857
Views
12
CrossRef citations to date
0
Altmetric
Review

Interaction of JAK with steroid receptor function

&
Article: e24911 | Received 28 Mar 2013, Accepted 02 May 2013, Published online: 07 May 2013

References

  • Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol 1998; 16:293 - 322; http://dx.doi.org/10.1146/annurev.immunol.16.1.293; PMID: 9597132
  • Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol 2004; 5:253; http://dx.doi.org/10.1186/gb-2004-5-12-253; PMID: 15575979
  • Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene 2000; 19:5662 - 79; http://dx.doi.org/10.1038/sj.onc.1203925; PMID: 11114747
  • Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004; 117:1281 - 3; http://dx.doi.org/10.1242/jcs.00963; PMID: 15020666
  • Boudny V, Kovarik J. JAK/STAT signaling pathways and cancer. Janus kinases/signal transducers and activators of transcription. Neoplasma 2002; 49:349 - 55; PMID: 12584581
  • Verma A, Kambhampati S, Parmar S, Platanias LC. Jak family of kinases in cancer. Cancer Metastasis Rev 2003; 22:423 - 34; http://dx.doi.org/10.1023/A:1023805715476; PMID: 12884916
  • Wagner KU, Rui H. Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia 2008; 13:93 - 103; http://dx.doi.org/10.1007/s10911-008-9062-z; PMID: 18228120
  • LaFave LM, Levine RL. JAK2 the future: therapeutic strategies for JAK-dependent malignancies. Trends Pharmacol Sci 2012; 33:574 - 82; http://dx.doi.org/10.1016/j.tips.2012.08.005; PMID: 22995223
  • Stein BL, Crispino JD, Moliterno AR. Janus kinase inhibitors: an update on the progress and promise of targeted therapy in the myeloproliferative neoplasms. Curr Opin Oncol 2011; 23:609 - 16; PMID: 21993415
  • Menet CJ, Rompaey LV, Geney R. Advances in the discovery of selective JAK inhibitors. Prog Med Chem 2013; 52:153 - 223; PMID: 23384668
  • Wang L, Zhang X, Farrar WL, Yang X. Transcriptional crosstalk between nuclear receptors and cytokine signal transduction pathways in immunity. Cell Mol Immunol 2004; 1:416 - 24; PMID: 16293210
  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83:835 - 9; http://dx.doi.org/10.1016/0092-8674(95)90199-X; PMID: 8521507
  • Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, et al. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res 2004; 14:580 - 90; http://dx.doi.org/10.1101/gr.2160004; PMID: 15059999
  • Cleary MP, Grossmann ME. Minireview: Obesity and breast cancer: the estrogen connection. Endocrinology 2009; 150:2537 - 42; http://dx.doi.org/10.1210/en.2009-0070; PMID: 19372199
  • Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell 1999; 97:161 - 3; http://dx.doi.org/10.1016/S0092-8674(00)80726-6; PMID: 10219237
  • Novac N, Heinzel T. Nuclear receptors: overview and classification. Curr Drug Targets Inflamm Allergy 2004; 3:335 - 46; http://dx.doi.org/10.2174/1568010042634541; PMID: 15584884
  • Levin ER. Minireview: Extranuclear steroid receptors: roles in modulation of cell functions. Mol Endocrinol 2011; 25:377 - 84; http://dx.doi.org/10.1210/me.2010-0284; PMID: 20861220
  • McKenna NJ, O’Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 2002; 108:465 - 74; http://dx.doi.org/10.1016/S0092-8674(02)00641-4; PMID: 11909518
  • Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83:841 - 50; http://dx.doi.org/10.1016/0092-8674(95)90200-7; PMID: 8521508
  • Kininis M, Kraus WL. A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal 2008; 6:e005; PMID: 18301785
  • Geserick C, Meyer HA, Haendler B. The role of DNA response elements as allosteric modulators of steroid receptor function. Mol Cell Endocrinol 2005; 236:1 - 7; http://dx.doi.org/10.1016/j.mce.2005.03.007; PMID: 15876478
  • Maggiolini M, Picard D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol 2010; 204:105 - 14; http://dx.doi.org/10.1677/JOE-09-0242; PMID: 19767412
  • Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet 1896; 2:104 - 7; http://dx.doi.org/10.1016/S0140-6736(01)72307-0
  • Platet N, Cathiard AM, Gleizes M, Garcia M. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol 2004; 51:55 - 67; http://dx.doi.org/10.1016/j.critrevonc.2004.02.001; PMID: 15207254
  • Weigel NL, Zhang Y. Ligand-independent activation of steroid hormone receptors. J Mol Med (Berl) 1998; 76:469 - 79; http://dx.doi.org/10.1007/s001090050241; PMID: 9660165
  • Coleman KM, Smith CL. Intracellular signaling pathways: nongenomic actions of estrogens and ligand-independent activation of estrogen receptors. Front Biosci 2001; 6:D1379 - 91; http://dx.doi.org/10.2741/Coleman; PMID: 11578956
  • Weigel NL, Moore NL. Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol 2007; 21:2311 - 9; http://dx.doi.org/10.1210/me.2007-0101; PMID: 17536004
  • Song RX, Chen Y, Zhang Z, Bao Y, Yue W, Wang JP, et al. Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J Steroid Biochem Mol Biol 2010; 118:219 - 30; http://dx.doi.org/10.1016/j.jsbmb.2009.09.018; PMID: 19815064
  • Gupta N, Grebhardt S, Mayer D. Janus kinase 2--a novel negative regulator of estrogen receptor α function. Cell Signal 2012; 24:151 - 61; http://dx.doi.org/10.1016/j.cellsig.2011.08.016; PMID: 21907792
  • de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res 2010; 70:9175 - 84; http://dx.doi.org/10.1158/0008-5472.CAN-10-1318; PMID: 20978187
  • Yeh YT, Ou-Yang F, Chen IF, Yang SF, Su JH, Hou MF, et al. Altered p-JAK1 expression is associated with estrogen receptor status in breast infiltrating ductal carcinoma. Oncol Rep 2007; 17:35 - 9; PMID: 17143475
  • Garofalo C, Surmacz E. Leptin and cancer. J Cell Physiol 2006; 207:12 - 22; http://dx.doi.org/10.1002/jcp.20472; PMID: 16110483
  • Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N. Leptin signaling in breast cancer: an overview. J Cell Biochem 2008; 105:956 - 64; http://dx.doi.org/10.1002/jcb.21911; PMID: 18821585
  • Andò S, Catalano S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol 2012; 8:263 - 75; http://dx.doi.org/10.1038/nrendo.2011.184; PMID: 22083089
  • Davidson MB. Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev 1987; 8:115 - 31; http://dx.doi.org/10.1210/edrv-8-2-115; PMID: 3301316
  • Goffin V, Kelly PA. The prolactin/growth hormone receptor family: structure/function relationships. J Mammary Gland Biol Neoplasia 1997; 2:7 - 17; http://dx.doi.org/10.1023/A:1026313211704; PMID: 10887515
  • Leung KC, Doyle N, Ballesteros M, Sjogren K, Watts CK, Low TH, et al. Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS2. Proc Natl Acad Sci U S A 2003; 100:1016 - 21; http://dx.doi.org/10.1073/pnas.0337600100; PMID: 12552091
  • Leung KC, Brce J, Doyle N, Lee HJ, Leong GM, Sjögren K, et al. Regulation of growth hormone signaling by selective estrogen receptor modulators occurs through suppression of protein tyrosine phosphatases. Endocrinology 2007; 148:2417 - 23; http://dx.doi.org/10.1210/en.2006-1305; PMID: 17272397
  • Bachelot A, Binart N. Reproductive role of prolactin. Reproduction 2007; 133:361 - 9; http://dx.doi.org/10.1530/REP-06-0299; PMID: 17307904
  • Frasor J, Gibori G. Prolactin regulation of estrogen receptor expression. Trends Endocrinol Metab 2003; 14:118 - 23; http://dx.doi.org/10.1016/S1043-2760(03)00030-4; PMID: 12670737
  • Frasor J, Barkai U, Zhong L, Fazleabas AT, Gibori G. PRL-induced ERalpha gene expression is mediated by Janus kinase 2 (Jak2) while signal transducer and activator of transcription 5b (Stat5b) phosphorylation involves Jak2 and a second tyrosine kinase. Mol Endocrinol 2001; 15:1941 - 52; http://dx.doi.org/10.1210/me.15.11.1941; PMID: 11682625
  • Zhao Y, Nichols JE, Bulun SE, Mendelson CR, Simpson ER. Aromatase P450 gene expression in human adipose tissue. Role of a Jak/STAT pathway in regulation of the adipose-specific promoter. J Biol Chem 1995; 270:16449 - 57; http://dx.doi.org/10.1074/jbc.270.27.16449; PMID: 7608217
  • Lange CA. Integration of progesterone receptor action with rapid signaling events in breast cancer models. J Steroid Biochem Mol Biol 2008; 108:203 - 12; http://dx.doi.org/10.1016/j.jsbmb.2007.09.019; PMID: 17964138
  • Lange CA, Richer JK, Horwitz KB. Hypothesis: Progesterone primes breast cancer cells for cross-talk with proliferative or antiproliferative signals. Mol Endocrinol 1999; 13:829 - 36; http://dx.doi.org/10.1210/me.13.6.829; PMID: 10379882
  • Proietti C, Salatino M, Rosemblit C, Carnevale R, Pecci A, Kornblihtt AR, et al. Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells. Mol Cell Biol 2005; 25:4826 - 40; http://dx.doi.org/10.1128/MCB.25.12.4826-4840.2005; PMID: 15923602
  • Sagare-Patil V, Modi D. Progesterone activates Janus Kinase 1/2 and activators of transcription 1 (JAK1-2/STAT1) pathway in human spermatozoa. Andrologia 2013; 45:178 - 86; http://dx.doi.org/10.1111/j.1439-0272.2012.01332.x; PMID: 22748021
  • Laflamme J, Akoum A, Leclerc P. Induction of human sperm capacitation and protein tyrosine phosphorylation by endometrial cells and interleukin-6. Mol Hum Reprod 2005; 11:141 - 50; http://dx.doi.org/10.1093/molehr/gah142; PMID: 15665187
  • Lachance C, Leclerc P. Mediators of the Jak/STAT signaling pathway in human spermatozoa. Biol Reprod 2011; 85:1222 - 31; http://dx.doi.org/10.1095/biolreprod.111.092379; PMID: 21880948
  • Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol 2002; 20:3001 - 15; http://dx.doi.org/10.1200/JCO.2002.10.018; PMID: 12089231
  • Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 2002; 277:7076 - 85; http://dx.doi.org/10.1074/jbc.M108255200; PMID: 11751884
  • Kanda T, Steele R, Ray R, Ray RB. Hepatitis C virus core protein augments androgen receptor-mediated signaling. J Virol 2008; 82:11066 - 72; http://dx.doi.org/10.1128/JVI.01300-08; PMID: 18768969
  • Okitsu K, Kanda T, Imazeki F, Yonemitsu Y, Ray RB, Chang C, et al. Involvement of interleukin-6 and androgen receptor signaling in pancreatic cancer. Genes Cancer 2010; 1:859 - 67; http://dx.doi.org/10.1177/1947601910383417; PMID: 21779469
  • Martinez HD, Hsiao JJ, Jasavala RJ, Hinkson IV, Eng JK, Wright ME. Androgen-sensitive microsomal signaling networks coupled to the proliferation and differentiation of human prostate cancer cells. Genes Cancer 2011; 2:956 - 78; http://dx.doi.org/10.1177/1947601912436422; PMID: 22701762
  • Lefrancois-Martinez AM, Blondet-Trichard A, Binart N, Val P, Chambon C, Sahut-Barnola I, et al. Transcriptional control of adrenal steroidogenesis: novel connection between Janus kinase (JAK) 2 protein and protein kinase A (PKA) through stabilization of cAMP response element-binding protein (CREB) transcription factor. J Biol Chem 2011; 286:32976 - 85; http://dx.doi.org/10.1074/jbc.M111.218016; PMID: 21808064
  • Johnston CI. Franz Volhard Lecture. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. J Hypertens Suppl 1992; 10:S13 - 26; PMID: 1337911
  • Marrero MB, Venema VJ, Ju H, Eaton DC, Venema RC. Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am J Physiol 1998; 275:C1216 - 23; PMID: 9814969
  • Li J, Feltzer RE, Dawson KL, Hudson EA, Clark BJ. Janus kinase 2 and calcium are required for angiotensin II-dependent activation of steroidogenic acute regulatory protein transcription in H295R human adrenocortical cells. J Biol Chem 2003; 278:52355 - 62; http://dx.doi.org/10.1074/jbc.M305232200; PMID: 14565954
  • Sugiyama T, Yoshimoto T, Tsuchiya K, Gochou N, Hirono Y, Tateno T, et al. Aldosterone induces angiotensin converting enzyme gene expression via a JAK2-dependent pathway in rat endothelial cells. Endocrinology 2005; 146:3900 - 6; http://dx.doi.org/10.1210/en.2004-1674; PMID: 15932931
  • Saha S, Bornstein SR, Graessler J, Kopprasch S. Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways. Cell Tissue Res 2012; 348:71 - 80; http://dx.doi.org/10.1007/s00441-012-1346-3; PMID: 22331364
  • Almawi WY, Beyhum HN, Rahme AA, Rieder MJ. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 1996; 60:563 - 72; PMID: 8929546
  • Necela BM, Cidlowski JA. Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc Am Thorac Soc 2004; 1:239 - 46; http://dx.doi.org/10.1513/pats.200402-005MS; PMID: 16113441
  • Bianchi M, Meng C, Ivashkiv LB. Inhibition of IL-2-induced Jak-STAT signaling by glucocorticoids. Proc Natl Acad Sci U S A 2000; 97:9573 - 8; http://dx.doi.org/10.1073/pnas.160099797; PMID: 10920190
  • Haffner MC, Jurgeit A, Berlato C, Geley S, Parajuli N, Yoshimura A, et al. Interaction and functional interference of glucocorticoid receptor and SOCS1. J Biol Chem 2008; 283:22089 - 96; http://dx.doi.org/10.1074/jbc.M801041200; PMID: 18524780
  • Greenstein S, Ghias K, Krett NL, Rosen ST. Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res 2002; 8:1681 - 94; PMID: 12060604
  • Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol 2002; 71:9 - 15; PMID: 11781376
  • Krasil’nikov M, Shatskaya V. Signal transducer and activator of transcription-3 and phosphatidylinositol-3 kinase as coordinate regulators of melanoma cell response to glucocorticoid hormones. J Steroid Biochem Mol Biol 2002; 82:369 - 76; http://dx.doi.org/10.1016/S0960-0760(02)00223-6; PMID: 12589944
  • Yang R, Barouch LA. Leptin signaling and obesity: cardiovascular consequences. Circ Res 2007; 101:545 - 59; http://dx.doi.org/10.1161/CIRCRESAHA.107.156596; PMID: 17872473
  • Zakrzewska KE, Cusin I, Sainsbury A, Rohner-Jeanrenaud F, Jeanrenaud B. Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance. Diabetes 1997; 46:717 - 9; http://dx.doi.org/10.2337/diabetes.46.4.717; PMID: 9075817
  • Ishida-Takahashi R, Uotani S, Abe T, Degawa-Yamauchi M, Fukushima T, Fujita N, et al. Rapid inhibition of leptin signaling by glucocorticoids in vitro and in vivo. J Biol Chem 2004; 279:19658 - 64; http://dx.doi.org/10.1074/jbc.M310864200; PMID: 14993217
  • Douer D, Ramezani L, Parker J, Levine AM. All-trans-retinoic acid effects the growth, differentiation and apoptosis of normal human myeloid progenitors derived from purified CD34+ bone marrow cells. Leukemia 2000; 14:874 - 81; http://dx.doi.org/10.1038/sj.leu.2401772; PMID: 10803520
  • Labrecque J, Allan D, Chambon P, Iscove NN, Lohnes D, Hoang T. Impaired granulocytic differentiation in vitro in hematopoietic cells lacking retinoic acid receptors alpha1 and gamma. Blood 1998; 92:607 - 15; PMID: 9657762
  • Collins SJ. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002; 16:1896 - 905; http://dx.doi.org/10.1038/sj.leu.2402718; PMID: 12357341
  • Si J, Collins SJ. IL-3-induced enhancement of retinoic acid receptor activity is mediated through Stat5, which physically associates with retinoic acid receptors in an IL-3-dependent manner. Blood 2002; 100:4401 - 9; http://dx.doi.org/10.1182/blood-2001-12-0374; PMID: 12393611
  • Herrera F, Chen Q, Schubert D. Synergistic effect of retinoic acid and cytokines on the regulation of glial fibrillary acidic protein expression. J Biol Chem 2010; 285:38915 - 22; http://dx.doi.org/10.1074/jbc.M110.170274; PMID: 20876578
  • Murray M, Butler AM, Fiala-Beer E, Su GM. Phospho-STAT5 accumulation in nuclear fractions from vitamin A-deficient rat liver. FEBS Lett 2005; 579:3669 - 73; http://dx.doi.org/10.1016/j.febslet.2005.05.052; PMID: 15963505
  • Fleet JC. Molecular actions of vitamin D contributing to cancer prevention. Mol Aspects Med 2008; 29:388 - 96; http://dx.doi.org/10.1016/j.mam.2008.07.003; PMID: 18755215
  • Kovalenko PL, Zhang Z, Cui M, Clinton SK, Fleet JC. 1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics 2010; 11:26; http://dx.doi.org/10.1186/1471-2164-11-26; PMID: 20070897
  • Muthian G, Raikwar HP, Rajasingh J, Bright JJ. 1,25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis. J Neurosci Res 2006; 83:1299 - 309; http://dx.doi.org/10.1002/jnr.20826; PMID: 16547967
  • Morales O, Faulds MH, Lindgren UJ, Haldosén LA. 1Alpha,25-dihydroxyvitamin D3 inhibits GH-induced expression of SOCS3 and CIS and prolongs growth hormone signaling via the Janus kinase (JAK2)/signal transducers and activators of transcription (STAT5) system in osteoblast-like cells. J Biol Chem 2002; 277:34879 - 84; http://dx.doi.org/10.1074/jbc.M204819200; PMID: 12107179
  • Wahli W, Braissant O, Desvergne B. Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more... Chem Biol 1995; 2:261 - 6; http://dx.doi.org/10.1016/1074-5521(95)90045-4; PMID: 9383428
  • Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45:120 - 59; http://dx.doi.org/10.1016/j.plipres.2005.12.002; PMID: 16476485
  • Peters JM, Cattley RC, Gonzalez FJ. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 1997; 18:2029 - 33; http://dx.doi.org/10.1093/carcin/18.11.2029; PMID: 9395198
  • Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 1995; 15:3012 - 22; PMID: 7539101
  • Sugiyama H, Yamada J, Suga T. Effects of testosterone, hypophysectomy and growth hormone treatment on clofibrate induction of peroxisomal beta-oxidation in female rat liver. Biochem Pharmacol 1994; 47:918 - 21; http://dx.doi.org/10.1016/0006-2952(94)90494-4; PMID: 8135869
  • Sundseth SS, Waxman DJ. Sex-dependent expression and clofibrate inducibility of cytochrome P450 4A fatty acid omega-hydroxylases. Male specificity of liver and kidney CYP4A2 mRNA and tissue-specific regulation by growth hormone and testosterone. J Biol Chem 1992; 267:3915 - 21; PMID: 1740439
  • Yamada J, Sugiyama H, Tamura H, Suga T. Hormonal modulation of peroxisomal enzyme induction caused by peroxisome proliferators: suppression by growth and thyroid hormones in cultured rat hepatocytes. Arch Biochem Biophys 1994; 315:555 - 7; http://dx.doi.org/10.1006/abbi.1994.1536; PMID: 7986103
  • Zhou YC, Waxman DJ. Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 1999; 274:2672 - 81; http://dx.doi.org/10.1074/jbc.274.5.2672; PMID: 9915797
  • Panzer U, Zahner G, Wienberg U, Steinmetz OM, Peters A, Turner JE, et al. 15-deoxy-Delta12,14-prostaglandin J2 inhibits INF-gamma-induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells. Nephrol Dial Transplant 2008; 23:3776 - 85; http://dx.doi.org/10.1093/ndt/gfn361; PMID: 18596134