853
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

In vivo tracking of hematopoietic cells in the retina of chimeric mice with a scanning laser ophthalmoscope

, , &
Pages 132-140 | Received 24 Sep 2012, Accepted 09 Jan 2013, Published online: 01 Oct 2012

References

  • Hari P, Pasquini MC, Vesole DH. Cure of multiple myeloma -- more hype, less reality. Bone Marrow Transplant 2006; 37:1 - 18; PMID: 16258534
  • Moon SJ, Mieler WF. Retinal complications of bone marrow and solid organ transplantation. Curr Opin Ophthalmol 2003; 14:433 - 42; http://dx.doi.org/10.1097/00055735-200312000-00018; PMID: 14615651
  • Chung H, Kim KH, Kim JG, Lee SY, Yoon YH. Retinal complications in patients with solid organ or bone marrow transplantations. Transplantation 2007; 83:694 - 9; http://dx.doi.org/10.1097/01.tp.0000259386.59375.8a; PMID: 17414700
  • Coskuncan NM, Jabs DA, Dunn JP, Haller JA, Green WR, Vogelsang GB, et al. The eye in bone marrow transplantation. VI. Retinal complications. Arch Ophthalmol 1994; 112:372 - 9; http://dx.doi.org/10.1001/archopht.1994.01090150102031; PMID: 8129664
  • Giuliari GP, Sadaka A, Hinkle DM, Simpson ER. Current treatments for radiation retinopathy. Acta Oncol 2011; 50:6 - 13; http://dx.doi.org/10.3109/0284186X.2010.500299; PMID: 20722590
  • Chen M, Zhao J, Luo C, Pandi SP, Penalva RG, Fitzgerald DC, et al. Para-inflammation-mediated retinal recruitment of bone marrow-derived myeloid cells following whole-body irradiation is CCL2 dependent. Glia 2012; 60:833 - 42; http://dx.doi.org/10.1002/glia.22315; PMID: 22362506
  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007; 10:1544 - 53; http://dx.doi.org/10.1038/nn2015; PMID: 18026096
  • Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 2004; 18:998 - 1000; PMID: 15084516
  • Ono K, Takii T, Onozaki K, Ikawa M, Okabe M, Sawada M. Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem Biophys Res Commun 1999; 262:610 - 4; http://dx.doi.org/10.1006/bbrc.1999.1223; PMID: 10471372
  • Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD. Turnover of resident retinal microglia in the normal adult mouse. Glia 2007; 55:1189 - 98; http://dx.doi.org/10.1002/glia.20535; PMID: 17600341
  • Vilhardt F. Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 2005; 37:17 - 21; http://dx.doi.org/10.1016/j.biocel.2004.06.010; PMID: 15381143
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308:1314 - 8; http://dx.doi.org/10.1126/science.1110647; PMID: 15831717
  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8:752 - 8; http://dx.doi.org/10.1038/nn1472; PMID: 15895084
  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007; 10:1538 - 43; http://dx.doi.org/10.1038/nn2014; PMID: 18026097
  • Veilleux I, Spencer JS, Biss DP, Côté D, Lin CP. In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy. IEEE J Sel Top Quant Elec 2008; 14: 10-18.
  • Rajadhyaksha M, González S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol 1999; 113:293 - 303; http://dx.doi.org/10.1046/j.1523-1747.1999.00690.x; PMID: 10469324
  • Biss DP, Sumorok D, Burns SA, Webb RH, Zhou Y, Bifano TG, et al. In vivo fluorescent imaging of the mouse retina using adaptive optics. Opt Lett 2007; 32:659 - 61; http://dx.doi.org/10.1364/OL.32.000659; PMID: 17308593
  • Alt C, Biss DP, Tajouri N, Jakobs TC, Lin CP. An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure. Proc SPIE 2010; 7550:755019; http://dx.doi.org/10.1117/12.840583
  • Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE, et al. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A 2004; 101:13352 - 6; http://dx.doi.org/10.1073/pnas.0405479101; PMID: 15340151
  • Eter N, Engel DR, Meyer L, Helb HM, Roth F, Maurer J, et al. In vivo visualization of dendritic cells, macrophages, and microglial cells responding to laser-induced damage in the fundus of the eye. Invest Ophthalmol Vis Sci 2008; 49:3649 - 58; http://dx.doi.org/10.1167/iovs.07-1322; PMID: 18316698
  • Paques M, Simonutti M, Augustin S, Goupille O, El Mathari B, Sahel JA. In vivo observation of the locomotion of microglial cells in the retina. Glia 2010; 58:1663 - 8; http://dx.doi.org/10.1002/glia.21037; PMID: 20578032
  • Leung CK, Weinreb RN, Li ZW, Liu S, Lindsey JD, Choi N, et al. Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. Invest Ophthalmol Vis Sci 2011; 52:1539 - 47; http://dx.doi.org/10.1167/iovs.10-6012; PMID: 21245394
  • Alt C, Lin CP. In vivo quantification of microglia dynamics with a scanning laser ophthalmoscope in a mouse model of focal laser injury. Proc SPIE 2012; 8209:820907; http://dx.doi.org/10.1117/12.909141
  • de la Cera EG, Rodríguez G, Llorente L, Schaeffel F, Marcos S. Optical aberrations in the mouse eye. Vision Res 2006; 46:2546 - 53; http://dx.doi.org/10.1016/j.visres.2006.01.011; PMID: 16516259
  • Geng Y, Schery LA, Sharma R, Dubra A, Ahmad K, Libby RT, et al. Optical properties of the mouse eye. Biomed Opt Express 2011; 2:717 - 38; http://dx.doi.org/10.1364/BOE.2.000717; PMID: 21483598
  • Geng Y, Greenberg KP, Wolfe R, Gray DC, Hunter JJ, Dubra A, et al. In vivo imaging of microscopic structures in the rat retina. Invest Ophthalmol Vis Sci 2009; 50:5872 - 9; http://dx.doi.org/10.1167/iovs.09-3675; PMID: 19578019
  • Geng Y, Dubra A, Yin L, Merigan WH, Sharma R, Libby RT, et al. Adaptive optics retinal imaging in the living mouse eye. Biomed Opt Express 2012; 3:715 - 34; http://dx.doi.org/10.1364/BOE.3.000715; PMID: 22574260
  • Nakano N, Ikeda HO, Hangai M, Muraoka Y, Toda Y, Kakizuka A, et al. Longitudinal and simultaneous imaging of retinal ganglion cells and inner retinal layers in a mouse model of glaucoma induced by N-methyl-D-aspartate. Invest Ophthalmol Vis Sci 2011; 52:8754 - 62; http://dx.doi.org/10.1167/iovs.10-6654; PMID: 22003119
  • Burns SA, Zhangyi Z, Chui TYP, Song H, Elsner AE, Malinovsky VE. Imaging the Inner Retina Using Adaptive Optics. Invest Ophthalmol Vis Sci 2008; 49:4512
  • Tam J, Martin JA, Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci 2010; 51:1691 - 8; http://dx.doi.org/10.1167/iovs.09-4483; PMID: 19907024
  • Crane IJ, Liversidge J. Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol 2008; 30:165 - 77; http://dx.doi.org/10.1007/s00281-008-0106-7; PMID: 18305941
  • Yuan H, Goetz DJ, Gaber MW, Issekutz AC, Merchant TE, Kiani MF. Radiation-induced up-regulation of adhesion molecules in brain microvasculature and their modulation by dexamethasone. Radiat Res 2005; 163:544 - 51; http://dx.doi.org/10.1667/RR3361; PMID: 15850416
  • Gaber MW, Yuan H, Killmar JT, Naimark MD, Kiani MF, Merchant TE. An intravital microscopy study of radiation-induced changes in permeability and leukocyte-endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle. Brain Res Brain Res Protoc 2004; 13:1 - 10; http://dx.doi.org/10.1016/j.brainresprot.2003.11.005; PMID: 15063835
  • Jain P, Coisne C, Enzmann G, Rottapel R, Engelhardt B. Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J Immunol 2010; 184:7196 - 206; http://dx.doi.org/10.4049/jimmunol.0901404; PMID: 20483748
  • Pachter JS, de Vries HE, Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 2003; 62:593 - 604; PMID: 12834104
  • Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317:666 - 70; http://dx.doi.org/10.1126/science.1142883; PMID: 17673663
  • Audoy-Rémus J, Richard J-F, Soulet D, Zhou H, Kubes P, Vallières L. Rod-Shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiopoietin-2. J Neurosci 2008; 28:10187 - 99; http://dx.doi.org/10.1523/JNEUROSCI.3510-08.2008; PMID: 18842879
  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000; 20:4106 - 14; http://dx.doi.org/10.1128/MCB.20.11.4106-4114.2000; PMID: 10805752
  • Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN, et al. Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci 2009; 50:4444 - 51; http://dx.doi.org/10.1167/iovs.08-3357; PMID: 19443728
  • Available at http://rsb.info.nih.gov/ij; developed by Wayne Rasband, National Institutes of Health, Bethesda, MD.