606
Views
10
CrossRef citations to date
0
Altmetric
Review

A computational systems analysis of factors regulating α cell glucagon secretion

&
Pages 262-283 | Published online: 01 Jul 2012

References

  • Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007; 28:84 - 116; http://dx.doi.org/10.1210/er.2006-0007; PMID: 17261637
  • Rorsman P, Salehi SA, Abdulkader F, Braun M, MacDonald PEK. K(ATP)-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 2008; 19:277 - 84; http://dx.doi.org/10.1016/j.tem.2008.07.003; PMID: 18771934
  • Walker JN, Ramracheya R, Zhang Q, Johnson PR, Braun M, Rorsman P. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both?. Diabetes Obes Metab 2011; 13:Suppl 1 95 - 105; http://dx.doi.org/10.1111/j.1463-1326.2011.01450.x; PMID: 21824262
  • Unger RH, Orci L. Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci U S A 2010; 107:16009 - 12; http://dx.doi.org/10.1073/pnas.1006639107; PMID: 20798346
  • Quesada I, Tudurí E, Ripoll C, Nadal A. Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol 2008; 199:5 - 19; http://dx.doi.org/10.1677/JOE-08-0290; PMID: 18669612
  • Cryer PE. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 2012; 153:1039 - 48; http://dx.doi.org/10.1210/en.2011-1499; PMID: 22166985
  • Heimberg H, De Vos A, Moens K, Quartier E, Bouwens L, Pipeleers D, et al. The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells. Proc Natl Acad Sci U S A 1996; 93:7036 - 41; http://dx.doi.org/10.1073/pnas.93.14.7036; PMID: 8692940
  • Ramracheya R, Ward C, Shigeto M, Walker JN, Amisten S, Zhang Q, et al. Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 2010; 59:2198 - 208; http://dx.doi.org/10.2337/db09-1505; PMID: 20547976
  • Ravier MA, Rutter GA. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 2005; 54:1789 - 97; http://dx.doi.org/10.2337/diabetes.54.6.1789; PMID: 15919801
  • Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol 2003; 5:330 - 5; http://dx.doi.org/10.1038/ncb951; PMID: 12640462
  • Barg S, Galvanovskis J, Göpel SO, Rorsman P, Eliasson L. Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 2000; 49:1500 - 10; http://dx.doi.org/10.2337/diabetes.49.9.1500; PMID: 10969834
  • Manning Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB. Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 2006; 147:4655 - 63; http://dx.doi.org/10.1210/en.2006-0424; PMID: 16857746
  • Fridlyand LE, Harbeck MC, Roe MW, Philipson LH. Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach. Am J Physiol Cell Physiol 2007; 293:C1924 - 33; http://dx.doi.org/10.1152/ajpcell.00555.2006; PMID: 17928534
  • Fridlyand LE, Jacobson DA, Kuznetsov A, Philipson LH. A model of action potentials and fast Ca2+ dynamics in pancreatic beta-cells. Biophys J 2009; 96:3126 - 39; http://dx.doi.org/10.1016/j.bpj.2009.01.029; PMID: 19383458
  • Fridlyand LE, Philipson LH. Glucose sensing in the pancreatic beta cell: a computational systems analysis. Theor Biol Med Model 2010; 7:15; http://dx.doi.org/10.1186/1742-4682-7-15; PMID: 20497556
  • Fridlyand LE, Philipson LH. Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. Prog Biophys Mol Biol 2011; 107:293 - 303; http://dx.doi.org/10.1016/j.pbiomolbio.2011.09.001; PMID: 21920379
  • Fridlyand LE, Tamarina N, Philipson LH. Modeling of Ca2+ flux in pancreatic beta-cells: role of the plasma membrane and intracellular stores. Am J Physiol Endocrinol Metab 2003; 285:E138 - 54; PMID: 12644446
  • Fridlyand LE, Tamarina N, Philipson LH. Bursting and calcium oscillations in pancreatic beta-cells: specific pacemakers for specific mechanisms. Am J Physiol Endocrinol Metab 2010; 299:E517 - 32; http://dx.doi.org/10.1152/ajpendo.00177.2010; PMID: 20628025
  • Dunning BE, Gerich JE. The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 2007; 28:253 - 83; http://dx.doi.org/10.1210/er.2006-0026; PMID: 17409288
  • Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 2012; 122:4 - 12; http://dx.doi.org/10.1172/JCI60016; PMID: 22214853
  • Gorus FK, Malaisse WJ, Pipeleers DG. Differences in glucose handling by pancreatic A- and B-cells. J Biol Chem 1984; 259:1196 - 200; PMID: 6141162
  • Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem 1995; 270:8971 - 5; http://dx.doi.org/10.1074/jbc.270.15.8971; PMID: 7721807
  • Le Marchand SJ, Piston DW. Glucose suppression of glucagon secretion: metabolic and calcium responses from alpha-cells in intact mouse pancreatic islets. J Biol Chem 2010; 285:14389 - 98; http://dx.doi.org/10.1074/jbc.M109.069195; PMID: 20231269
  • Gromada J, Ma X, Høy M, Bokvist K, Salehi A, Berggren PO, et al. ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- mouse alpha-cells. Diabetes 2004; 53:Suppl 3 S181 - 9; http://dx.doi.org/10.2337/diabetes.53.suppl_3.S181; PMID: 15561909
  • Fridlyand LE, Phillipson LH. Mechanisms of glucose sensing in the pancreatic β-cell: A computational systems-based analysis. Islets 2011; 3:224 - 30; http://dx.doi.org/10.4161/isl.3.5.16409; PMID: 21814042
  • Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J Biol Chem 1998; 273:33905 - 8; http://dx.doi.org/10.1074/jbc.273.51.33905; PMID: 9852040
  • Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB, Gromada J. Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells. Endocrinology 2005; 146:4861 - 70; http://dx.doi.org/10.1210/en.2005-0800; PMID: 16081632
  • Rorsman P, Berggren PO, Bokvist K, Ericson H, Möhler H, Ostenson CG, et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 1989; 341:233 - 6; http://dx.doi.org/10.1038/341233a0; PMID: 2550826
  • Göpel S, Zhang Q, Eliasson L, Ma XS, Galvanovskis J, Kanno T, et al. Capacitance measurements of exocytosis in mouse pancreatic alpha-, beta- and delta-cells within intact islets of Langerhans. J Physiol 2004; 556:711 - 26; http://dx.doi.org/10.1113/jphysiol.2003.059675; PMID: 14966302
  • MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, et al. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 2007; 5:e143; http://dx.doi.org/10.1371/journal.pbio.0050143; PMID: 17503968
  • Rorsman P, Braun M, Zhang Q. Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 2012; 51:300 - 8; http://dx.doi.org/10.1016/j.ceca.2011.11.006; PMID: 22177710
  • Sherman A, Keizer J, Rinzel J. Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density. Biophys J 1990; 58:985 - 95; http://dx.doi.org/10.1016/S0006-3495(90)82443-7; PMID: 2174274
  • Rorsman P, Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003; 46:1029 - 45; http://dx.doi.org/10.1007/s00125-003-1153-1; PMID: 12879249
  • Andersson SA, Pedersen MG, Vikman J, Eliasson L. Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell. Pflugers Arch 2011; 462:443 - 54; http://dx.doi.org/10.1007/s00424-011-0979-5; PMID: 21643653
  • Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem 1994; 269:4895 - 902; PMID: 8106462
  • Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 1997; 272:18572 - 9; http://dx.doi.org/10.1074/jbc.272.30.18572; PMID: 9228023
  • Diao J, Allister EM, Koshkin V, Lee SC, Bhattacharjee A, Tang C, et al. UCP2 is highly expressed in pancreatic alpha-cells and influences secretion and survival. Proc Natl Acad Sci U S A 2008; 105:12057 - 62; http://dx.doi.org/10.1073/pnas.0710434105; PMID: 18701716
  • Ostenson CG, Agren A, Brolin SE, Petersson B. Adenine nucleotide concentrations in A2-cell rich and normal pancreatic islets of the guinea pig. Diabete Metab 1980; 6:5 - 11; PMID: 6989662
  • De Marinis YZ, Salehi A, Ward CE, Zhang Q, Abdulkader F, Bengtsson M, et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab 2010; 11:543 - 53; http://dx.doi.org/10.1016/j.cmet.2010.04.007; PMID: 20519125
  • Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renström E, et al. Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 1997; 110:217 - 28; http://dx.doi.org/10.1085/jgp.110.3.217; PMID: 9276750
  • Quoix N, Cheng-Xue R, Mattart L, Zeinoun Z, Guiot Y, Beauvois MC, et al. Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse alpha-cells. Diabetes 2009; 58:412 - 21; http://dx.doi.org/10.2337/db07-1298; PMID: 19008345
  • Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, et al. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 2010; 59:1694 - 701; http://dx.doi.org/10.2337/db09-0797; PMID: 20413510
  • Salehi A, Vieira E, Gylfe E. Paradoxical stimulation of glucagon secretion by high glucose concentrations. Diabetes 2006; 55:2318 - 23; http://dx.doi.org/10.2337/db06-0080; PMID: 16873696
  • Göpel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P. Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 2000; 528:509 - 20; http://dx.doi.org/10.1111/j.1469-7793.2000.00509.x; PMID: 11060128
  • Hirose H, Maruyama H, Kido K, Ito K, Koyama K, Tashiro Y, et al. Alpha- and beta-cell function in obese Zucker (fa/fa) rats: a study with the isolated perfused pancreas. Clin Sci (Lond) 1994; 86:311 - 6; PMID: 8156742
  • Spigelman AF, Dai X, MacDonald PE. Voltage-dependent K(+) channels are positive regulators of alpha cell action potential generation and glucagon secretion in mice and humans. Diabetologia 2010; 53:1917 - 26; http://dx.doi.org/10.1007/s00125-010-1759-z; PMID: 20446079
  • Gromada J, Høy M, Olsen HL, Gotfredsen CF, Buschard K, Rorsman P, et al. Gi2 proteins couple somatostatin receptors to low-conductance K+ channels in rat pancreatic alpha-cells. Pflugers Arch 2001; 442:19 - 26; http://dx.doi.org/10.1007/s004240000474; PMID: 11374064
  • Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y. Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett 1999; 444:265 - 9; http://dx.doi.org/10.1016/S0014-5793(99)00076-9; PMID: 10050772
  • Hauge-Evans AC, King AJ, Carmignac D, Richardson CC, Robinson IC, Low MJ, et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 2009; 58:403 - 11; http://dx.doi.org/10.2337/db08-0792; PMID: 18984743
  • Rorsman P, Eliasson L, Kanno T, Zhang Q, Gopel S. Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Prog Biophys Mol Biol 2011; 107:224 - 35; http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.009; PMID: 21762719
  • Gall D, Gromada J, Susa I, Rorsman P, Herchuelz A, Bokvist K. Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells. Biophys J 1999; 76:2018 - 28; http://dx.doi.org/10.1016/S0006-3495(99)77359-5; PMID: 10096898
  • Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc Natl Acad Sci U S A 2010; 107:5208 - 13; http://dx.doi.org/10.1073/pnas.0913107107; PMID: 20194741
  • Jacobson DA, Philipson LH. TRP channels of the pancreatic beta cell. Handb Exp Pharmacol 2007:409-24.
  • Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 2005; 54:1808 - 15; http://dx.doi.org/10.2337/diabetes.54.6.1808; PMID: 15919803
  • Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, et al. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 2004; 53:1038 - 45; http://dx.doi.org/10.2337/diabetes.53.4.1038; PMID: 15047619
  • Taneera J, Jin Z, Jin Y, Muhammed SJ, Zhang E, Lang S, et al. γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia 2012; 55:1985 - 94; http://dx.doi.org/10.1007/s00125-012-2548-7; PMID: 22538358
  • Stein V, Nicoll RA. GABA generates excitement. Neuron 2003; 37:375 - 8; http://dx.doi.org/10.1016/S0896-6273(03)00056-4; PMID: 12575946
  • Johansson H, Gylfe E, Hellman B. The actions of arginine and glucose on glucagon secretion are mediated by opposite effects on cytoplasmic Ca2+. Biochem Biophys Res Commun 1987; 147:309 - 14; http://dx.doi.org/10.1016/S0006-291X(87)80122-5; PMID: 3307774
  • González-Vélez V, Dupont G, Gil A, González A, Quesada I. Model for glucagon secretion by pancreatic α-cells. PLoS One 2012; 7:e32282; http://dx.doi.org/10.1371/journal.pone.0032282; PMID: 22412861
  • Pipeleers DG, Schuit FC. in't Veld PA, Maes E, Hooghe-Peters EL, Van de Winkel M, et al. Interplay of nutrients and hormones in the regulation of insulin release. Endocrinology 1985; 117:824-33.
  • Bokvist K, Olsen HL, Høy M, Gotfredsen CF, Holmes WF, Buschard K, et al. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch 1999; 438:428 - 36; http://dx.doi.org/10.1007/s004240051058; PMID: 10519134
  • Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD, et al. Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 2010; 59:1202 - 10; http://dx.doi.org/10.2337/db09-1177; PMID: 20185817
  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 2006; 103:2334 - 9; http://dx.doi.org/10.1073/pnas.0510790103; PMID: 16461897
  • Robertson RP, Zhou H, Slucca M. A role for zinc in pancreatic islet β-cell cross-talk with the α-cell during hypoglycaemia. Diabetes Obes Metab 2011; 13:Suppl 1 106 - 11; http://dx.doi.org/10.1111/j.1463-1326.2011.01448.x; PMID: 21824263
  • Ashcroft F, Rorsman P. Type 2 diabetes mellitus: not quite exciting enough?. Hum Mol Genet 2004; 13:Spec No 1 R21 - 31; http://dx.doi.org/10.1093/hmg/ddh066; PMID: 14734629
  • Banarer S, McGregor VP, Cryer PE. Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response. Diabetes 2002; 51:958 - 65; http://dx.doi.org/10.2337/diabetes.51.4.958; PMID: 11916913
  • Greenbaum CJ, Havel PJ, Taborsky GJ Jr., Klaff LJ. Intra-islet insulin permits glucose to directly suppress pancreatic A cell function. J Clin Invest 1991; 88:767 - 73; http://dx.doi.org/10.1172/JCI115375; PMID: 1679440
  • Meier JJ, Ueberberg S, Korbas S, Schneider S. Diminished glucagon suppression after β-cell reduction is due to impaired α-cell function rather than an expansion of α-cell mass. Am J Physiol Endocrinol Metab 2011; 300:E717 - 23; http://dx.doi.org/10.1152/ajpendo.00315.2010; PMID: 21285404
  • Bansal P, Wang Q. Insulin as a physiological modulator of glucagon secretion. Am J Physiol Endocrinol Metab 2008; 295:E751 - 61; http://dx.doi.org/10.1152/ajpendo.90295.2008; PMID: 18647881
  • Leung YM, Ahmed I, Sheu L, Gao X, Hara M, Tsushima RG, et al. Insulin regulates islet alpha-cell function by reducing KATP channel sensitivity to adenosine 5′-triphosphate inhibition. Endocrinology 2006; 147:2155 - 62; http://dx.doi.org/10.1210/en.2005-1249; PMID: 16455778
  • Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, et al. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 2006; 3:47 - 58; http://dx.doi.org/10.1016/j.cmet.2005.11.015; PMID: 16399504
  • Slucca M, Harmon JS, Oseid EA, Bryan J, Robertson RP. ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 2010; 59:128 - 34; http://dx.doi.org/10.2337/db09-1098; PMID: 19808893
  • Tudurí E, Marroquí L, Soriano S, Ropero AB, Batista TM, Piquer S, et al. Inhibitory effects of leptin on pancreatic alpha-cell function. Diabetes 2009; 58:1616 - 24; http://dx.doi.org/10.2337/db08-1787; PMID: 19401420
  • Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF. Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 1997; 46:1087 - 93; http://dx.doi.org/10.2337/diabetes.46.6.1087; PMID: 9166685
  • Ning K, Miller LC, Laidlaw HA, Watterson KR, Gallagher J, Sutherland C, et al. Leptin-dependent phosphorylation of PTEN mediates actin restructuring and activation of ATP-sensitive K+ channels. J Biol Chem 2009; 284:9331 - 40; http://dx.doi.org/10.1074/jbc.M806774200; PMID: 19208634
  • de Heer J, Rasmussen C, Coy DH, Holst JJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 2008; 51:2263 - 70; http://dx.doi.org/10.1007/s00125-008-1149-y; PMID: 18795252
  • Holst JJ, Christensen M, Lund A, de Heer J, Svendsen B, Kielgast U, et al. Regulation of glucagon secretion by incretins. Diabetes Obes Metab 2011; 13:Suppl 1 89 - 94; http://dx.doi.org/10.1111/j.1463-1326.2011.01452.x; PMID: 21824261
  • Leech CA, Dzhura I, Chepurny OG, Kang G, Schwede F, Genieser HG, et al. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Prog Biophys Mol Biol 2011; 107:236 - 47; http://dx.doi.org/10.1016/j.pbiomolbio.2011.07.005; PMID: 21782840
  • Seino S, Takahashi H, Fujimoto W, Shibasaki T. Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes Metab 2009; 11:Suppl 4 180 - 8; http://dx.doi.org/10.1111/j.1463-1326.2009.01108.x; PMID: 19817800
  • Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P. Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 2008; 586:3313 - 24; http://dx.doi.org/10.1113/jphysiol.2008.155317; PMID: 18511483
  • Beauvois MC, Merezak C, Jonas JC, Ravier MA, Henquin JC, Gilon P. Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am J Physiol Cell Physiol 2006; 290:C1503 - 11; http://dx.doi.org/10.1152/ajpcell.00400.2005; PMID: 16381799
  • Martín F, Soria B. Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. Cell Calcium 1996; 20:409 - 14; http://dx.doi.org/10.1016/S0143-4160(96)90003-2; PMID: 8955555
  • Göpel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renström E, et al. Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 1999; 114:759 - 70; http://dx.doi.org/10.1085/jgp.114.6.759; PMID: 10578013
  • Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK, et al. Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+ -induced glucagon exocytosis in pancreas. J Physiol 2009; 587:1169 - 78; http://dx.doi.org/10.1113/jphysiol.2008.168005; PMID: 19171650
  • Pedersen MG, Cortese G, Eliasson L. Mathematical modeling and statistical analysis of calcium-regulated insulin granule exocytosis in β-cells from mice and humans. Prog Biophys Mol Biol 2011; 107:257 - 64; http://dx.doi.org/10.1016/j.pbiomolbio.2011.07.012; PMID: 21839108
  • De Marinis YZ, Zhang E, Amisten S, Taneera J, Renström E, Rorsman P, et al. Enhancement of glucagon secretion in mouse and human pancreatic alpha cells by protein kinase C (PKC) involves intracellular trafficking of PKCalpha and PKCdelta. Diabetologia 2010; 53:717 - 29; http://dx.doi.org/10.1007/s00125-009-1635-x; PMID: 20020096
  • Tian G, Sandler S, Gylfe E, Tengholm A. Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets. Diabetes 2011; 60:1535 - 43; http://dx.doi.org/10.2337/db10-1087; PMID: 21444924
  • Bertram R, Sherman A, Satin LS. Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Adv Exp Med Biol 2010; 654:261 - 79; http://dx.doi.org/10.1007/978-90-481-3271-3_12; PMID: 20217502
  • Diderichsen PM, Göpel SO. Modelling the electrical activity of pancreatic alpha-cells based on experimental data from intact mouse islets. J Biol Phys 2006; 32:209 - 29; http://dx.doi.org/10.1007/s10867-006-9013-0; PMID: 19669464
  • Gonzalez-Velez V, Gil A, Quesada I. Minimal state models for ionic channels involved in glucagon secretion. Math Biosci Eng 2010; 7:793 - 807; http://dx.doi.org/10.3934/mbe.2010.7.793; PMID: 21077708
  • Hjortoe GM, Hagel GM, Terry BR, Thastrup O, Arkhammar PO. Functional identification and monitoring of individual alpha and beta cells in cultured mouse islets of Langerhans. Acta Diabetol 2004; 41:185 - 93; http://dx.doi.org/10.1007/s00592-004-0164-9; PMID: 15660202
  • Braaten JT, Faloona GR, Unger RH. The effect of insulin on the alpha-cell response to hyperglycemia in long-standing alloxan diabetes. J Clin Invest 1974; 53:1017 - 21; http://dx.doi.org/10.1172/JCI107638; PMID: 4592597
  • Meier JJ, Kjems LL, Veldhuis JD, Lefèbvre P, Butler PC. Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis. Diabetes 2006; 55:1051 - 6; http://dx.doi.org/10.2337/diabetes.55.04.06.db05-1449; PMID: 16567528
  • Zhou H, Tran PO, Yang S, Zhang T, LeRoy E, Oseid E, et al. Regulation of alpha-cell function by the beta-cell during hypoglycemia in Wistar rats: the “switch-off” hypothesis. Diabetes 2004; 53:1482 - 7; http://dx.doi.org/10.2337/diabetes.53.6.1482; PMID: 15161752
  • Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, et al. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 2008; 57:1618 - 28; http://dx.doi.org/10.2337/db07-0991; PMID: 18390794
  • Huang YC, Rupnik M, Gaisano HY. Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J Physiol 2011; 589:395 - 408; http://dx.doi.org/10.1113/jphysiol.2010.200345; PMID: 21078586
  • Quesada I, Nadal A, Soria B. Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes 1999; 48:2390 - 7; http://dx.doi.org/10.2337/diabetes.48.12.2390; PMID: 10580428
  • Henquin JC, Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 2011; 54:1720 - 5; http://dx.doi.org/10.1007/s00125-011-2118-4; PMID: 21465328
  • Quesada I, Todorova MG, Alonso-Magdalena P, Beltrá M, Carneiro EM, Martin F, et al. Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 2006; 55:2463 - 9; http://dx.doi.org/10.2337/db06-0272; PMID: 16936194
  • Cooperberg BA, Cryer PE. Insulin reciprocally regulates glucagon secretion in humans. Diabetes 2010; 59:2936 - 40; http://dx.doi.org/10.2337/db10-0728; PMID: 20811038
  • Shah P, Basu A, Basu R, Rizza R. Impact of lack of suppression of glucagon on glucose tolerance in humans. Am J Physiol 1999; 277:E283 - 90; PMID: 10444424
  • Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 1970; 49:837 - 48; http://dx.doi.org/10.1172/JCI106297; PMID: 4986215
  • Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 1987; 36:274 - 83; http://dx.doi.org/10.2337/diabetes.36.3.274; PMID: 2879757
  • Cervera A, Wajcberg E, Sriwijitkamol A, Fernandez M, Zuo P, Triplitt C, et al. Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab 2008; 294:E846 - 52; http://dx.doi.org/10.1152/ajpendo.00030.2008; PMID: 18334612
  • Cooperberg BA, Cryer PE. Beta-cell-mediated signaling predominates over direct alpha-cell signaling in the regulation of glucagon secretion in humans. Diabetes Care 2009; 32:2275 - 80; http://dx.doi.org/10.2337/dc09-0798; PMID: 19729529
  • Müller WA, Faloona GR, Unger RH. Hyperglucagonemia in diabetic ketoacidosis. Its prevalence and significance. Am J Med 1973; 54:52 - 7; PMID: 4629972
  • Raskin P, Unger RH. Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N Engl J Med 1978; 299:433 - 6; http://dx.doi.org/10.1056/NEJM197808312990901; PMID: 683275
  • Yu X, Park BH, Wang MY, Wang ZV, Unger RH. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci U S A 2008; 105:14070 - 5; http://dx.doi.org/10.1073/pnas.0806993105; PMID: 18779578
  • Nyholm B, Orskov L, Hove KY, Gravholt CH, Møller N, Alberti KG, et al. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 1999; 48:935 - 41; http://dx.doi.org/10.1016/S0026-0495(99)90232-9; PMID: 10421239
  • Bohannon NV, Lorenzi M, Grodsky GM, Karam JH. Stimulatory effects of tolbutamide infusion on plasma glucagon in insulin-dependent diabetic subjects. J Clin Endocrinol Metab 1982; 54:459 - 62; http://dx.doi.org/10.1210/jcem-54-2-459; PMID: 7054228
  • Østergård T, Degn KB, Gall MA, Carr RD, Veldhuis JD, Thomsen MK, et al. The insulin secretagogues glibenclamide and repaglinide do not influence growth hormone secretion in humans but stimulate glucagon secretion during profound insulin deficiency. J Clin Endocrinol Metab 2004; 89:297 - 302; http://dx.doi.org/10.1210/jc.2003-031011; PMID: 14715864
  • Landstedt-Hallin L, Adamson U, Lins PE. Oral glibenclamide suppresses glucagon secretion during insulin-induced hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab 1999; 84:3140 - 5; http://dx.doi.org/10.1210/jc.84.9.3140; PMID: 10487677
  • Varanasi A, Bellini N, Rawal D, Vora M, Makdissi A, Dhindsa S, et al. Liraglutide as additional treatment for type 1 diabetes. Eur J Endocrinol 2011; 165:77 - 84; http://dx.doi.org/10.1530/EJE-11-0330; PMID: 21646283
  • Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, et al. Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic alpha cells. Evidence for two high affinity sulfonylurea receptors. J Biol Chem 1993; 268:15221 - 8; PMID: 8325894
  • Jacobson DA, Philipson LH. Ion Channels and Insulin secretion. In: Seino S, Bell G, eds. Pancreatic Beta Cell in Health and Desease. Japan: Springer, 2008:91- 110.
  • Yang SN, Berggren PO. Beta-cell CaV channel regulation in physiology and pathophysiology. Am J Physiol Endocrinol Metab 2005; 288:E16 - 28; http://dx.doi.org/10.1152/ajpendo.00042.2004; PMID: 15585596
  • Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. Adv Exp Med Biol 2010; 654:115 - 63; http://dx.doi.org/10.1007/978-90-481-3271-3_7; PMID: 20217497
  • Philipson LH. Beta-cell ion channels: keys to endodermal excitability. Horm Metab Res 1999; 31:455 - 61; http://dx.doi.org/10.1055/s-2007-978774; PMID: 10494870
  • Leung YM, Ahmed I, Sheu L, Tsushima RG, Diamant NE, Hara M, et al. Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse. Endocrinology 2005; 146:4766 - 75; http://dx.doi.org/10.1210/en.2005-0803; PMID: 16109783
  • Vignali S, Leiss V, Karl R, Hofmann F, Welling A. Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A- and B-cells. J Physiol 2006; 572:691 - 706; PMID: 16513675
  • Beeler GW, Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 1977; 268:177 - 210; PMID: 874889
  • Göpel S, Kanno T, Barg S, Galvanovskis J, Rorsman P. Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets. J Physiol 1999; 521:717 - 28; http://dx.doi.org/10.1111/j.1469-7793.1999.00717.x; PMID: 10601501
  • Rorsman P. Two types of Ca2+ currents with different sensitivities to organic Ca2+ channel antagonists in guinea pig pancreatic alpha 2 cells. J Gen Physiol 1988; 91:243 - 54; http://dx.doi.org/10.1085/jgp.91.2.243; PMID: 2453604
  • Chabwine JN, Talavera K, Verbert L, Eggermont J, Vanderwinden JM, De Smedt H, et al. Differential contribution of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons. FASEB J 2009; 23:1168 - 76; http://dx.doi.org/10.1096/fj.08-116012; PMID: 19103648
  • Hille B. Ion channels of exitable membranes. Sunderland: Sinauer Associates, Inc, 2001.