1,576
Views
52
CrossRef citations to date
0
Altmetric
Review

STAT3 signaling in pulmonary arterial hypertension

, &
Pages 223-233 | Published online: 01 Oct 2012

References

  • Archer S, Rich S. Primary pulmonary hypertension: a vascular biology and translational research “Work in progress”. Circulation 2000; 102:2781 - 91; http://dx.doi.org/10.1161/01.CIR.102.22.2781; PMID: 11094047
  • Ahmad S. Pulmonary hypertension and right heart failure. Chest 1995; 108:1773; http://dx.doi.org/10.1378/chest.108.6.1773; PMID: 7497812
  • Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 2010; 122:156 - 63; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.911818; PMID: 20585011
  • Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010; 122:164 - 72; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.898122; PMID: 20585012
  • McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 2005; 115:1479 - 91; http://dx.doi.org/10.1172/JCI23203; PMID: 15931388
  • Voelkel NF, Cool C, Lee SD, Wright L, Geraci MW, Tuder RM. Primary pulmonary hypertension between inflammation and cancer. Chest 1998; 114:Suppl 225S - 30S; http://dx.doi.org/10.1378/chest.114.3_Supplement.225S; PMID: 9741573
  • Paulin R, Courboulin A, Barrier M, Bonnet S. From oncoproteins/tumor suppressors to microRNAs, the newest therapeutic targets for pulmonary arterial hypertension. J Mol Med (Berl). 2011.
  • Dorfmüller P, Perros F, Balabanian K, Humbert M. Inflammation in pulmonary arterial hypertension. Eur Respir J 2003; 22:358 - 63; http://dx.doi.org/10.1183/09031936.03.00038903; PMID: 12952274
  • Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, et al. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L740 - 54; PMID: 12740218
  • Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis YI, et al. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 2002; 277:5330 - 8; http://dx.doi.org/10.1074/jbc.M102750200; PMID: 11714695
  • Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000; 67:737 - 44; http://dx.doi.org/10.1086/303059; PMID: 10903931
  • Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 2005; 96:1053 - 63; http://dx.doi.org/10.1161/01.RES.0000166926.54293.68; PMID: 15845886
  • Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, Desai AA, Singleton PA, Sammani S, et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 2008; 33:278 - 91; http://dx.doi.org/10.1152/physiolgenomics.00169.2007; PMID: 18303084
  • Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A, Jaïs X, et al. Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med 2010; 181:851 - 61; http://dx.doi.org/10.1164/rccm.200908-1284OC; PMID: 20056902
  • Eddahibi S, Chaouat A, Morrell N, Fadel E, Fuhrman C, Bugnet AS, et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation 2003; 108:1839 - 44; http://dx.doi.org/10.1161/01.CIR.0000091409.53101.E8; PMID: 14530202
  • Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F, et al. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 2001; 108:1141 - 50; PMID: 11602621
  • Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D, et al. Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 2007; 292:C1837 - 53; http://dx.doi.org/10.1152/ajpcell.00405.2006; PMID: 17267549
  • Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 1998; 101:927 - 34; http://dx.doi.org/10.1172/JCI1910; PMID: 9486960
  • Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, et al. p53 gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L753 - 61; http://dx.doi.org/10.1152/ajplung.00286.2010; PMID: 21335523
  • Chen SJ, Wang YB, Chen O, Zhu XB, Ma Y. [Effect of p21 gene transfection mediated by replication deficient adenovirus on the pulmonary hypertensive rat model]. Zhonghua Er Ke Za Zhi 2008; 46:139 - 42; PMID: 19099691
  • Fouty BW, Grimison B, Fagan KA, Le Cras TD, Harral JW, Hoedt-Miller M, et al. p27(Kip1) is important in modulating pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 2001; 25:652 - 8; PMID: 11713109
  • Yu L, Quinn DA, Garg HG, Hales CA. Cyclin-dependent kinase inhibitor p27Kip1, but not p21WAF1/Cip1, is required for inhibition of hypoxia-induced pulmonary hypertension and remodeling by heparin in mice. Circ Res 2005; 97:937 - 45; http://dx.doi.org/10.1161/01.RES.0000188211.83193.1a; PMID: 16195480
  • Ravi Y, Selvendiran K, Meduru S, Citro L, Naidu S, Khan M, et al. Dysregulation of PTEN in Cardiopulmonary Vascular Remodeling Induced by Pulmonary Hypertension. Cell Biochem Biophys 2011; In press http://dx.doi.org/10.1007/s12013-011-9332-z; PMID: 22205501
  • Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11:325 - 37; http://dx.doi.org/10.1038/nrc3038; PMID: 21508971
  • Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, et al. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2010; 2:44ra58; http://dx.doi.org/10.1126/scitranslmed.3001327; PMID: 20702857
  • Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 2007; 104:11418 - 23; http://dx.doi.org/10.1073/pnas.0610467104; PMID: 17596340
  • Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, et al. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med 2011; 3:88ra55; http://dx.doi.org/10.1126/scitranslmed.3002194; PMID: 21697531
  • Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, et al. Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation 2011; 123:1205 - 15; http://dx.doi.org/10.1161/CIRCULATIONAHA.110.963314; PMID: 21382889
  • Paulin R, Meloche J, Jacob MH, Bisserier M, Courboulin A, Bonnet S. Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2011; 301:H1798 - 809; http://dx.doi.org/10.1152/ajpheart.00654.2011; PMID: 21890685
  • Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 2011; 208:535 - 48; http://dx.doi.org/10.1084/jem.20101812; PMID: 21321078
  • Masri FA, Xu W, Comhair SA, Asosingh K, Koo M, Vasanji A, et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293:L548 - 54; http://dx.doi.org/10.1152/ajplung.00428.2006; PMID: 17526595
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646 - 74; http://dx.doi.org/10.1016/j.cell.2011.02.013; PMID: 21376230
  • Courboulin A, Tremblay VL, Barrier M, Meloche J, Jacob MH, Chapolard M, et al. Krüppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res 2011; 12:128; http://dx.doi.org/10.1186/1465-9921-12-128; PMID: 21951574
  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007; 11:37 - 51; http://dx.doi.org/10.1016/j.ccr.2006.10.020; PMID: 17222789
  • Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr.. Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 1998; 18:2553 - 8; PMID: 9566875
  • Darnell JE Jr.. STATs and gene regulation. Science 1997; 277:1630 - 5; http://dx.doi.org/10.1126/science.277.5332.1630; PMID: 9287210
  • Banes-Berceli AK, Ketsawatsomkron P, Ogbi S, Patel B, Pollock DM, Marrero MB. Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. Am J Physiol Heart Circ Physiol 2007; 293:H1291 - 9; http://dx.doi.org/10.1152/ajpheart.00181.2007; PMID: 17526654
  • Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, et al. Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 2009; 54:668 - 75; http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.133397; PMID: 19597040
  • Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005; 115:2811 - 21; http://dx.doi.org/10.1172/JCI24838; PMID: 16200212
  • Frasch HF, Marshall C, Marshall BE. Endothelin-1 is elevated in monocrotaline pulmonary hypertension. Am J Physiol 1999; 276:L304 - 10; PMID: 9950893
  • Wen Z, Zhong Z, Darnell JE Jr.. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995; 82:241 - 50; http://dx.doi.org/10.1016/0092-8674(95)90311-9; PMID: 7543024
  • Banes AK, Shaw SM, Tawfik A, Patel BP, Ogbi S, Fulton D, et al. Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. Am J Physiol Cell Physiol 2005; 288:C805 - 12; http://dx.doi.org/10.1152/ajpcell.00385.2004; PMID: 15601754
  • Potula HS, Wang D, Quyen DV, Singh NK, Kundumani-Sridharan V, Karpurapu M, et al. Src-dependent STAT-3-mediated expression of monocyte chemoattractant protein-1 is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration. J Biol Chem 2009; 284:31142 - 55; http://dx.doi.org/10.1074/jbc.M109.012526; PMID: 19736311
  • Wang GS, Qian GS, Mao BL, Cai WQ, Chen WZ, Chen Y. [Changes of interleukin-6 and Janus kinases in rats with hypoxic pulmonary hypertension]. Zhonghua Jie He He Hu Xi Za Zhi 2003; 26:664 - 7; PMID: 14703438
  • Christmann RB, Hayes E, Pendergrass S, Padilla C, Farina G, Affandi AJ, et al. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum 2011; 63:1718 - 28; http://dx.doi.org/10.1002/art.30318; PMID: 21425123
  • Byers LA, Sen B, Saigal B, Diao L, Wang J, Nanjundan M, et al. Reciprocal regulation of c-Src and STAT3 in non-small cell lung cancer. Clin Cancer Res 2009; 15:6852 - 61; http://dx.doi.org/10.1158/1078-0432.CCR-09-0767; PMID: 19861436
  • Sen B, Peng S, Woods DM, Wistuba I, Bell D, El-Naggar AK, et al. STAT5A-mediated SOCS2 expression regulates Jak2 and STAT3 activity following c-Src inhibition in head and neck squamous carcinoma. Clin Cancer Res 2012; 18:127 - 39; http://dx.doi.org/10.1158/1078-0432.CCR-11-1889; PMID: 22090359
  • Singh NK, Wang D, Kundumani-Sridharan V, Van Quyen D, Niu J, Rao GN. 15-Lipoxygenase-1-enhanced Src-Janus kinase 2-signal transducer and activator of transcription 3 stimulation and monocyte chemoattractant protein-1 expression require redox-sensitive activation of epidermal growth factor receptor in vascular wall remodeling. J Biol Chem 2011; 286:22478 - 88; http://dx.doi.org/10.1074/jbc.M111.225060; PMID: 21536676
  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103:211 - 25; http://dx.doi.org/10.1016/S0092-8674(00)00114-8; PMID: 11057895
  • Hubbard SR. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell Biol 2004; 5:464 - 71; http://dx.doi.org/10.1038/nrm1399; PMID: 15173825
  • Reddy EP, Korapati A, Chaturvedi P, Rane S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 2000; 19:2532 - 47; http://dx.doi.org/10.1038/sj.onc.1203594; PMID: 10851052
  • Hofmeister R, Khaled AR, Benbernou N, Rajnavolgyi E, Muegge K, Durum SK. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999; 10:41 - 60; http://dx.doi.org/10.1016/S1359-6101(98)00025-2; PMID: 10379911
  • Takahashi-Tezuka M, Hibi M, Fujitani Y, Fukada T, Yamaguchi T, Hirano T. Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK. Oncogene 1997; 14:2273 - 82; http://dx.doi.org/10.1038/sj.onc.1201071; PMID: 9178903
  • Xia K, Mukhopadhyay NK, Inhorn RC, Barber DL, Rose PE, Lee RS, et al. The cytokine-activated tyrosine kinase JAK2 activates Raf-1 in a p21ras-dependent manner. Proc Natl Acad Sci U S A 1996; 93:11681 - 6; http://dx.doi.org/10.1073/pnas.93.21.11681; PMID: 8876196
  • Yetter A, Uddin S, Krolewski JJ, Jiao H, Yi T, Platanias LC. Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase. J Biol Chem 1995; 270:18179 - 82; http://dx.doi.org/10.1074/jbc.270.31.18179; PMID: 7629131
  • Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, et al. Insights into G protein structure, function, and regulation. Endocr Rev 2003; 24:765 - 81; http://dx.doi.org/10.1210/er.2000-0026; PMID: 14671004
  • Milligan G, Stoddart LA, Brown AJ. G protein-coupled receptors for free fatty acids. Cell Signal 2006; 18:1360 - 5; http://dx.doi.org/10.1016/j.cellsig.2006.03.011; PMID: 16716567
  • Corre I, Baumann H, Hermouet S. Regulation by Gi2 proteins of v-fms-induced proliferation and transformation via Src-kinase and STAT3. Oncogene 1999; 18:6335 - 42; http://dx.doi.org/10.1038/sj.onc.1203010; PMID: 10597233
  • Ram PT, Horvath CM, Iyengar R. Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L Galphao protein. Science 2000; 287:142 - 4; http://dx.doi.org/10.1126/science.287.5450.142; PMID: 10615050
  • Liang H, Venema VJ, Wang X, Ju H, Venema RC, Marrero MB. Regulation of angiotensin II-induced phosphorylation of STAT3 in vascular smooth muscle cells. J Biol Chem 1999; 274:19846 - 51; http://dx.doi.org/10.1074/jbc.274.28.19846; PMID: 10391929
  • Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 1995; 375:247 - 50; http://dx.doi.org/10.1038/375247a0; PMID: 7746328
  • Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379:557 - 60; http://dx.doi.org/10.1038/379557a0; PMID: 8596637
  • Shah BH, Catt KJ. GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci 2004; 27:48 - 53; http://dx.doi.org/10.1016/j.tins.2003.11.003; PMID: 14698610
  • Wetzker R, Böhmer FD. Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 2003; 4:651 - 7; http://dx.doi.org/10.1038/nrm1173; PMID: 12923527
  • Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR. Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem 2005; 280:39701 - 8; http://dx.doi.org/10.1074/jbc.M509829200; PMID: 16172123
  • Delcourt N, Thouvenot E, Chanrion B, Galéotti N, Jouin P, Bockaert J, et al. PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons. EMBO J 2007; 26:1542 - 51; http://dx.doi.org/10.1038/sj.emboj.7601608; PMID: 17332755
  • Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, et al. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 2001; 291:1800 - 3; http://dx.doi.org/10.1126/science.1057559; PMID: 11230698
  • Mira E, Lacalle RA, González MA, Gómez-Moutón C, Abad JL, Bernad A, et al. A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep 2001; 2:151 - 6; http://dx.doi.org/10.1093/embo-reports/kve027; PMID: 11258708
  • Pincheira R, Castro AF, Ozes ON, Idumalla PS, Donner DB. Type 1 TNF receptor forms a complex with and uses Jak2 and c-Src to selectively engage signaling pathways that regulate transcription factor activity. J Immunol 2008; 181:1288 - 98; PMID: 18606683
  • Meloche J, Paulin R, Courboulin A, Lambert C, Barrier M, Bonnet P, et al. RAGE-dependent activation of the oncoprotein Pim1 plays a critical role in systemic vascular remodeling processes. Arterioscler Thromb Vasc Biol 2011; 31:2114 - 24; http://dx.doi.org/10.1161/ATVBAHA.111.230573; PMID: 21680901
  • Lawrie A, Spiekerkoetter E, Martinez EC, Ambartsumian N, Sheward WJ, MacLean MR, et al. Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circ Res 2005; 97:227 - 35; http://dx.doi.org/10.1161/01.RES.0000176025.57706.1e; PMID: 16002749
  • Spiekerkoetter E, Guignabert C, de Jesus Perez V, Alastalo TP, Powers JM, Wang L, et al. S100A4 and bone morphogenetic protein-2 codependently induce vascular smooth muscle cell migration via phospho-extracellular signal-regulated kinase and chloride intracellular channel 4. Circ Res 2009; 105:639 - 47, 13, 647; http://dx.doi.org/10.1161/CIRCRESAHA.109.205120; PMID: 19713532
  • Sakaguchi T, Yan SF, Yan SD, Belov D, Rong LL, Sousa M, et al. Central role of RAGE-dependent neointimal expansion in arterial restenosis. J Clin Invest 2003; 111:959 - 72; PMID: 12671045
  • Kakisis JD, Pradhan S, Cordova A, Liapis CD, Sumpio BE. The role of STAT-3 in the mediation of smooth muscle cell response to cyclic strain. Int J Biochem Cell Biol 2005; 37:1396 - 406; http://dx.doi.org/10.1016/j.biocel.2005.01.009; PMID: 15833272
  • Padma R, Nagarajan L. The human PIM-1 gene product is a protein serine kinase. Cancer Res 1991; 51:2486 - 9; PMID: 1826633
  • Bonnet S, Paulin R, Sutendra G, Dromparis P, Roy M, Watson KO, et al. Dehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-beta/NFAT axis. Circulation 2009; 120:1231 - 40; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.848911; PMID: 19752325
  • Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008; 133:1106 - 17; http://dx.doi.org/10.1016/j.cell.2008.04.043; PMID: 18555785
  • Li J, Piao YF, Jiang Z, Chen L, Sun HB. Silencing of signal transducer and activator of transcription 3 expression by RNA interference suppresses growth of human hepatocellular carcinoma in tumor-bearing nude mice. World J Gastroenterol 2009; 15:2602 - 8; http://dx.doi.org/10.3748/wjg.15.2602; PMID: 19496189
  • Glienke W, Maute L, Wicht J, Bergmann L. Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Invest 2010; 28:166 - 71; http://dx.doi.org/10.3109/07357900903287006; PMID: 20121547
  • Yabkowitz R, Mansfield PJ, Ryan US, Suchard SJ. Thrombospondin mediates migration and potentiates platelet-derived growth factor-dependent migration of calf pulmonary artery smooth muscle cells. J Cell Physiol 1993; 157:24 - 32; http://dx.doi.org/10.1002/jcp.1041570104; PMID: 8408239
  • Yamboliev IA, Gerthoffer WT. Modulatory role of ERK MAPK-caldesmon pathway in PDGF-stimulated migration of cultured pulmonary artery SMCs. Am J Physiol Cell Physiol 2001; 280:C1680 - 8; PMID: 11350764
  • Leung WC, Lawrie A, Demaries S, Massaeli H, Burry A, Yablonsky S, et al. Apolipoprotein D and platelet-derived growth factor-BB synergism mediates vascular smooth muscle cell migration. Circ Res 2004; 95:179 - 86; http://dx.doi.org/10.1161/01.RES.0000135482.74178.14; PMID: 15192024
  • Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 2010; 299:L861 - 71; http://dx.doi.org/10.1152/ajplung.00201.2010; PMID: 20693317
  • Negash S, Narasimhan SR, Zhou W, Liu J, Wei FL, Tian J, et al. Role of cGMP-dependent protein kinase in regulation of pulmonary vascular smooth muscle cell adhesion and migration: effect of hypoxia. Am J Physiol Heart Circ Physiol 2009; 297:H304 - 12; http://dx.doi.org/10.1152/ajpheart.00077.2008; PMID: 19411288
  • Osada-Oka M, Ikeda T, Akiba S, Sato T. Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1. J Cell Biochem 2008; 104:1918 - 26; http://dx.doi.org/10.1002/jcb.21759; PMID: 18384112
  • Harvey KA, Welch Z, Sliva D, Siddiqui RA. Role of Rho kinase in sphingosine 1-phosphate-mediated endothelial and smooth muscle cell migration and differentiation. Mol Cell Biochem 2010; 342:7 - 19; http://dx.doi.org/10.1007/s11010-010-0461-2; PMID: 20401628
  • Mukhopadhyay UK, Mooney P, Jia L, Eves R, Raptis L, Mak AS. Doubles game: Src-Stat3 versus p53-PTEN in cellular migration and invasion. Mol Cell Biol 2010; 30:4980 - 95; http://dx.doi.org/10.1128/MCB.00004-10; PMID: 20733006
  • Gao H, Priebe W, Glod J, Banerjee D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 2009; 27:857 - 65; http://dx.doi.org/10.1002/stem.23; PMID: 19350687
  • Li C, Wernig F, Leitges M, Hu Y, Xu Q. Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB J 2003; 17:2106 - 8; PMID: 12958154
  • Shi Y, Wang C, Han S, Pang B, Zhang N, Wang J, et al. Determination of PKC isoform-specific protein expression in pulmonary arteries of rats with chronic hypoxia-induced pulmonary hypertension. Med Sci Monit 2012; 18:BR69 - 75; PMID: 22293869
  • Kronfeld I, Kazimirsky G, Lorenzo PS, Garfield SH, Blumberg PM, Brodie C. Phosphorylation of protein kinase Cdelta on distinct tyrosine residues regulates specific cellular functions. J Biol Chem 2000; 275:35491 - 8; http://dx.doi.org/10.1074/jbc.M005991200; PMID: 10945993
  • Novotny-Diermayr V, Zhang T, Gu L, Cao X. Protein kinase C delta associates with the interleukin-6 receptor subunit glycoprotein (gp) 130 via Stat3 and enhances Stat3-gp130 interaction. J Biol Chem 2002; 277:49134 - 42; http://dx.doi.org/10.1074/jbc.M206727200; PMID: 12361954
  • Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 1995; 333:214 - 21; http://dx.doi.org/10.1056/NEJM199507273330403; PMID: 7540722
  • Sud N, Black SM. Endothelin-1 impairs nitric oxide signaling in endothelial cells through a protein kinase Cdelta-dependent activation of STAT3 and decreased endothelial nitric oxide synthase expression. DNA Cell Biol 2009; 28:543 - 53; http://dx.doi.org/10.1089/dna.2009.0865; PMID: 19754268
  • Kohanbash G, Okada H. MicroRNAs and STAT interplay. Semin Cancer Biol 2012; 22:70 - 5; http://dx.doi.org/10.1016/j.semcancer.2011.12.010; PMID: 22210182
  • Wu W, Lin Z, Zhuang Z, Liang X. Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 2009; 18:50 - 5; http://dx.doi.org/10.1097/CEJ.0b013e328305a07a; PMID: 19077565
  • Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, et al. MicroRNA-204/211 alters epithelial physiology. FASEB J 2010; 24:1552 - 71; http://dx.doi.org/10.1096/fj.08-125856; PMID: 20056717
  • Senis YA, Tomlinson MG, Ellison S, Mazharian A, Lim J, Zhao Y, et al. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood 2009; 113:4942 - 54; http://dx.doi.org/10.1182/blood-2008-08-174318; PMID: 19246339
  • Wu JH, Goswami R, Cai X, Exum ST, Huang X, Zhang L, et al. Regulation of the platelet-derived growth factor receptor-beta by G protein-coupled receptor kinase-5 in vascular smooth muscle cells involves the phosphatase Shp2. J Biol Chem 2006; 281:37758 - 72; http://dx.doi.org/10.1074/jbc.M605756200; PMID: 17018529
  • Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res 2009; 104:1184 - 91; http://dx.doi.org/10.1161/CIRCRESAHA.109.197491; PMID: 19390056
  • Rhee ST, Buchman SR. Colocalization of c-Src (pp60src) and bone morphogenetic protein 2/4 expression during mandibular distraction osteogenesis: in vivo evidence of their role within an integrin-mediated mechanotransduction pathway. Ann Plast Surg 2005; 55:207 - 15; http://dx.doi.org/10.1097/01.sap.0000164576.10754.aa; PMID: 16034255
  • Kopplow K, Wayss K, Enzmann H, Mayer D. Dehydroepiandrosterone causes hyperplasia and impairs regeneration in rat liver. Int J Oncol 2005; 27:1551 - 8; PMID: 16273211
  • Poczatková H, Bogdanová K, Uherková L, Cervenková K, Riegrová D, Rypka M, et al. Dehydroepiandrosterone effects on the mRNA levels of peroxisome proliferator-activated receptors and their coactivators in human hepatoma HepG2 cells. Gen Physiol Biophys 2007; 26:268 - 74; PMID: 18281744
  • Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 2007; 115:1275 - 84; PMID: 17339547
  • Ji JD, Kim HJ, Rho YH, Choi SJ, Lee YH, Cheon HJ, et al. Inhibition of IL-10-induced STAT3 activation by 15-deoxy-Delta12,14-prostaglandin J2. Rheumatology (Oxford) 2005; 44:983 - 8; http://dx.doi.org/10.1093/rheumatology/keh657; PMID: 15840591
  • Kim HJ, Rho YH, Choi SJ, Lee YH, Cheon H, Um JW, et al. 15-Deoxy-delta12,14-PGJ2 inhibits IL-6-induced Stat3 phosphorylation in lymphocytes. Exp Mol Med 2005; 37:179 - 85; PMID: 16000871
  • Wang LH, Yang XY, Zhang X, Huang J, Hou J, Li J, et al. Transcriptional inactivation of STAT3 by PPARgamma suppresses IL-6-responsive multiple myeloma cells. Immunity 2004; 20:205 - 18; http://dx.doi.org/10.1016/S1074-7613(04)00030-5; PMID: 14975242
  • Ehrmann J, Strakova N, Vrzalikova K, Hezova R, Kolar Z. Expression of STATs and their inhibitors SOCS and PIAS in brain tumors. In vitro and in vivo study. Neoplasma 2008; 55:482 - 7; PMID: 18999875
  • Juurlink DN, Gomes T, Lipscombe LL, Austin PC, Hux JE, Mamdani MM. Adverse cardiovascular events during treatment with pioglitazone and rosiglitazone: population based cohort study. BMJ 2009; 339:b2942; http://dx.doi.org/10.1136/bmj.b2942; PMID: 19690342
  • Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, et al. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 2010; 121:2747 - 54; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.927681; PMID: 20547927
  • Courboulin A, Barrier M, Perreault T, Bonnet P, Tremblay VL, Paulin R, et al. Plumbagin reverses proliferation and resistance to apoptosis in experimental PAH. Eur Respir J 2012; 40:618 - 29; http://dx.doi.org/10.1183/09031936.00084211; PMID: 22496325
  • Mauritz GJ, Kind T, Marcus JT, Bogaard HJ, van de Veerdonk M, Postmus PE, et al. Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension. Chest 2012; 141:935 - 43; http://dx.doi.org/10.1378/chest.10-3277; PMID: 21960697
  • Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Yamada S, et al. Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci U S A 2000; 97:315 - 9; http://dx.doi.org/10.1073/pnas.97.1.315; PMID: 10618415
  • Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, et al. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 2001; 104:979 - 81; http://dx.doi.org/10.1161/hc3401.095947; PMID: 11524388
  • Stephanou A, Latchman DS. Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Expr 1999; 7:311 - 9; PMID: 10440232
  • Yamauchi-Takihara K, Kishimoto T. A novel role for STAT3 in cardiac remodeling. Trends Cardiovasc Med 2000; 10:298 - 303; http://dx.doi.org/10.1016/S1050-1738(01)00066-4; PMID: 11343970
  • Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 2004; 95:187 - 95; http://dx.doi.org/10.1161/01.RES.0000134921.50377.61; PMID: 15192020
  • Lu Y, Zhou J, Xu C, Lin H, Xiao J, Wang Z, et al. JAK/STAT and PI3K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem 2008; 21:305 - 14; http://dx.doi.org/10.1159/000129389; PMID: 18441519
  • Haas M, Askari A, Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem 2000; 275:27832 - 7; PMID: 10874030
  • Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee JD, et al. Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol 2001; 33:1637 - 48; http://dx.doi.org/10.1006/jmcc.2001.1427; PMID: 11549343
  • Willey CD, Palanisamy AP, Johnston RK, Mani SK, Shiraishi H, Tuxworth WJ, et al. STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX. Int J Biol Sci 2008; 4:184 - 99; http://dx.doi.org/10.7150/ijbs.4.184; PMID: 18612371
  • Huang J, Kaminski PM, Edwards JG, Yeh A, Wolin MS, Frishman WH, et al. Pyrrolidine dithiocarbamate restores endothelial cell membrane integrity and attenuates monocrotaline-induced pulmonary artery hypertension. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1250 - 9; http://dx.doi.org/10.1152/ajplung.00069.2007; PMID: 18390833
  • Huang J, Wolk JH, Gewitz MH, Mathew R. Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension. Exp Lung Res 2010; 36:57 - 66; http://dx.doi.org/10.3109/01902140903104793; PMID: 20128682
  • Greenway S, van Suylen RJ, Du Marchie Sarvaas G, Kwan E, Ambartsumian N, Lukanidin E, et al. S100A4/Mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy. Am J Pathol 2004; 164:253 - 62; http://dx.doi.org/10.1016/S0002-9440(10)63115-X; PMID: 14695338
  • Katsha AM, Ohkouchi S, Xin H, Kanehira M, Sun R, Nukiwa T, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther 2011; 19:196 - 203; http://dx.doi.org/10.1038/mt.2010.192; PMID: 20842104
  • Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 1994; 144:275 - 85; PMID: 7508683
  • Ulrich S, Taraseviciene-Stewart L, Huber LC, Speich R, Voelkel N. Peripheral blood B lymphocytes derived from patients with idiopathic pulmonary arterial hypertension express a different RNA pattern compared with healthy controls: a cross sectional study. Respir Res 2008; 9:20; http://dx.doi.org/10.1186/1465-9921-9-20; PMID: 18269757
  • Ulrich S, Nicolls MR, Taraseviciene L, Speich R, Voelkel N. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration 2008; 75:272 - 80; http://dx.doi.org/10.1159/000111548; PMID: 18025812
  • Perros F, Dorfmüller P, Souza R, Durand-Gasselin I, Mussot S, Mazmanian M, et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J 2007; 29:462 - 8; http://dx.doi.org/10.1183/09031936.00094706; PMID: 17107989
  • Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4:941 - 52; http://dx.doi.org/10.1038/nri1498; PMID: 15573129
  • Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996; 2:1096 - 103; http://dx.doi.org/10.1038/nm1096-1096; PMID: 8837607
  • Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003; 101:4878 - 86; http://dx.doi.org/10.1182/blood-2002-07-1956; PMID: 12586633
  • Visinoni F. [Milestone bring forth new idea on pathological laboratory]. Zhonghua Bing Li Xue Za Zhi 2004; 33:283 - 4; PMID: 15256132
  • Lee H, Pal SK, Reckamp K, Figlin RA, Yu H. STAT3: a target to enhance antitumor immune response. Curr Top Microbiol Immunol 2011; 344:41 - 59; http://dx.doi.org/10.1007/82_2010_51; PMID: 20517723
  • Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5:472 - 84; http://dx.doi.org/10.1038/nri1632; PMID: 15928679
  • Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, et al. Function of mitochondrial Stat3 in cellular respiration. Science 2009; 323:793 - 7; http://dx.doi.org/10.1126/science.1164551; PMID: 19131594
  • Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol 2004; 24:8447 - 56; http://dx.doi.org/10.1128/MCB.24.19.8447-8456.2004; PMID: 15367666
  • Lu H, Cao X. GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol Biol Cell 2008; 19:1893 - 902; http://dx.doi.org/10.1091/mbc.E07-07-0683; PMID: 18287540
  • Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V, Ong CT, et al. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J 2003; 22:1325 - 35; http://dx.doi.org/10.1093/emboj/cdg135; PMID: 12628925
  • Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF, et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci U S A 2003; 100:9342 - 7; http://dx.doi.org/10.1073/pnas.1633516100; PMID: 12867595
  • Demaria M, Misale S, Giorgi C, Miano V, Camporeale A, Campisi J, et al. STAT3 can serve as a hit in the process of malignant transformation of primary cells. Cell Death Differ 2012; 19:1390 - 7; http://dx.doi.org/10.1038/cdd.2012.20; PMID: 22402588
  • Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res 2008; 6:1099 - 105; http://dx.doi.org/10.1158/1541-7786.MCR-07-2177; PMID: 18644974
  • Hagihara K, Nishikawa T, Sugamata Y, Song J, Isobe T, Taga T, et al. Essential role of STAT3 in cytokine-driven NF-kappaB-mediated serum amyloid A gene expression. Genes Cells 2005; 10:1051 - 63; http://dx.doi.org/10.1111/j.1365-2443.2005.00900.x; PMID: 16236134
  • Yu Z, Zhang W, Kone BC. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J 2002; 367:97 - 105; http://dx.doi.org/10.1042/BJ20020588; PMID: 12057007
  • Yoshida Y, Kumar A, Koyama Y, Peng H, Arman A, Boch JA, et al. Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique TRAF6- and p65-dependent mechanism. J Biol Chem 2004; 279:1768 - 76; http://dx.doi.org/10.1074/jbc.M311498200; PMID: 14593105
  • Yang J, Chatterjee-Kishore M, Staugaitis SM, Nguyen H, Schlessinger K, Levy DE, et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 2005; 65:939 - 47; PMID: 15705894
  • Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev 2007; 21:1396 - 408; http://dx.doi.org/10.1101/gad.1553707; PMID: 17510282
  • Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 2009; 15:283 - 93; http://dx.doi.org/10.1016/j.ccr.2009.02.015; PMID: 19345327
  • Sehgal PB, Mukhopadhyay S, Patel K, Xu F, Almodóvar S, Tuder RM, et al. Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques. Am J Physiol Lung Cell Mol Physiol 2009; 297:L729 - 37; http://dx.doi.org/10.1152/ajplung.00087.2009; PMID: 19648286
  • Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006; 124:573 - 86; http://dx.doi.org/10.1016/j.cell.2005.11.047; PMID: 16469703
  • Li W, Dunmore BJ, Morrell NW. Bone morphogenetic protein type II receptor mutations causing protein misfolding in heritable pulmonary arterial hypertension. Proc Am Thorac Soc 2010; 7:395 - 8; http://dx.doi.org/10.1513/pats.201002-024AW; PMID: 21030519
  • Lee JE, Yang YM, Liang FX, Gough DJ, Levy DE, Sehgal PB. Nongenomic STAT5-dependent effects on Golgi apparatus and endoplasmic reticulum structure and function. Am J Physiol Cell Physiol 2012; 302:C804 - 20; http://dx.doi.org/10.1152/ajpcell.00379.2011; PMID: 22159083