2,530
Views
54
CrossRef citations to date
0
Altmetric
Review

α-cell role in β-cell generation and regeneration

&
Pages 188-198 | Published online: 01 May 2012

References

  • Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007; 28:84 - 116; http://dx.doi.org/10.1210/er.2006-0007; PMID: 17261637
  • Lefèbvre PJ. Early milestones in glucagon research. Diabetes Obes Metab 2011; 13:Suppl 1 1 - 4; http://dx.doi.org/10.1111/j.1463-1326.2011.01437.x; PMID: 21824250
  • Orci L. Macro- and micro-domains in the endocrine pancreas. Diabetes 1982; 31:538 - 65; PMID: 6759269
  • Rall LB, Pictet RL, Williams RH, Rutter WJ. Early differentiation of glucagon-producing cells in embryonic pancreas: a possible developmental role for glucagon. Proc Natl Acad Sci U S A 1973; 70:3478 - 82; http://dx.doi.org/10.1073/pnas.70.12.3478; PMID: 4519640
  • Hancock AS, Du A, Liu J, Miller M, May CL. Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol Endocrinol 2010; 24:1605 - 14; http://dx.doi.org/10.1210/me.2010-0120; PMID: 20592160
  • Abs R, Verbist L, Moeremans M, Blockx P, De Leeuw I, Bekaert J. Hypoglycemia owing to inappropriate glucagon secretion treated with a continuous subcutaneous glucagon infusion system. Acta Endocrinol (Copenh) 1990; 122:319 - 22; PMID: 2183535
  • Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 2011; 60:391 - 7; http://dx.doi.org/10.2337/db10-0426; PMID: 21270251
  • Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev 1999; 20:876 - 913; http://dx.doi.org/10.1210/er.20.6.876; PMID: 10605628
  • Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3:153 - 65; http://dx.doi.org/10.1016/j.cmet.2006.01.004; PMID: 16517403
  • Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003; 17:161 - 71; http://dx.doi.org/10.1210/me.2002-0306; PMID: 12554744
  • Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival. Diabetes Metab 2008; 34:Suppl 2 S73 - 7; http://dx.doi.org/10.1016/S1262-3636(08)73398-6; PMID: 18640589
  • Dubé PE, Brubaker PL. Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab 2007; 293:E460 - 5; http://dx.doi.org/10.1152/ajpendo.00149.2007; PMID: 17652153
  • Brun T, Hu He KH, Lupi R, Boehm B, Wojtusciszyn A, Sauter N, et al. The diabetes-linked transcription factor Pax4 is expressed in human pancreatic islets and is activated by mitogens and GLP-1. Hum Mol Genet 2008; 17:478 - 89; http://dx.doi.org/10.1093/hmg/ddm325; PMID: 17989064
  • Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48:2270 - 6; http://dx.doi.org/10.2337/diabetes.48.12.2270; PMID: 10580413
  • Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000; 49:741 - 8; http://dx.doi.org/10.2337/diabetes.49.5.741; PMID: 10905482
  • Bastien-Dionne PO, Valenti L, Kon N, Gu W, Buteau J. Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion. Diabetes 2011; 60:3217 - 22; http://dx.doi.org/10.2337/db11-0101; PMID: 22013015
  • Heller RS, Aponte GW. Intra-islet regulation of hormone secretion by glucagon-like peptide-1-(7--36) amide. Am J Physiol 1995; 269:G852 - 60; PMID: 8572216
  • Masur K, Tibaduiza EC, Chen C, Ligon B, Beinborn M. Basal receptor activation by locally produced glucagon-like peptide-1 contributes to maintaining beta-cell function. Mol Endocrinol 2005; 19:1373 - 82; http://dx.doi.org/10.1210/me.2004-0350; PMID: 15677711
  • Sangan CB, Tosh D. A new paradigm in cell therapy for diabetes: turning pancreatic α-cells into β-cells. Bioessays 2010; 32:881 - 4; http://dx.doi.org/10.1002/bies.201000074; PMID: 20803505
  • Courtney M, Pfeifer A, Al-Hasani K, Gjernes E, Vieira A, Ben-Othman N, et al. In vivo conversion of adult α-cells into β-like cells: a new research avenue in the context of type 1 diabetes. Diabetes Obes Metab 2011; 13:Suppl 1 47 - 52; http://dx.doi.org/10.1111/j.1463-1326.2011.01441.x; PMID: 21824256
  • Seymour PA, Sander M. Historical perspective: beginnings of the beta-cell: current perspectives in beta-cell development. Diabetes 2011; 60:364 - 76; http://dx.doi.org/10.2337/db10-1068; PMID: 21270248
  • Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 2000; 97:1607 - 11; http://dx.doi.org/10.1073/pnas.97.4.1607; PMID: 10677506
  • Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 2007; 12:457 - 65; http://dx.doi.org/10.1016/j.devcel.2007.02.010; PMID: 17336910
  • Wilson ME, Kalamaras JA, German MS. Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech Dev 2002; 115:171 - 6; http://dx.doi.org/10.1016/S0925-4773(02)00118-1; PMID: 12049785
  • Harb G, Heremans Y, Heimberg H, Korbutt GS. Ectopic expression of neurogenin 3 in neonatal pig pancreatic precursor cells induces (trans)differentiation to functional alpha cells. Diabetologia 2006; 49:1855 - 63; http://dx.doi.org/10.1007/s00125-006-0299-z; PMID: 16736130
  • Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000; 127:3533 - 42; PMID: 10903178
  • Herrera PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000; 127:2317 - 22; PMID: 10804174
  • Hashimoto T, Kawano H, Daikoku S, Shima K, Taniguchi H, Baba S. Transient coappearance of glucagon and insulin in the progenitor cells of the rat pancreatic islets. Anat Embryol (Berl) 1988; 178:489 - 97; http://dx.doi.org/10.1007/BF00305036; PMID: 2464956
  • De Krijger RR, Aanstoot HJ, Kranenburg G, Reinhard M, Visser WJ, Bruining GJ. The midgestational human fetal pancreas contains cells coexpressing islet hormones. Dev Biol 1992; 153:368 - 75; http://dx.doi.org/10.1016/0012-1606(92)90121-V; PMID: 1356859
  • Teitelman G, Alpert S, Polak JM, Martinez A, Hanahan D. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 1993; 118:1031 - 9; PMID: 7903631
  • Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P. Early pattern of differentiation in the human pancreas. Diabetes 2000; 49:225 - 32; http://dx.doi.org/10.2337/diabetes.49.2.225; PMID: 10868939
  • Bai L, Meredith G, Tuch BE. Glucagon-like peptide-1 enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells. J Endocrinol 2005; 186:343 - 52; http://dx.doi.org/10.1677/joe.1.06078; PMID: 16079260
  • Sanz C, Blázquez E. New gene targets for glucagon-like peptide-1 during embryonic development and in undifferentiated pluripotent cells. Am J Physiol Endocrinol Metab 2011; 301:E494 - 503; http://dx.doi.org/10.1152/ajpendo.00116.2011; PMID: 21712536
  • Rezania A, Riedel MJ, Wideman RD, Karanu F, Ao Z, Warnock GL, et al. Production of functional glucagon-secreting α-cells from human embryonic stem cells. Diabetes 2011; 60:239 - 47; http://dx.doi.org/10.2337/db10-0573; PMID: 20971966
  • Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008; 283:8723 - 35; http://dx.doi.org/10.1074/jbc.M706105200; PMID: 18216022
  • Liu Z, Habener JF. Wnt signaling in pancreatic islets. Adv Exp Med Biol 2010; 654:391 - 419; http://dx.doi.org/10.1007/978-90-481-3271-3_17; PMID: 20217507
  • Welters HJ, Kulkarni RN. Wnt signaling: relevance to beta-cell biology and diabetes. Trends Endocrinol Metab 2008; 19:349 - 55; http://dx.doi.org/10.1016/j.tem.2008.08.004; PMID: 18926717
  • Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464:1149 - 54; http://dx.doi.org/10.1038/nature08894; PMID: 20364121
  • Chung CH, Hao E, Piran R, Keinan E, Levine F. Pancreatic β-cell neogenesis by direct conversion from mature α-cells. Stem Cells 2010; 28:1630 - 8; http://dx.doi.org/10.1002/stem.482; PMID: 20653050
  • Lu J, Herrera PL, Carreira C, Bonnavion R, Seigne C, Calender A, et al. Alpha cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology 2010; 138:1954 - 65; http://dx.doi.org/10.1053/j.gastro.2010.01.046; PMID: 20138042
  • Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009; 138:449 - 62; http://dx.doi.org/10.1016/j.cell.2009.05.035; PMID: 19665969
  • Collombat P, Hecksher-Sørensen J, Krull J, Berger J, Riedel D, Herrera PL, et al. Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest 2007; 117:961 - 70; http://dx.doi.org/10.1172/JCI29115; PMID: 17404619
  • Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 2011; 20:419 - 29; http://dx.doi.org/10.1016/j.devcel.2011.03.012; PMID: 21497756
  • Liu Z, Habener JF. Alpha cells beget beta cells. Cell 2009; 138:424 - 6; http://dx.doi.org/10.1016/j.cell.2009.07.022; PMID: 19665963
  • Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997; 386:399 - 402; http://dx.doi.org/10.1038/386399a0; PMID: 9121556
  • Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003; 17:2591 - 603; http://dx.doi.org/10.1101/gad.269003; PMID: 14561778
  • Brun T, Gauthier BR. A focus on the role of Pax4 in mature pancreatic islet beta-cell expansion and survival in health and disease. J Mol Endocrinol 2008; 40:37 - 45; http://dx.doi.org/10.1677/JME-07-0134; PMID: 18234907
  • Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429:41 - 6; http://dx.doi.org/10.1038/nature02520; PMID: 15129273
  • Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 2007; 117:2553 - 61; http://dx.doi.org/10.1172/JCI32959; PMID: 17786244
  • Cano DA, Rulifson IC, Heiser PW, Swigart LB, Pelengaris S, German M, et al. Regulated beta-cell regeneration in the adult mouse pancreas. Diabetes 2008; 57:958 - 66; http://dx.doi.org/10.2337/db07-0913; PMID: 18083786
  • Wang ZV, Mu J, Schraw TD, Gautron L, Elmquist JK, Zhang BB, et al. PANIC-ATTAC: a mouse model for inducible and reversible beta-cell ablation. Diabetes 2008; 57:2137 - 48; http://dx.doi.org/10.2337/db07-1631; PMID: 18469203
  • Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 2007; 12:817 - 26; http://dx.doi.org/10.1016/j.devcel.2007.04.011; PMID: 17488631
  • Liu H, Guz Y, Kedees MH, Winkler J, Teitelman G. Precursor cells in mouse islets generate new beta-cells in vivo during aging and after islet injury. Endocrinology 2010; 151:520 - 8; http://dx.doi.org/10.1210/en.2009-0992; PMID: 20056825
  • Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 2011; 8:281 - 93; http://dx.doi.org/10.1016/j.stem.2011.01.015; PMID: 21362568
  • Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132:197 - 207; http://dx.doi.org/10.1016/j.cell.2007.12.015; PMID: 18243096
  • Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A 2008; 105:19915 - 9; http://dx.doi.org/10.1073/pnas.0805803105; PMID: 19052237
  • Samols E, Stagner JI, Ewart RB, Marks V. The order of islet microvascular cellular perfusion is B----A----D in the perfused rat pancreas. J Clin Invest 1988; 82:350 - 3; http://dx.doi.org/10.1172/JCI113593; PMID: 2455737
  • Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 2005; 54:1808 - 15; http://dx.doi.org/10.2337/diabetes.54.6.1808; PMID: 15919803
  • Menge BA, Grüber L, Jørgensen SM, Deacon CF, Schmidt WE, Veldhuis JD, et al. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes. Diabetes 2011; 60:2160 - 8; http://dx.doi.org/10.2337/db11-0251; PMID: 21677283
  • Kawamori D, Kurpad AJ, Hu J, Liew CW, Shih JL, Ford EL, et al. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab 2009; 9:350 - 61; http://dx.doi.org/10.1016/j.cmet.2009.02.007; PMID: 19356716
  • Kawamori D, Akiyama M, Hu J, Hambro B, Kulkarni RN. Growth factor signalling in the regulation of α-cell fate. Diabetes Obes Metab 2011; 13:Suppl 1 21 - 30; http://dx.doi.org/10.1111/j.1463-1326.2011.01442.x; PMID: 21824253
  • Furuta M, Yano H, Zhou A, Rouillé Y, Holst JJ, Carroll R, et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci U S A 1997; 94:6646 - 51; http://dx.doi.org/10.1073/pnas.94.13.6646; PMID: 9192619
  • Webb GC, Akbar MS, Zhao C, Swift HH, Steiner DF. Glucagon replacement via micro-osmotic pump corrects hypoglycemia and alpha-cell hyperplasia in prohormone convertase 2 knockout mice. Diabetes 2002; 51:398 - 405; http://dx.doi.org/10.2337/diabetes.51.2.398; PMID: 11812747
  • Vincent M, Guz Y, Rozenberg M, Webb G, Furuta M, Steiner D, et al. Abrogation of protein convertase 2 activity results in delayed islet cell differentiation and maturation, increased alpha-cell proliferation, and islet neogenesis. Endocrinology 2003; 144:4061 - 9; http://dx.doi.org/10.1210/en.2003-0088; PMID: 12933680
  • Hayashi Y, Yamamoto M, Mizoguchi H, Watanabe C, Ito R, Yamamoto S, et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet alpha-cells but not of intestinal L-cells. Mol Endocrinol 2009; 23:1990 - 9; http://dx.doi.org/10.1210/me.2009-0296; PMID: 19819987
  • Sloop KW, Cao JX, Siesky AM, Zhang HY, Bodenmiller DM, Cox AL, et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Invest 2004; 113:1571 - 81; PMID: 15173883
  • Gu W, Yan H, Winters KA, Komorowski R, Vonderfecht S, Atangan L, et al. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia. J Pharmacol Exp Ther 2009; 331:871 - 81; http://dx.doi.org/10.1124/jpet.109.157685; PMID: 19720878
  • Winzell MS, Brand CL, Wierup N, Sidelmann UG, Sundler F, Nishimura E, et al. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia 2007; 50:1453 - 62; http://dx.doi.org/10.1007/s00125-007-0675-3; PMID: 17479245
  • Gelling RW, Du XQ, Dichmann DS, Romer J, Huang H, Cui L, et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A 2003; 100:1438 - 43; http://dx.doi.org/10.1073/pnas.0237106100; PMID: 12552113
  • Vuguin PM, Kedees MH, Cui L, Guz Y, Gelling RW, Nejathaim M, et al. Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 2006; 147:3995 - 4006; http://dx.doi.org/10.1210/en.2005-1410; PMID: 16627579
  • Kedees MH, Guz Y, Vuguin PM, Vargas C, Cui L, Steiner DF, et al. Nestin expression in pancreatic endocrine and exocrine cells of mice lacking glucagon signaling. Dev Dyn 2007; 236:1126 - 33; http://dx.doi.org/10.1002/dvdy.21112; PMID: 17366624
  • Conarello SL, Jiang G, Mu J, Li Z, Woods J, Zycband E, et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia 2007; 50:142 - 50; http://dx.doi.org/10.1007/s00125-006-0481-3; PMID: 17131145
  • Chen M, Gavrilova O, Zhao WQ, Nguyen A, Lorenzo J, Shen L, et al. Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific Gs alpha deficiency. J Clin Invest 2005; 115:3217 - 27; http://dx.doi.org/10.1172/JCI24196; PMID: 16239968
  • Kilimnik G, Kim A, Steiner DF, Friedman TC, Hara M. Intraislet production of GLP-1 by activation of prohormone convertase 1/3 in pancreatic α-cells in mouse models of ß-cell regeneration. Islets 2010; 2:149 - 55; http://dx.doi.org/10.4161/isl.2.3.11396; PMID: 20657753
  • Gu W, Winters KA, Motani AS, Komorowski R, Zhang Y, Liu Q, et al. Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor. Am J Physiol Endocrinol Metab 2010; 299:E624 - 32; http://dx.doi.org/10.1152/ajpendo.00102.2010; PMID: 20647556
  • Whalley NM, Pritchard LE, Smith DM, White A. Processing of proglucagon to GLP-1 in pancreatic α-cells: is this a paracrine mechanism enabling GLP-1 to act on β-cells?. J Endocrinol 2011; 211:99 - 106; http://dx.doi.org/10.1530/JOE-11-0094; PMID: 21795304
  • Liu Z, Stanojevic V, Avadhani S, Yano T, Habener JF. Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival. Diabetologia 2011; 54:2067 - 76; http://dx.doi.org/10.1007/s00125-011-2181-x; PMID: 21567300
  • Gu W, Lloyd DJ, Chinookswong N, Komorowski R, Sivits G Jr., Graham M, et al. Pharmacological targeting of glucagon and glucagon-like peptide 1 receptors has different effects on energy state and glucose homeostasis in diet-induced obese mice. J Pharmacol Exp Ther 2011; 338:70 - 81; http://dx.doi.org/10.1124/jpet.111.179986; PMID: 21471191
  • Sørensen H, Winzell MS, Brand CL, Fosgerau K, Gelling RW, Nishimura E, et al. Glucagon receptor knockout mice display increased insulin sensitivity and impaired beta-cell function. Diabetes 2006; 55:3463 - 9; http://dx.doi.org/10.2337/db06-0307; PMID: 17130493
  • Ma X, Zhang Y, Gromada J, Sewing S, Berggren PO, Buschard K, et al. Glucagon stimulates exocytosis in mouse and rat pancreatic alpha-cells by binding to glucagon receptors. Mol Endocrinol 2005; 19:198 - 212; http://dx.doi.org/10.1210/me.2004-0059; PMID: 15459251
  • Kieffer TJ, Heller RS, Unson CG, Weir GC, Habener JF. Distribution of glucagon receptors on hormone-specific endocrine cells of rat pancreatic islets. Endocrinology 1996; 137:5119 - 25; http://dx.doi.org/10.1210/en.137.11.5119; PMID: 8895386
  • Peshavaria M, Gamer L, Henderson E, Teitelman G, Wright CV, Stein R. XIHbox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. Mol Endocrinol 1994; 8:806 - 16; http://dx.doi.org/10.1210/me.8.6.806; PMID: 7935494
  • Yano T, Liu Z, Donovan J, Thomas MK, Habener JF. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt. Diabetes 2007; 56:2946 - 57; http://dx.doi.org/10.2337/db07-0291; PMID: 17878289
  • Nie Y, Nakashima M, Brubaker PL, Li QL, Perfetti R, Jansen E, et al. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J Clin Invest 2000; 105:955 - 65; http://dx.doi.org/10.1172/JCI7456; PMID: 10749575
  • Jones CW, Reynolds WA, Hoganson GE. Streptozotocin diabetes in the monkey: plasma levels of glucose, insulin, glucagon, and somatostatin, with corresponding morphometric analysis of islet endocrine cells. Diabetes 1980; 29:536 - 46; http://dx.doi.org/10.2337/diabetes.29.7.536; PMID: 6103856
  • Li Z, Karlsson FA, Sandler S. Islet loss and alpha cell expansion in type 1 diabetes induced by multiple low-dose streptozotocin administration in mice. J Endocrinol 2000; 165:93 - 9; http://dx.doi.org/10.1677/joe.0.1650093; PMID: 10750039
  • Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, et al. Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci U S A 2009; 106:13992 - 7; http://dx.doi.org/10.1073/pnas.0906471106; PMID: 19666551
  • Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, Martens G, et al. Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A 2008; 105:13163 - 8; http://dx.doi.org/10.1073/pnas.0801059105; PMID: 18719127
  • Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53:1700 - 5; http://dx.doi.org/10.2337/diabetes.53.7.1700; PMID: 15220193
  • Meier JJ, Ueberberg S, Korbas S, Schneider S. Diminished glucagon suppression after β-cell reduction is due to impaired α-cell function rather than an expansion of α-cell mass. Am J Physiol Endocrinol Metab 2011; 300:E717 - 23; http://dx.doi.org/10.1152/ajpendo.00315.2010; PMID: 21285404
  • Waguri M, Hanafusa T, Itoh N, Miyagawa J, Imagawa A, Kuwajima M, et al. Histopathologic study of the pancreas shows a characteristic lymphocytic infiltration in Japanese patients with IDDM. Endocr J 1997; 44:23 - 33; http://dx.doi.org/10.1507/endocrj.44.23; PMID: 9152611
  • Henquin JC, Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 2011; 54:1720 - 5; http://dx.doi.org/10.1007/s00125-011-2118-4; PMID: 21465328
  • Deng S, Vatamaniuk M, Huang X, Doliba N, Lian MM, Frank A, et al. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 2004; 53:624 - 32; http://dx.doi.org/10.2337/diabetes.53.3.624; PMID: 14988246
  • Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia 2010; 53:2020 - 8; http://dx.doi.org/10.1007/s00125-010-1817-6; PMID: 20532863
  • Kedees MH, Grigoryan M, Guz Y, Teitelman G. Differential expression of glucagon and glucagon-like peptide 1 receptors in mouse pancreatic alpha and beta cells in two models of alpha cell hyperplasia. Mol Cell Endocrinol 2009; 311:69 - 76; http://dx.doi.org/10.1016/j.mce.2009.07.024; PMID: 19647035
  • Wideman RD, Covey SD, Webb GC, Drucker DJ, Kieffer TJ. A switch from prohormone convertase (PC)-2 to PC1/3 expression in transplanted alpha-cells is accompanied by differential processing of proglucagon and improved glucose homeostasis in mice. Diabetes 2007; 56:2744 - 52; http://dx.doi.org/10.2337/db07-0563; PMID: 17698597
  • Riedel MJ, Asadi A, Wang R, Ao Z, Warnock GL, Kieffer TJ. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 2012; 55:372 - 81; http://dx.doi.org/10.1007/s00125-011-2344-9; PMID: 22038519
  • Thyssen S, Arany E, Hill DJ. Ontogeny of regeneration of beta-cells in the neonatal rat after treatment with streptozotocin. Endocrinology 2006; 147:2346 - 56; http://dx.doi.org/10.1210/en.2005-0396; PMID: 16484329
  • Hansen AM, Bödvarsdottir TB, Nordestgaard DN, Heller RS, Gotfredsen CF, Maedler K, et al. Upregulation of alpha cell glucagon-like peptide 1 (GLP-1) in Psammomys obesus--an adaptive response to hyperglycaemia?. Diabetologia 2011; 54:1379 - 87; http://dx.doi.org/10.1007/s00125-011-2080-1; PMID: 21347622
  • Furuta M, Zhou A, Webb G, Carroll R, Ravazzola M, Orci L, et al. Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J Biol Chem 2001; 276:27197 - 202; http://dx.doi.org/10.1074/jbc.M103362200; PMID: 11356850
  • Webb GC, Dey A, Wang J, Stein J, Milewski M, Steiner DF. Altered proglucagon processing in an alpha-cell line derived from prohormone convertase 2 null mouse islets. J Biol Chem 2004; 279:31068 - 75; http://dx.doi.org/10.1074/jbc.M404110200; PMID: 15143067
  • Wideman RD, Gray SL, Covey SD, Webb GC, Kieffer TJ. Transplantation of PC1/3-Expressing alpha-cells improves glucose handling and cold tolerance in leptin-resistant mice. Mol Ther 2009; 17:191 - 8; http://dx.doi.org/10.1038/mt.2008.219; PMID: 18941442
  • Heller RS, Kieffer TJ, Habener JF. Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas. Diabetes 1997; 46:785 - 91; http://dx.doi.org/10.2337/diabetes.46.5.785; PMID: 9133545
  • Moens K, Heimberg H, Flamez D, Huypens P, Quartier E, Ling Z, et al. Expression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells. Diabetes 1996; 45:257 - 61; http://dx.doi.org/10.2337/diabetes.45.2.257; PMID: 8549871
  • Tornehave D, Kristensen P, Rømer J, Knudsen LB, Heller RS. Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J Histochem Cytochem 2008; 56:841 - 51; http://dx.doi.org/10.1369/jhc.2008.951319; PMID: 18541709
  • Kayali AG, Van Gunst K, Campbell IL, Stotland A, Kritzik M, Liu G, et al. The stromal cell-derived factor-1alpha/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J Cell Biol 2003; 163:859 - 69; http://dx.doi.org/10.1083/jcb.200304153; PMID: 14638861
  • Dorrell C, Schug J, Lin CF, Canaday PS, Fox AJ, Smirnova O, et al. Transcriptomes of the major human pancreatic cell types. Diabetologia 2011; 54:2832 - 44; http://dx.doi.org/10.1007/s00125-011-2283-5; PMID: 21882062
  • Petri A, Ahnfelt-Rønne J, Frederiksen KS, Edwards DG, Madsen D, Serup P, et al. The effect of neurogenin3 deficiency on pancreatic gene expression in embryonic mice. J Mol Endocrinol 2006; 37:301 - 16; http://dx.doi.org/10.1677/jme.1.02096; PMID: 17032746
  • Brunicardi FC, Stagner J, Bonner-Weir S, Wayland H, Kleinman R, Livingston E, et al, Long Beach Veterans Administration Regional Medical Education Center Symposium. Microcirculation of the islets of Langerhans. Diabetes 1996; 45:385 - 92; PMID: 8603757
  • Jain R, Lammert E. Cell-cell interactions in the endocrine pancreas. Diabetes Obes Metab 2009; 11:Suppl 4 159 - 67; http://dx.doi.org/10.1111/j.1463-1326.2009.01102.x; PMID: 19817798
  • Unger RH, Orci L. Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci U S A 2010; 107:16009 - 12; http://dx.doi.org/10.1073/pnas.1006639107; PMID: 20798346
  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 2006; 103:2334 - 9; http://dx.doi.org/10.1073/pnas.0510790103; PMID: 16461897
  • Steiner DJ, Kim A, Miller K, Hara M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2010; 2:135 - 45; http://dx.doi.org/10.4161/isl.2.3.11815; PMID: 20657742
  • Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther 2011; 11:189 - 97; http://dx.doi.org/10.1517/14712598.2011.546338; PMID: 21219236
  • Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20:1915 - 24; http://dx.doi.org/10.1038/sj.leu.2404357; PMID: 16900209
  • Liu Z, Habener JF. Stromal cell-derived factor-1 promotes survival of pancreatic beta cells by the stabilisation of beta-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia 2009; 52:1589 - 98; http://dx.doi.org/10.1007/s00125-009-1384-x; PMID: 19468708
  • Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 2011; 17:1481 - 9; http://dx.doi.org/10.1038/nm.2513; PMID: 22037645
  • Liang XD, Guo YY, Sun M, Ding Y, Wang N, Yuan L, et al. Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic α-cells. World J Gastroenterol 2011; 17:2812 - 20; PMID: 21734788
  • Chen S, Shimoda M, Chen J, Matsumoto S, Grayburn PA. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle 2012; 11:695 - 705; http://dx.doi.org/10.4161/cc.11.4.19120; PMID: 22373529
  • Wideman RD, Yu IL, Webber TD, Verchere CB, Johnson JD, Cheung AT, et al. Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1). Proc Natl Acad Sci U S A 2006; 103:13468 - 73; http://dx.doi.org/10.1073/pnas.0600655103; PMID: 16938896
  • Gosmain Y, Cheyssac C, Heddad Masson M, Dibner C, Philippe J. Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in α-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab 2011; 13:Suppl 1 31 - 8; http://dx.doi.org/10.1111/j.1463-1326.2011.01445.x; PMID: 21824254
  • Artner I, Le Lay J, Hang Y, Elghazi L, Schisler JC, Henderson E, et al. MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 2006; 55:297 - 304; http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0946; PMID: 16443760
  • Smith SB, Gasa R, Watada H, Wang J, Griffen SC, German MS. Neurogenin3 and hepatic nuclear factor 1 cooperate in activating pancreatic expression of Pax4. J Biol Chem 2003; 278:38254 - 9; http://dx.doi.org/10.1074/jbc.M302229200; PMID: 12837760
  • Russ HA, Bar Y, Ravassard P, Efrat S. In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes 2008; 57:1575 - 83; http://dx.doi.org/10.2337/db07-1283; PMID: 18316362
  • Russ HA, Ravassard P, Kerr-Conte J, Pattou F, Efrat S. Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells. PLoS One 2009; 4:e6417; http://dx.doi.org/10.1371/journal.pone.0006417; PMID: 19641613
  • Russ HA, Sintov E, Anker-Kitai L, Friedman O, Lenz A, Toren G, et al. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One 2011; 6:e25566; http://dx.doi.org/10.1371/journal.pone.0025566; PMID: 21984932
  • Hanley S, Rosenberg L. Islet-derived progenitors as a source of in vitro islet regeneration. Methods Mol Biol 2009; 482:371 - 85; http://dx.doi.org/10.1007/978-1-59745-060-7_23; PMID: 19089368
  • Joglekar MV, Hardikar AA. Epithelial-to-mesenchymal transition in pancreatic islet beta cells. Cell Cycle 2010; 9:4077 - 9; http://dx.doi.org/10.4161/cc.9.20.13590; PMID: 20948307
  • Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 2003; 100:998 - 1003; http://dx.doi.org/10.1073/pnas.0237371100; PMID: 12525695
  • Wang J, Elghazi L, Parker SE, Kizilocak H, Asano M, Sussel L, et al. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol 2004; 266:178 - 89; http://dx.doi.org/10.1016/j.ydbio.2003.10.018; PMID: 14729487
  • Lin HT, Kao CL, Lee KH, Chang YL, Chiou SH, Tsai FT, et al. Enhancement of insulin-producing cell differentiation from embryonic stem cells using pax4-nucleofection method. World J Gastroenterol 2007; 13:1672 - 9; PMID: 17461469
  • Liew CG, Shah NN, Briston SJ, Shepherd RM, Khoo CP, Dunne MJ, et al. PAX4 enhances beta-cell differentiation of human embryonic stem cells. PLoS One 2008; 3:e1783; http://dx.doi.org/10.1371/journal.pone.0001783; PMID: 18335054
  • Brink C, Gruss P. DNA sequence motifs conserved in endocrine promoters are essential for Pax4 expression. Dev Dyn 2003; 228:617 - 22; http://dx.doi.org/10.1002/dvdy.10405; PMID: 14648838

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.