1,181
Views
16
CrossRef citations to date
0
Altmetric
Review

New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic β-cells

The involvement of the Wnt signaling pathway effector β-catenin

, &
Pages 359-365 | Published online: 01 Nov 2012

References

  • Jin T. Mechanisms underlying proglucagon gene expression. J Endocrinol 2008; 198:17 - 28; http://dx.doi.org/10.1677/JOE-08-0085; PMID: 18577568
  • Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev 1999; 20:876 - 913; http://dx.doi.org/10.1210/er.20.6.876; PMID: 10605628
  • Holst JJ, Orskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes 2004; 53:Suppl 3 S197 - 204; http://dx.doi.org/10.2337/diabetes.53.suppl_3.S197; PMID: 15561911
  • Holst JJ. Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005. Diabetologia 2006; 49:253 - 60; http://dx.doi.org/10.1007/s00125-005-0107-1; PMID: 16416146
  • Ban K, Kim KH, Cho CK, Sauvé M, Diamandis EP, Backx PH, et al. Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology 2010; 151:1520 - 31; http://dx.doi.org/10.1210/en.2009-1197; PMID: 20172966
  • Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117:2340 - 50; http://dx.doi.org/10.1161/CIRCULATIONAHA.107.739938; PMID: 18427132
  • Tomas E, Habener JF. Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol Metab 2010; 21:59 - 67; http://dx.doi.org/10.1016/j.tem.2009.11.007; PMID: 20018525
  • Tomas E, Stanojevic V, Habener JF. GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul Pept 2011; 167:177 - 84; http://dx.doi.org/10.1016/j.regpep.2011.01.003; PMID: 21256872
  • Tomas E, Wood JA, Stanojevic V, Habener JF. GLP-1-derived nonapeptide GLP-1(28-36)amide inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Regul Pept 2011; 169:43 - 8; http://dx.doi.org/10.1016/j.regpep.2011.04.006; PMID: 21549160
  • Shao W, Yu Z, Fantus IG, Jin T. Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic beta-cells. Cell Signal 2010; 22:1240 - 6; http://dx.doi.org/10.1016/j.cellsig.2010.04.001; PMID: 20385228
  • Ip W, Chiang YT, Jin T. The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective. Cell Biosci 2012; 2:28; http://dx.doi.org/10.1186/2045-3701-2-28; PMID: 22892353
  • Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008; 283:8723 - 35; http://dx.doi.org/10.1074/jbc.M706105200; PMID: 18216022
  • Shao W, Wang D, Chiang YT, Ip W, Zhu L, Xu F, et al. The Wnt Signaling Pathway Effector TCF7L2 Controls Gut and Brain Proglucagon Gene Expression and Glucose Homeostasis. Diabetes 2012; In press. http://dx.doi.org/10.2337/db12-0365; PMID: 22966074
  • Jin T, Liu L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 2008; 22:2383 - 92; http://dx.doi.org/10.1210/me.2008-0135; PMID: 18599616
  • Jin T. The WNT signalling pathway and diabetes mellitus. Diabetologia 2008; 51:1771 - 80; http://dx.doi.org/10.1007/s00125-008-1084-y; PMID: 18696049
  • Grant SF. Understanding the elusive mechanism of action of TCF7L2 in metabolism. Diabetes 2012; 61:2657 - 8; http://dx.doi.org/10.2337/db12-0891; PMID: 23093653
  • Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359:2220 - 32; http://dx.doi.org/10.1056/NEJMoa0801869; PMID: 19020324
  • Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev 2012; 33:187 - 215; http://dx.doi.org/10.1210/er.2011-1052; PMID: 22323472
  • Hansotia T, Drucker DJ. GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice. Regul Pept 2005; 128:125 - 34; http://dx.doi.org/10.1016/j.regpep.2004.07.019; PMID: 15780432
  • Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A 1996; 93:7911 - 6; http://dx.doi.org/10.1073/pnas.93.15.7911; PMID: 8755576
  • Thyssen S, Arany E, Hill DJ. Ontogeny of regeneration of beta-cells in the neonatal rat after treatment with streptozotocin. Endocrinology 2006; 147:2346 - 56; http://dx.doi.org/10.1210/en.2005-0396; PMID: 16484329
  • Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Göke R, Göke B, Thole H, et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept 1995; 58:149 - 56; http://dx.doi.org/10.1016/0167-0115(95)00063-H; PMID: 8577927
  • Plamboeck A, Holst JJ, Carr RD, Deacon CF. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 2005; 48:1882 - 90; http://dx.doi.org/10.1007/s00125-005-1847-7; PMID: 16025254
  • Davidson EP, Coppey LJ, Dake B, Yorek MA. Effect of Treatment of Sprague Dawley Rats with AVE7688, Enalapril, or Candoxatril on Diet-Induced Obesity. J Obes 2011; 2011:9 pages; http://dx.doi.org/10.1155/2011/686952; PMID: 20847891
  • Liu Z, Stanojevic V, Brindamour LJ, Habener JF. GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic β-cells from glucolipotoxicity. J Endocrinol 2012; 213:143 - 54; http://dx.doi.org/10.1530/JOE-11-0328; PMID: 22414687
  • MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002; 51:Suppl 3 S434 - 42; http://dx.doi.org/10.2337/diabetes.51.2007.S434; PMID: 12475787
  • Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3:153 - 65; http://dx.doi.org/10.1016/j.cmet.2006.01.004; PMID: 16517403
  • Holz GG 4th, Kühtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993; 361:362 - 5; http://dx.doi.org/10.1038/361362a0; PMID: 8381211
  • Brubaker PL, Drucker DJ. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004; 145:2653 - 9; http://dx.doi.org/10.1210/en.2004-0015; PMID: 15044356
  • Kwan EP, Gao X, Leung YM, Gaisano HY. Activation of exchange protein directly activated by cyclic adenosine monophosphate and protein kinase A regulate common and distinct steps in promoting plasma membrane exocytic and granule-to-granule fusions in rat islet beta cells. Pancreas 2007; 35:e45 - 54; http://dx.doi.org/10.1097/mpa.0b013e318073d1c9; PMID: 17895835
  • Takeda Y, Amano A, Noma A, Nakamura Y, Fujimoto S, Inagaki N. Systems analysis of GLP-1 receptor signaling in pancreatic β-cells. Am J Physiol Cell Physiol 2011; 301:C792 - 803; http://dx.doi.org/10.1152/ajpcell.00057.2011; PMID: 21734192
  • Seino S, Takahashi H, Fujimoto W, Shibasaki T. Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes Metab 2009; 11:Suppl 4 180 - 8; http://dx.doi.org/10.1111/j.1463-1326.2009.01108.x; PMID: 19817800
  • Holz GG. New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells. Horm Metab Res 2004; 36:787 - 94; http://dx.doi.org/10.1055/s-2004-826165; PMID: 15655710
  • MacDonald PE, Salapatek AM, Wheeler MB. Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K(+) currents in beta-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 2002; 51:Suppl 3 S443 - 7; http://dx.doi.org/10.2337/diabetes.51.2007.S443; PMID: 12475788
  • Egan JM, Meneilly GS, Habener JF, Elahi D. Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab 2002; 87:3768 - 73; http://dx.doi.org/10.1210/jc.87.8.3768; PMID: 12161508
  • Redondo A, Trigo MV, Acitores A, Valverde I, Villanueva-Peñacarrillo ML. Cell signalling of the GLP-1 action in rat liver. Mol Cell Endocrinol 2003; 204:43 - 50; http://dx.doi.org/10.1016/S0303-7207(03)00146-1; PMID: 12850280
  • Vahl TP, Paty BW, Fuller BD, Prigeon RL, D’Alessio DA. Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1- (9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 2003; 88:1772 - 9; http://dx.doi.org/10.1210/jc.2002-021479; PMID: 12679472
  • Elahi D, Egan JM, Shannon RP, Meneilly GS, Khatri A, Habener JF, et al. GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a glucoregulatory peptide. Obesity (Silver Spring) 2008; 16:1501 - 9; http://dx.doi.org/10.1038/oby.2008.229; PMID: 18421270
  • Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004; 110:955 - 61; http://dx.doi.org/10.1161/01.CIR.0000139339.85840.DD; PMID: 15313949
  • Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes 2012; 61:888 - 96; http://dx.doi.org/10.2337/db11-1073; PMID: 22357961
  • Spindel ON, World C, Berk BC. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal 2012; 16:587 - 96; http://dx.doi.org/10.1089/ars.2011.4137; PMID: 21929372
  • Chen J, Couto FM, Minn AH, Shalev A. Exenatide inhibits beta-cell apoptosis by decreasing thioredoxin-interacting protein. Biochem Biophys Res Commun 2006; 346:1067 - 74; http://dx.doi.org/10.1016/j.bbrc.2006.06.027; PMID: 16782054
  • Shalev A. Lack of TXNIP protects beta-cells against glucotoxicity. Biochem Soc Trans 2008; 36:963 - 5; http://dx.doi.org/10.1042/BST0360963; PMID: 18793170
  • Masson E, Koren S, Razik F, Goldberg H, Kwan EP, Sheu L, et al. High beta-cell mass prevents streptozotocin-induced diabetes in thioredoxin-interacting protein-deficient mice. Am J Physiol Endocrinol Metab 2009; 296:E1251 - 61; http://dx.doi.org/10.1152/ajpendo.90619.2008; PMID: 19223654
  • Corbett JA. Thioredoxin-interacting protein is killing my beta-cells!. Diabetes 2008; 57:797 - 8; http://dx.doi.org/10.2337/db08-0055; PMID: 18375442
  • Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J 2008; 22:3581 - 94; http://dx.doi.org/10.1096/fj.08-111690; PMID: 18552236
  • Jin T, George Fantus I, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal 2008; 20:1697 - 704; http://dx.doi.org/10.1016/j.cellsig.2008.04.014; PMID: 18555664
  • Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6:1664 - 8; http://dx.doi.org/10.1016/S0960-9822(02)70790-2; PMID: 8994831
  • Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T. Transcriptional activation of the proglucagon gene by lithium and beta-catenin in intestinal endocrine L cells. J Biol Chem 2003; 278:1380 - 7; http://dx.doi.org/10.1074/jbc.M206006200; PMID: 12421827
  • Chiang YA, Shao W, Xu XX, Chernoff J, Jin T. P21-Activated Protein Kinase 1 (Pak1) Mediates the Cross Talk between Insulin and beta-Catenin on Proglucagon Gene Expression and Its Ablation Affects Glucose Homeostasis in Male C57BL/6 Mice. Endocrinology 2013; 154:77 - 88; http://dx.doi.org/10.1210/en.2012-1781; PMID: 23183186
  • Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 2005; 280:1457 - 64; http://dx.doi.org/10.1074/jbc.M411487200; PMID: 15525634
  • Fürstenau U, Schwaninger M, Blume R, Jendrusch EM, Knepel W. Characterization of a novel calcium response element in the glucagon gene. J Biol Chem 1999; 274:5851 - 60; http://dx.doi.org/10.1074/jbc.274.9.5851; PMID: 10026208
  • García-Martínez JM, Chocarro-Calvo A, Moya CM, García-Jiménez C. WNT/beta-catenin increases the production of incretins by entero-endocrine cells. Diabetologia 2009; 52:1913 - 24; http://dx.doi.org/10.1007/s00125-009-1429-1; PMID: 19582394
  • Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology 2008; 149:2341 - 51; http://dx.doi.org/10.1210/en.2007-1142; PMID: 18258680
  • Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 2005; 25:9063 - 72; http://dx.doi.org/10.1128/MCB.25.20.9063-9072.2005; PMID: 16199882
  • Zhu G, Wang Y, Huang B, Liang J, Ding Y, Xu A, et al. A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene 2012; 31:1001 - 12; http://dx.doi.org/10.1038/onc.2011.294; PMID: 21822311
  • Ip W, Shao W, Chiang YT, Jin T. The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2012; 303:E1166 - 76; http://dx.doi.org/10.1152/ajpendo.00249.2012; PMID: 22967502
  • DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 1999; 126:4557 - 68; PMID: 10498690

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.