo imaging of activated microglia using [11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport 2000; 11:2957 - 60; http://dx.doi.org/10.1097/00001756-200009110-00025; PMID: 11006973
  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001; 358:461 - 7; http://dx.doi.org/10.1016/S0140-6736(01)05625-2; PMID: 11513911
  • Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 2008; 32:412 - 9; http://dx.doi.org/10.1016/j.nbd.2008.08.001; PMID: 18786637
  • Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 1995; 20:269 - 87; http://dx.doi.org/10.1016/0165-0173(94)00015-H; PMID: 7550361
  • Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME. Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 2002; 37:229 - 40; http://dx.doi.org/10.1002/glia.10031; PMID: 11857681
  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 2010; 58:1094 - 103; http://dx.doi.org/10.1002/glia.20990; PMID: 20468051
  • Lassmann H, Zimprich F, Vass K, Hickey WF. Microglial cells are a component of the perivascular glia limitans. J Neurosci Res 1991; 28:236 - 43; http://dx.doi.org/10.1002/jnr.490280211; PMID: 2033652
  • Mander TH, Morris JF. Immunophenotypic evidence for distinct populations of microglia in the rat hypothalamo-neurohypophysial system. Cell Tissue Res 1995; 280:665 - 73; http://dx.doi.org/10.1007/BF00318369; PMID: 7606773
  • Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988; 239:290 - 2; http://dx.doi.org/10.1126/science.3276004; PMID: 3276004
  • Bechmann I, Priller J, Kovac A, Böntert M, Wehner T, Klett FF, et al. Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 2001; 14:1651 - 8; http://dx.doi.org/10.1046/j.0953-816x.2001.01793.x; PMID: 11860459
  • Lewis CA, Solomon JN, Rossi FM, Krieger C. Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1. Glia 2009; 57:1410 - 9; http://dx.doi.org/10.1002/glia.20859; PMID: 19243075
  • Elmquist JK, Breder CD, Sherin JE, Scammell TE, Hickey WF, Dewitt D, et al. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J Comp Neurol 1997; 381:119 - 29; http://dx.doi.org/10.1002/(SICI)1096-9861(19970505)381:2<119::AID-CNE1>3.0.CO;2-6; PMID: 9130663
  • Van Dam AM, Bauer J, Tilders FJH, Berkenbosch F. Endotoxin-induced appearance of immunoreactive interleukin-1 β in ramified microglia in rat brain: a light and electron microscopic study. Neuroscience 1995; 65:815 - 26; http://dx.doi.org/10.1016/0306-4522(94)00549-K; PMID: 7609880
  • Mato M, Ookawara S, Sakamoto A, Aikawa E, Ogawa T, Mitsuhashi U, et al. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc Natl Acad Sci U S A 1996; 93:3269 - 74; http://dx.doi.org/10.1073/pnas.93.8.3269; PMID: 8622926
  • Claudio L, Martiney JA, Brosnan CF. Ultrastructural studies of the blood-retina barrier after exposure to interleukin-1 beta or tumor necrosis factor-alpha. Lab Invest 1994; 70:850 - 61; PMID: 8015289
  • Linehan SA, Martínez-Pomares L, Stahl PD, Gordon S. Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J Exp Med 1999; 189:1961 - 72; http://dx.doi.org/10.1084/jem.189.12.1961; PMID: 10377192
  • Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 2005; 49:375 - 84; http://dx.doi.org/10.1002/glia.20124; PMID: 15538754
  • Williams K, Alvarez X, Lackner AA. Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 2001; 36:156 - 64; http://dx.doi.org/10.1002/glia.1105; PMID: 11596124
  • Aguirre K, Miller S. MHC class II-positive perivascular microglial cells mediate resistance to Cryptococcus neoformans brain infection. Glia 2002; 39:184 - 8; http://dx.doi.org/10.1002/glia.10093; PMID: 12112369
  • Thompson KA, Cherry CL, Bell JE, McLean CA. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 2011; 179:1623 - 9; http://dx.doi.org/10.1016/j.ajpath.2011.06.039; PMID: 21871429
  • Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 2002; 25:537 - 62; http://dx.doi.org/10.1146/annurev.neuro.25.112701.142822; PMID: 12052920
  • Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)?. Trends Immunol 2007; 28:5 - 11; http://dx.doi.org/10.1016/j.it.2006.11.007; PMID: 17140851
  • Gottfried-Blackmore A, Kaunzner UW, Idoyaga J, Felger JC, McEwen BS, Bulloch K. Acute in vivo exposure to interferon-gamma enables resident brain dendritic cells to become effective antigen presenting cells. Proc Natl Acad Sci U S A 2009; 106:20918 - 23; http://dx.doi.org/10.1073/pnas.0911509106; PMID: 19906988
  • John B, Ricart B, Tait Wojno ED, Harris TH, Randall LM, Christian DA, et al. Analysis of behavior and trafficking of dendritic cells within the brain during toxoplasmic encephalitis. PLoS Pathog 2011; 7:e1002246; http://dx.doi.org/10.1371/journal.ppat.1002246; PMID: 21949652
  • Kang SS, Herz J, Kim JV, Nayak D, Stewart-Hutchinson P, Dustin ML, et al. Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. J Exp Med 2011; 208:747 - 59; http://dx.doi.org/10.1084/jem.20101295; PMID: 21464219
  • Felger JC, Abe T, Kaunzner UW, Gottfried-Blackmore A, Gal-Toth J, McEwen BS, et al. Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun 2010; 24:724 - 37; http://dx.doi.org/10.1016/j.bbi.2009.11.002; PMID: 19914372
  • Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 2005; 11:328 - 34; http://dx.doi.org/10.1038/nm1197; PMID: 15735653
  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 2005; 11:335 - 9; http://dx.doi.org/10.1038/nm1202; PMID: 15735651
  • Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005; 11:146 - 52; http://dx.doi.org/10.1038/nm1177; PMID: 15665833
  • Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009; 10:514 - 23; http://dx.doi.org/10.1038/ni.1716; PMID: 19305396
  • King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 2009; 113:3190 - 7; http://dx.doi.org/10.1182/blood-2008-07-168575; PMID: 19196868
  • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19:71 - 82; http://dx.doi.org/10.1016/S1074-7613(03)00174-2; PMID: 12871640
  • Mildner A, Mack M, Schmidt H, Brück W, Djukic M, Zabel MD, et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 2009; 132:2487 - 500; http://dx.doi.org/10.1093/brain/awp144; PMID: 19531531
  • Kaminski M, Bechmann I, Pohland M, Kiwit J, Nitsch R, Glumm J. Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J Leuko Biol 2012.
  • Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011; 14:1142 - 9; http://dx.doi.org/10.1038/nn.2887; PMID: 21804537
  • Priller J, Flügel A, Wehner T, Boentert M, Haas CA, Prinz M, et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 2001; 7:1356 - 61; http://dx.doi.org/10.1038/nm1201-1356; PMID: 11726978
  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch U-K, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007; 10:1544 - 53; http://dx.doi.org/10.1038/nn2015; PMID: 18026096
  • Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317:666 - 70; http://dx.doi.org/10.1126/science.1142883; PMID: 17673663
  • Audoy-Rémus J, Richard JF, Soulet D, Zhou H, Kubes P, Vallières L. Rod-Shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiopoietin-2. J Neurosci 2008; 28:10187 - 99; http://dx.doi.org/10.1523/JNEUROSCI.3510-08.2008; PMID: 18842879