1,420
Views
16
CrossRef citations to date
0
Altmetric
Review

STAT5 acetylation

Mechanisms and consequences for immunological control and leukemogenesis

, , &
Article: e26102 | Received 01 Jun 2013, Accepted 09 Aug 2013, Published online: 19 Aug 2013

References

  • Wieczorek M, Ginter T, Brand P, Heinzel T, Krämer OH. Acetylation modulates the STAT signaling code. Cytokine Growth Factor Rev 2012; 23:293 - 305; http://dx.doi.org/10.1016/j.cytogfr.2012.06.005; PMID: 22795479
  • O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 2013; 368:161 - 70; http://dx.doi.org/10.1056/NEJMra1202117; PMID: 23301733
  • Haan C, Kreis S, Margue C, Behrmann I. Jaks and cytokine receptors--an intimate relationship. Biochem Pharmacol 2006; 72:1538 - 46; http://dx.doi.org/10.1016/j.bcp.2006.04.013; PMID: 16750817
  • Krämer O, Moriggl R. Acetylation and sumoylation control STAT5 activation antagonistically. JAK-STAT 2012; 1:203 - 7; http://dx.doi.org/10.4161/jkst.21232
  • Ferbeyre G, Moriggl R. The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochim Biophys Acta 2011; 1815:104 - 14; PMID: 20969928
  • Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD, Li D, Durum SK, Jiang Q, Bhandoola A, et al. Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci U S A 2006; 103:1000 - 5; http://dx.doi.org/10.1073/pnas.0507350103; PMID: 16418296
  • Wang Z, Li G, Tse W, Bunting KD. Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement. Blood 2009; 113:4856 - 65; http://dx.doi.org/10.1182/blood-2008-09-181107; PMID: 19258595
  • Schepers H, Wierenga ATJ, Vellenga E, Schuringa JJ. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAK-STAT 2011; 1:13 - 22; http://dx.doi.org/10.4161/jkst.19316
  • Haan C, Behrmann I, Haan S. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. J Cell Mol Med 2010; 14:504 - 27; PMID: 20132407
  • Horvath CM, Wen Z, Darnell JE Jr.. A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 1995; 9:984 - 94; http://dx.doi.org/10.1101/gad.9.8.984; PMID: 7774815
  • Soldaini E, John S, Moro S, Bollenbacher J, Schindler U, Leonard WJ. DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol Cell Biol 2000; 20:389 - 401; http://dx.doi.org/10.1128/MCB.20.1.389-401.2000; PMID: 10594041
  • John S, Vinkemeier U, Soldaini E, Darnell JE Jr., Leonard WJ. The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 1999; 19:1910 - 8; PMID: 10022878
  • Lin JX, Li P, Liu D, Jin HT, He J, Ata Ur Rasheed M, Rochman Y, Wang L, Cui K, Liu C, et al. Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 2012; 36:586 - 99; http://dx.doi.org/10.1016/j.immuni.2012.02.017; PMID: 22520852
  • Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S, Hoffmeyer A, Bauer A, Piekorz R, Wang D, et al. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 2005; 7:87 - 99; http://dx.doi.org/10.1016/j.ccr.2004.12.010; PMID: 15652752
  • Nelson EA, Sharma SV, Settleman J, Frank DA. A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget 2011; 2:518 - 24; PMID: 21680956
  • Schindler C, Plumlee C. Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol 2008; 19:311 - 8; http://dx.doi.org/10.1016/j.semcdb.2008.08.010; PMID: 18765289
  • Tang JZ, Zuo ZH, Kong XJ, Steiner M, Yin Z, Perry JK, Zhu T, Liu DX, Lobie PE. Signal transducer and activator of transcription (STAT)-5A and STAT5B differentially regulate human mammary carcinoma cell behavior. Endocrinology 2010; 151:43 - 55; http://dx.doi.org/10.1210/en.2009-0651; PMID: 19966185
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646 - 74; http://dx.doi.org/10.1016/j.cell.2011.02.013; PMID: 21376230
  • Dieker J, Muller S. Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol 2010; 39:78 - 84; http://dx.doi.org/10.1007/s12016-009-8173-7; PMID: 19662539
  • Müller S, Krämer OH. Inhibitors of HDACs--effective drugs against cancer?. Curr Cancer Drug Targets 2010; 10:210 - 28; http://dx.doi.org/10.2174/156800910791054149; PMID: 20201785
  • Schneider G, Krämer OH, Fritsche P, Schüler S, Schmid RM, Saur D. Targeting histone deacetylases in pancreatic ductal adenocarcinoma. J Cell Mol Med 2010; 14:6A 1255 - 63; http://dx.doi.org/10.1111/j.1582-4934.2009.00974.x; PMID: 19929947
  • Grant S, Dai Y. Histone deacetylase inhibitors and rational combination therapies. Adv Cancer Res 2012; 116:199 - 237; PMID: 23088872
  • Botrugno OA, Santoro F, Minucci S. Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer. Cancer Lett 2009; 280:134 - 44; http://dx.doi.org/10.1016/j.canlet.2009.02.027; PMID: 19345000
  • Buchwald M, Krämer OH, Heinzel T. HDACi--targets beyond chromatin. Cancer Lett 2009; 280:160 - 7; http://dx.doi.org/10.1016/j.canlet.2009.02.028; PMID: 19342155
  • Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2009; 41:185 - 98; http://dx.doi.org/10.1016/j.biocel.2008.08.027; PMID: 18804549
  • Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, Ross K, Chang CY, Bosco J, West N, Morse E, et al. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A 2010; 107:12617 - 22; http://dx.doi.org/10.1073/pnas.1006774107; PMID: 20616024
  • Krämer OH. HDAC2: a critical factor in health and disease. Trends Pharmacol Sci 2009; 30:647 - 55; http://dx.doi.org/10.1016/j.tips.2009.09.007; PMID: 19892411
  • Bressi JC, Jennings AJ, Skene R, Wu Y, Melkus R, De Jong R, O’Connell S, Grimshaw CE, Navre M, Gangloff AR. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg Med Chem Lett 2010; 20:3142 - 5; http://dx.doi.org/10.1016/j.bmcl.2010.03.091; PMID: 20392638
  • Ma L, Gao JS, Guan Y, Shi X, Zhang H, Ayrapetov MK, Zhang Z, Xu L, Hyun YM, Kim M, et al. Acetylation modulates prolactin receptor dimerization. Proc Natl Acad Sci U S A 2010; 107:19314 - 9; http://dx.doi.org/10.1073/pnas.1010253107; PMID: 20962278
  • Krämer OH, Knauer SK, Greiner G, Jandt E, Reichardt S, Gührs KH, Stauber RH, Böhmer FD, Heinzel T. A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 2009; 23:223 - 35; http://dx.doi.org/10.1101/gad.479209; PMID: 19171783
  • Tang X, Gao JS, Guan YJ, McLane KE, Yuan ZL, Ramratnam B, Chin YE. Acetylation-dependent signal transduction for type I interferon receptor. Cell 2007; 131:93 - 105; http://dx.doi.org/10.1016/j.cell.2007.07.034; PMID: 17923090
  • Van Nguyen T, Angkasekwinai P, Dou H, Lin FM, Lu LS, Cheng J, Chin YE, Dong C, Yeh ET. SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell 2012; 45:210 - 21; http://dx.doi.org/10.1016/j.molcel.2011.12.026; PMID: 22284677
  • Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, Becker S. Structure of the unphosphorylated STAT5a dimer. J Biol Chem 2005; 280:40782 - 7; http://dx.doi.org/10.1074/jbc.M507682200; PMID: 16192273
  • Bernadó P, Pérez Y, Blobel J, Fernández-Recio J, Svergun DI, Pons M. Structural characterization of unphosphorylated STAT5a oligomerization equilibrium in solution by small-angle X-ray scattering. Protein Sci 2009; 18:716 - 26; PMID: 19309697
  • Braunstein J, Brutsaert S, Olson R, Schindler C. STATs dimerize in the absence of phosphorylation. J Biol Chem 2003; 278:34133 - 40; http://dx.doi.org/10.1074/jbc.M304531200; PMID: 12832402
  • Ndubuisi MI, Guo GG, Fried VA, Etlinger JD, Sehgal PB. Cellular physiology of STAT3: Where’s the cytoplasmic monomer?. J Biol Chem 1999; 274:25499 - 509; http://dx.doi.org/10.1074/jbc.274.36.25499; PMID: 10464281
  • Kretzschmar AK, Dinger MC, Henze C, Brocke-Heidrich K, Horn F. Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells. Biochem J 2004; 377:289 - 97; http://dx.doi.org/10.1042/BJ20030708; PMID: 12974672
  • Stancato LF, David M, Carter-Su C, Larner AC, Pratt WB. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J Biol Chem 1996; 271:4134 - 7; http://dx.doi.org/10.1074/jbc.271.8.4134; PMID: 8626752
  • Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475 - 87; http://dx.doi.org/10.1016/S0092-8674(02)00654-2; PMID: 11909519
  • Krämer OH, Heinzel T. Phosphorylation-acetylation switch in the regulation of STAT1 signaling. Mol Cell Endocrinol 2010; 315:40 - 8; http://dx.doi.org/10.1016/j.mce.2009.10.007; PMID: 19879327
  • Nakajima H, Brindle PK, Handa M, Ihle JN. Functional interaction of STAT5 and nuclear receptor co-repressor SMRT: implications in negative regulation of STAT5-dependent transcription. EMBO J 2001; 20:6836 - 44; http://dx.doi.org/10.1093/emboj/20.23.6836; PMID: 11726519
  • Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M, Miyajima A, Kitamura T. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 1998; 18:3871 - 9; PMID: 9632771
  • Rascle A, Johnston JA, Amati B. Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 2003; 23:4162 - 73; http://dx.doi.org/10.1128/MCB.23.12.4162-4173.2003; PMID: 12773560
  • Sebastián C, Serra M, Yeramian A, Serrat N, Lloberas J, Celada A. Deacetylase activity is required for STAT5-dependent GM-CSF functional activity in macrophages and differentiation to dendritic cells. J Immunol 2008; 180:5898 - 906; PMID: 18424709
  • Sakamoto S, Potla R, Larner AC. Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes. J Biol Chem 2004; 279:40362 - 7; http://dx.doi.org/10.1074/jbc.M406400200; PMID: 15194680
  • Wood AD, Chen E, Donaldson IJ, Hattangadi S, Burke KA, Dawson MA, Miranda-Saavedra D, Lodish HF, Green AR, Göttgens B. ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood 2009; 114:1820 - 30; http://dx.doi.org/10.1182/blood-2009-02-206573; PMID: 19571317
  • Xu M, Nie L, Kim SH, Sun XH. STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPbeta. EMBO J 2003; 22:893 - 904; http://dx.doi.org/10.1093/emboj/cdg094; PMID: 12574125
  • Nguyên TL, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS, Yasmeen A, Bismar TA, Kirn D, Falls T, et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci U S A 2008; 105:14981 - 6; http://dx.doi.org/10.1073/pnas.0803988105; PMID: 18815361
  • Nguyen TL, Wilson MG, Hiscott J. Oncolytic viruses and histone deacetylase inhibitors--a multi-pronged strategy to target tumor cells. Cytokine Growth Factor Rev 2010; 21:153 - 9; http://dx.doi.org/10.1016/j.cytogfr.2010.03.002; PMID: 20395162
  • Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20:6969 - 78; http://dx.doi.org/10.1093/emboj/20.24.6969; PMID: 11742974
  • Alvarez-Breckenridge CA, Yu J, Price R, Wei M, Wang Y, Nowicki MO, Ha YP, Bergin S, Hwang C, Fernandez SA, et al. The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 2012; 86:4566 - 77; http://dx.doi.org/10.1128/JVI.05545-11; PMID: 22318143
  • Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y, Beug H, Hennighausen L, Moriggl R, Sexl V. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 2006; 107:4898 - 906; http://dx.doi.org/10.1182/blood-2005-09-3596; PMID: 16493008
  • Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P, Strasser A, Busslinger M. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 2010; 11:171 - 9; http://dx.doi.org/10.1038/ni.1827; PMID: 19946273
  • Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98:181 - 91; http://dx.doi.org/10.1016/S0092-8674(00)81013-2; PMID: 10428030
  • Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 2001; 98:3261 - 73; http://dx.doi.org/10.1182/blood.V98.12.3261; PMID: 11719363
  • Kikuchi K, Lai AY, Hsu CL, Kondo M. IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J Exp Med 2005; 201:1197 - 203; http://dx.doi.org/10.1084/jem.20050158; PMID: 15837809
  • Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999; 18:4754 - 65; http://dx.doi.org/10.1093/emboj/18.17.4754; PMID: 10469654
  • Marshall AJ, Fleming HE, Wu GE, Paige CJ. Modulation of the IL-7 dose-response threshold during pro-B cell differentiation is dependent on pre-B cell receptor expression. J Immunol 1998; 161:6038 - 45; PMID: 9834086
  • Ram PA, Waxman DJ. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 1999; 274:35553 - 61; http://dx.doi.org/10.1074/jbc.274.50.35553; PMID: 10585430
  • Henriques CM, Rino J, Nibbs RJ, Graham GJ, Barata JT. IL-7 induces rapid clathrin-mediated internalization and JAK3-dependent degradation of IL-7Ralpha in T cells. Blood 2010; 115:3269 - 77; http://dx.doi.org/10.1182/blood-2009-10-246876; PMID: 20190194
  • Calabrese V, Mallette FA, Deschênes-Simard X, Ramanathan S, Gagnon J, Moores A, Ilangumaran S, Ferbeyre G. SOCS1 links cytokine signaling to p53 and senescence. Mol Cell 2009; 36:754 - 67; http://dx.doi.org/10.1016/j.molcel.2009.09.044; PMID: 20005840
  • Mallette FA, Calabrese V, Ilangumaran S, Ferbeyre G. SOCS1, a novel interaction partner of p53 controlling oncogene-induced senescence. Aging (Albany NY) 2010; 2:445 - 52; PMID: 20622265
  • Gao SM, Chen CQ, Wang LY, Hong LL, Wu JB, Dong PH, Yu FJ. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol 2013; 41:261 - , e4; http://dx.doi.org/10.1016/j.exphem.2012.10.012; PMID: 23111066
  • Xiong H, Du W, Zhang YJ, Hong J, Su WY, Tang JT, Wang YC, Lu R, Fang JY. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinog 2012; 51:174 - 84; http://dx.doi.org/10.1002/mc.20777; PMID: 21520296
  • Klampfer L. Signal transducers and activators of transcription (STATs): Novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets 2006; 6:107 - 21; http://dx.doi.org/10.2174/156800906776056491; PMID: 16529541
  • Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8:947 - 56; http://dx.doi.org/10.1038/nrm2293; PMID: 18000527
  • Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 2007; 131:584 - 95; http://dx.doi.org/10.1016/j.cell.2007.08.045; PMID: 17981124
  • Kosan C, Saba I, Godmann M, Herold S, Herkert B, Eilers M, Möröy T. Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity 2010; 33:917 - 28; http://dx.doi.org/10.1016/j.immuni.2010.11.028; PMID: 21167753
  • Saba I, Kosan C, Vassen L, Möröy T. IL-7R-dependent survival and differentiation of early T-lineage progenitors is regulated by the BTB/POZ domain transcription factor Miz-1. Blood 2011; 117:3370 - 81; http://dx.doi.org/10.1182/blood-2010-09-310680; PMID: 21258009
  • Kondo M, Akashi K, Domen J, Sugamura K, Weissman IL. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice. Immunity 1997; 7:155 - 62; http://dx.doi.org/10.1016/S1074-7613(00)80518-X; PMID: 9252128
  • Beier UH, Wang L, Hancock WW. Combination of isoform-selective histone/protein deacetylase inhibitors improves Foxp3+ T-regulatory cell function. Cell Cycle 2012; 11:3351 - 2; http://dx.doi.org/10.4161/cc.21876; PMID: 22918251
  • Friedbichler K, Kerenyi MA, Kovacic B, Li G, Hoelbl A, Yahiaoui S, Sexl V, Müllner EW, Fajmann S, Cerny-Reiterer S, et al. Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood 2010; 116:1548 - 58; http://dx.doi.org/10.1182/blood-2009-12-258913; PMID: 20508164
  • Nelson EA, Walker SR, Xiang M, Weisberg E, Bar-Natan M, Barrett R, Liu S, Kharbanda S, Christie AL, Nicolais M, et al. The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations. Genes Cancer 2012; 3:503 - 11; http://dx.doi.org/10.1177/1947601912466555; PMID: 23264850
  • Page BD, Khoury H, Laister RC, Fletcher S, Vellozo M, Manzoli A, Yue P, Turkson J, Minden MD, Gunning PT. Small molecule STAT5-SH2 domain inhibitors exhibit potent antileukemia activity. J Med Chem 2012; 55:1047 - 55; http://dx.doi.org/10.1021/jm200720n; PMID: 22148584
  • Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21:1717 - 26; http://dx.doi.org/10.1016/j.cellsig.2009.06.002; PMID: 19540337
  • Hochhaus A, La Rosée P, Müller MC, Ernst T, Cross NC. Impact of BCR-ABL mutations on patients with chronic myeloid leukemia. Cell Cycle 2011; 10:250 - 60; http://dx.doi.org/10.4161/cc.10.2.14537; PMID: 21220945
  • Cross NC, White HE, Müller MC, Saglio G, Hochhaus A. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 2012; 26:2172 - 5; http://dx.doi.org/10.1038/leu.2012.104; PMID: 22504141
  • Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK. SIAH proteins: critical roles in leukemogenesis. Leukemia 2013; 27:792 - 802; http://dx.doi.org/10.1038/leu.2012.284; PMID: 23038274
  • Scott E, Hexner E, Perl A, Carroll M. Targeted signal transduction therapies in myeloid malignancies. Curr Oncol Rep 2010; 12:358 - 65; http://dx.doi.org/10.1007/s11912-010-0126-z; PMID: 20809224
  • Schmidt-Arras D, Böhmer SA, Koch S, Müller JP, Blei L, Cornils H, Bauer R, Korasikha S, Thiede C, Böhmer FD. Anchoring of FLT3 in the endoplasmic reticulum alters signaling quality. Blood 2009; 113:3568 - 76; http://dx.doi.org/10.1182/blood-2007-10-121426; PMID: 19204327
  • Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Böhmer FD, Gerke V, Schmidt-Arras DE, Berdel WE, Müller-Tidow C, et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 2009; 36:326 - 39; http://dx.doi.org/10.1016/j.molcel.2009.09.019; PMID: 19854140
  • Chatain N, Ziegler P, Fahrenkamp D, Jost E, Moriggl R, Schmitz-Van de Leur H, Müller-Newen G. Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells. Oncogene 2013; 32:3587 - 97; http://dx.doi.org/10.1038/onc.2012.369; PMID: 22926520
  • Godfrey R, Arora D, Bauer R, Stopp S, Müller JP, Heinrich T, Böhmer SA, Dagnell M, Schnetzke U, Scholl S, et al. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ. Blood 2012; 119:4499 - 511; http://dx.doi.org/10.1182/blood-2011-02-336446; PMID: 22438257
  • Nieborowska-Skorska M, Kopinski PK, Ray R, Hoser G, Ngaba D, Flis S, Cramer K, Reddy MM, Koptyra M, Penserga T, et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 2012; 119:4253 - 63; http://dx.doi.org/10.1182/blood-2011-10-385658; PMID: 22411871
  • Woolley JF, Naughton R, Stanicka J, Gough DR, Bhatt L, Dickinson BC, Chang CJ, Cotter TG. H2O2 production downstream of FLT3 is mediated by p22phox in the endoplasmic reticulum and is required for STAT5 signalling. PLoS One 2012; 7:e34050; http://dx.doi.org/10.1371/journal.pone.0034050; PMID: 22807997
  • Nguyen T, Dai Y, Attkisson E, Kramer L, Jordan N, Nguyen N, Kolluri N, Muschen M, Grant S. HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer Res 2011; 17:3219 - 32; http://dx.doi.org/10.1158/1078-0432.CCR-11-0234; PMID: 21474579
  • Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2013; 332:237 - 48; http://dx.doi.org/10.1016/j.canlet.2012.01.007; PMID: 22261329
  • Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA, Fajmann S, Grebien F, Warsch W, Stengl G, et al. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol Med 2010; 2:98 - 110; http://dx.doi.org/10.1002/emmm.201000062; PMID: 20201032
  • Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Hölbl A, Gleixner KV, Dworzak M, Mayerhofer M, Hoermann G, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011; 117:3409 - 20; http://dx.doi.org/10.1182/blood-2009-10-248211; PMID: 21220747
  • Li G, Miskimen KL, Wang Z, Xie XY, Tse W, Gouilleux F, Moriggl R, Bunting KD. Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin. Leukemia 2010; 24:1397 - 405; http://dx.doi.org/10.1038/leu.2010.131; PMID: 20535152
  • Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet?. Clin Cancer Res 2012; 18:64 - 76; http://dx.doi.org/10.1158/1078-0432.CCR-11-1000; PMID: 22215907
  • Mollapour M, Neckers L. Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 2012; 1823:648 - 55; http://dx.doi.org/10.1016/j.bbamcr.2011.07.018; PMID: 21856339
  • Jackson SE. Hsp90: structure and function. Top Curr Chem 2013; 328:155 - 240; http://dx.doi.org/10.1007/128_2012_356; PMID: 22955504
  • Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P, Mandawat A, Atadja P, Bradner JE, Bhalla K. HDAC6 inhibition enhances 17-AAG--mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 2008; 112:1886 - 93; http://dx.doi.org/10.1182/blood-2008-03-143644; PMID: 18591380
  • Dallavalle S, Pisano C, Zunino F. Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol 2012; 84:756 - 65; http://dx.doi.org/10.1016/j.bcp.2012.06.014; PMID: 22728920
  • Inks ES, Josey BJ, Jesinkey SR, Chou CJ. A novel class of small molecule inhibitors of HDAC6. ACS Chem Biol 2012; 7:331 - 9; http://dx.doi.org/10.1021/cb200134p; PMID: 22047054
  • Rahmani M, Reese E, Dai Y, Bauer C, Kramer LB, Huang M, Jove R, Dent P, Grant S. Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol Pharmacol 2005; 67:1166 - 76; http://dx.doi.org/10.1124/mol.104.007831; PMID: 15625278
  • Bareng J, Jilani I, Gorre M, Kantarjian H, Giles F, Hannah A, Albitar M. A potential role for HSP90 inhibitors in the treatment of JAK2 mutant-positive diseases as demonstrated using quantitative flow cytometry. Leuk Lymphoma 2007; 48:2189 - 95; http://dx.doi.org/10.1080/10428190701607576; PMID: 17926180
  • Nishioka C, Ikezoe T, Yang J, Takeuchi S, Koeffler HP, Yokoyama A. MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells. Leuk Res 2008; 32:1382 - 92; http://dx.doi.org/10.1016/j.leukres.2008.02.018; PMID: 18394702
  • Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007; 26:5468 - 76; http://dx.doi.org/10.1038/sj.onc.1210614; PMID: 17694087
  • Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005; 280:26729 - 34; http://dx.doi.org/10.1074/jbc.C500186200; PMID: 15937340
  • Krämer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 2003; 22:3411 - 20; http://dx.doi.org/10.1093/emboj/cdg315; PMID: 12840003
  • Brandl A, Wagner T, Uhlig KM, Knauer SK, Stauber RH, Melchior F, Schneider G, Heinzel T, Krämer OH. Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J Mol Cell Biol 2012; 4:284 - 93; http://dx.doi.org/10.1093/jmcb/mjs013; PMID: 22493095
  • Buchi F, Pastorelli R, Ferrari G, Spinelli E, Gozzini A, Sassolini F, Bosi A, Tombaccini D, Santini V. Acetylome and phosphoproteome modifications in imatinib resistant chronic myeloid leukaemia cells treated with valproic acid. Leuk Res 2011; 35:921 - 31; http://dx.doi.org/10.1016/j.leukres.2011.01.033; PMID: 21382639
  • Pietschmann K, Bolck HA, Buchwald M, Spielberg S, Polzer H, Spiekermann K, Bug G, Heinzel T, Böhmer FD, Krämer OH. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors. Mol Cancer Ther 2012; 11:2373 - 83; http://dx.doi.org/10.1158/1535-7163.MCT-12-0129; PMID: 22942377
  • Buchwald M, Pietschmann K, Müller JP, Böhmer FD, Heinzel T, Krämer OH. Ubiquitin conjugase UBCH8 targets active FMS-like tyrosine kinase 3 for proteasomal degradation. Leukemia 2010; 24:1412 - 21; http://dx.doi.org/10.1038/leu.2010.114; PMID: 20508617
  • Krämer OH, Müller S, Buchwald M, Reichardt S, Heinzel T. Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J 2008; 22:1369 - 79; http://dx.doi.org/10.1096/fj.06-8050com; PMID: 18073335
  • Pietschmann K, Buchwald M, Müller S, Knauer SK, Kögl M, Heinzel T, Krämer OH. Differential regulation of PML-RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int J Biochem Cell Biol 2012; 44:132 - 8; http://dx.doi.org/10.1016/j.biocel.2011.10.008; PMID: 22037423
  • Kazi JU, Rönnstrand L. Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Mol Oncol 2013; 7:693 - 703; http://dx.doi.org/10.1016/j.molonc.2013.02.020; PMID: 23548639
  • Montano-Almendras CP, Essaghir A, Schoemans H, Varis I, Noël LA, Velghe AI, Latinne D, Knoops L, Demoulin JB. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-κB. Haematologica 2012; 97:1064 - 72; http://dx.doi.org/10.3324/haematol.2011.047530; PMID: 22271894
  • Li B, Zhang G, Li C, He D, Li X, Zhang C, Tang F, Deng X, Lu J, Tang Y, et al. Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL. PLoS One 2012; 7:e34912; http://dx.doi.org/10.1371/journal.pone.0034912; PMID: 22523564
  • Lierman E, Cools J. TV6 and PDGFRB: a license to fuse. Haematologica 2007; 92:145 - 7; http://dx.doi.org/10.3324/haematol.11187; PMID: 17296561
  • Cools J. FIP1L1-PDGFR alpha, a therapeutic target for the treatment of chronic eosinophilic leukemia. Verh K Acad Geneeskd Belg 2005; 67:169 - 76; PMID: 16089297
  • Montgomery ND, Dunphy CH, Mooberry M, Laramore A, Foster MC, Park SI, Fedoriw YD. Diagnostic complexities of eosinophilia. Arch Pathol Lab Med 2013; 137:259 - 69; http://dx.doi.org/10.5858/arpa.2011-0597-RA; PMID: 23368869
  • Metcalfe DD. Mast cells and mastocytosis. Blood 2008; 112:946 - 56; http://dx.doi.org/10.1182/blood-2007-11-078097; PMID: 18684881
  • Furth PA, Nakles RE, Millman S, Diaz-Cruz ES, Cabrera MC. Signal transducer and activator of transcription 5 as a key signaling pathway in normal mammary gland developmental biology and breast cancer. Breast Cancer Res 2011; 13:220; http://dx.doi.org/10.1186/bcr2921; PMID: 22018398
  • Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I, Zerwes HG. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem Biol 2011; 18:314 - 23; http://dx.doi.org/10.1016/j.chembiol.2011.01.012; PMID: 21439476
  • Kaneko M, Ishihara K, Takahashi A, Hong J, Hirasawa N, Zee O, Ohuchi K. Mechanism for the differentiation of EoL-1 cells into eosinophils by histone deacetylase inhibitors. Int Arch Allergy Immunol 2007; 143:Suppl 1 28 - 32; http://dx.doi.org/10.1159/000101401; PMID: 17541273
  • Toffalini F, Kallin A, Vandenberghe P, Pierre P, Michaux L, Cools J, Demoulin JB. The fusion proteins TEL-PDGFRbeta and FIP1L1-PDGFRalpha escape ubiquitination and degradation. Haematologica 2009; 94:1085 - 93; http://dx.doi.org/10.3324/haematol.2008.001149; PMID: 19644140
  • Yamada Y, Cancelas JA. FIP1L1/PDGFR alpha-associated systemic mastocytosis. Int Arch Allergy Immunol 2010; 152:Suppl 1 101 - 5; http://dx.doi.org/10.1159/000312134; PMID: 20523072
  • Mahboobi S, Dove S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T. Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rbeta, and histone deacetylases. J Med Chem 2009; 52:2265 - 79; http://dx.doi.org/10.1021/jm800988r; PMID: 19301902
  • Uecker A, Sicker M, Beckers T, Mahboobi S, Hägerstrand D, Ostman A, Böhmer FD. Chimeric tyrosine kinase-HDAC inhibitors as antiproliferative agents. Anticancer Drugs 2010; 21:759 - 65; http://dx.doi.org/10.1097/CAD.0b013e32833ccf25; PMID: 20613486
  • Morales JK, Falanga YT, Depcrynski A, Fernando J, Ryan JJ. Mast cell homeostasis and the JAK-STAT pathway. Genes Immun 2010; 11:599 - 608; http://dx.doi.org/10.1038/gene.2010.35; PMID: 20535135
  • Drube S, Schmitz F, Göpfert C, Weber F, Kamradt T. C-Kit controls IL-1β-induced effector functions in HMC-cells. Eur J Pharmacol 2012; 675:57 - 62; http://dx.doi.org/10.1016/j.ejphar.2011.11.035; PMID: 22173128
  • Ashman LK, Griffith R. Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs 2013; 22:103 - 15; http://dx.doi.org/10.1517/13543784.2013.740010; PMID: 23127174
  • Mühlenberg T, Zhang Y, Wagner AJ, Grabellus F, Bradner J, Taeger G, Lang H, Taguchi T, Schuler M, Fletcher JA, et al. Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors. Cancer Res 2009; 69:6941 - 50; http://dx.doi.org/10.1158/0008-5472.CAN-08-4004; PMID: 19706776
  • Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P. Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2011; 286:5956 - 66; http://dx.doi.org/10.1074/jbc.M110.182642; PMID: 21135090
  • Harir N, Boudot C, Friedbichler K, Sonneck K, Kondo R, Martin-Lannerée S, Kenner L, Kerenyi M, Yahiaoui S, Gouilleux-Gruart V, et al. Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade. Blood 2008; 112:2463 - 73; http://dx.doi.org/10.1182/blood-2007-09-115477; PMID: 18579792
  • Mithraprabhu S, Grigoriadis G, Khong T, Spencer A. Deactylase inhibition in myeloproliferative neoplasms. Invest New Drugs 2010; 28:Suppl 1 S50 - 7; http://dx.doi.org/10.1007/s10637-010-9590-4; PMID: 21127942
  • Lin TY, Fenger J, Murahari S, Bear MD, Kulp SK, Wang D, Chen CS, Kisseberth WC, London CA. AR-42, a novel HDAC inhibitor, exhibits biologic activity against malignant mast cell lines via down-regulation of constitutively activated Kit. Blood 2010; 115:4217 - 25; http://dx.doi.org/10.1182/blood-2009-07-231985; PMID: 20233974
  • Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 2008; 28:1688 - 701; http://dx.doi.org/10.1128/MCB.01154-06; PMID: 18180281
  • Fiskus W, Rao R, Fernandez P, Herger B, Yang Y, Chen J, Kolhe R, Mandawat A, Wang Y, Joshi R, et al. Molecular and biologic characterization and drug sensitivity of pan-histone deacetylase inhibitor-resistant acute myeloid leukemia cells. Blood 2008; 112:2896 - 905; http://dx.doi.org/10.1182/blood-2007-10-116319; PMID: 18660379
  • Lee SM, Bae JH, Kim MJ, Lee HS, Lee MK, Chung BS, Kim DW, Kang CD, Kim SH. Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 2007; 322:1084 - 92; http://dx.doi.org/10.1124/jpet.107.124461; PMID: 17569822