933
Views
7
CrossRef citations to date
0
Altmetric
Review

The role of a non-canonical JAK-STAT pathway in IFN therapy of poxvirus infection and multiple sclerosis

An example of Occam’s Broom?

&
Article: e26227 | Received 01 Aug 2013, Accepted 20 Aug 2013, Published online: 04 Sep 2013

References

  • Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147:258 - 67; http://dx.doi.org/10.1098/rspb.1957.0048
  • Johnson HM, Smith BG, Baron S. Inhibition of primary in vitro antibody response of mouse spleen cells by interferon preparations. J Immunol 1995; 114:403 - 9
  • Johnson HM, Blalock JE. Interferon immunosuppression: mediation by a suppressor factor. Infect Immun 1980; 29:301 - 5; PMID: 6163706
  • Knobler RL, Panitch HS, Braheny SL, Sipe JC, Rice GP, Huddlestone JR, Francis GS, Hooper CK, Kamin-Lewis RM, Johnson KP, et al. Systemic alpha-interferon therapy of multiple sclerosis. Neurology 1984; 34:1273 - 9; http://dx.doi.org/10.1212/WNL.34.10.1273; PMID: 6384817
  • Brivanlou AH, Darnell JE Jr.. Signal transduction and the control of gene expression. Science 2002; 295:813 - 8; http://dx.doi.org/10.1126/science.1066355; PMID: 11823631
  • Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol 2006; 6:602 - 12; http://dx.doi.org/10.1038/nri1885; PMID: 16868551
  • Gough DJ, Levy DE, Johnstone RW, Clarke CJ. IFNgamma signaling-does it mean JAK-STAT?. Cytokine Growth Factor Rev 2008; 19:383 - 94; http://dx.doi.org/10.1016/j.cytogfr.2008.08.004; PMID: 18929502
  • Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, Hirahara K, Sun HW, Wei L, Vahedi G, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 2011; 12:247 - 54; http://dx.doi.org/10.1038/ni.1995; PMID: 21278738
  • Zula JA, Green HC, Ransohoff RM, Rudick RA, Stark GR, van Boxel-Dezaire AHH. The role of cell type-specific responses in IFN-β therapy of multiple sclerosis. Proc Natl Acad Sci U S A 2011; 108:19689 - 94; http://dx.doi.org/10.1073/pnas.1117347108; PMID: 22106296
  • Ahmed CM, Noon-Song EN, Kemppainen K, Pascalli MP, Johnson HM. Type I IFN receptor controls activated TYK2 in the nucleus: implications for EAE therapy. J Neuroimmunol 2013; 254:101 - 9; http://dx.doi.org/10.1016/j.jneuroim.2012.10.006; PMID: 23110939
  • Subramaniam PS, Torres BA, Johnson HM. So many ligands, so few transcription factors: a new paradigm for signaling through the STAT transcription factors. Cytokine 2001; 15:175 - 87; http://dx.doi.org/10.1006/cyto.2001.0905; PMID: 11563878
  • Rutherford MN, Kumar A, Coulombe B, Skup D, Carver DH, Williams BR. Expression of intracellular interferon constitutively activates ISGF3 and confers resistance to EMC viral infection. J Interferon Cytokine Res 1996; 16:507 - 10; http://dx.doi.org/10.1089/jir.1996.16.507; PMID: 8836915
  • Ahmed CM, Wills KN, Sugarman BJ, Johnson DE, Ramachandra M, Nagabhushan TL, Howe JA. Selective expression of nonsecreted interferon by an adenoviral vector confers antiproliferative and antiviral properties and causes reduction of tumor growth in nude mice. J Interferon Cytokine Res 2001; 21:399 - 408; http://dx.doi.org/10.1089/107999001750277871; PMID: 11440637
  • Ahmed CM, Burkhart MA, Mujtaba MG, Subramaniam PS, Johnson HM. The role of IFNgamma nuclear localization sequence in intracellular function. J Cell Sci 2003; 116:3089 - 98; http://dx.doi.org/10.1242/jcs.00528; PMID: 12799413
  • Ahmed CM, Johnson HM. IFN-γ and its receptor subunit IFNGR1 are recruited to the IFN-γ-activated sequence element at the promoter site of IFN-γ-activated genes: evidence of transactivational activity in IFNGR1. J Immunol 2006; 177:315 - 21; PMID: 16785527
  • Wang YN, Yamaguchi H, Huo L, Du Y, Lee H-J, Lee H-H, Wang H, Hsu J-M, Hung MC. The translocon Sec61β localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem 2010; 285:38720 - 9; http://dx.doi.org/10.1074/jbc.M110.158659; PMID: 20937808
  • Bryant DM, Stow JL. Nuclear translocation of cell-surface receptors: lessons from fibroblast growth factor. Traffic 2005; 6:947 - 54; http://dx.doi.org/10.1111/j.1600-0854.2005.00332.x; PMID: 16138907
  • Burwen SJ, Jones AL. The association of polypeptide hormones and growth factors with the nuclei of target cells. Trends Biochem Sci 1987; 12:159 - 62; http://dx.doi.org/10.1016/0968-0004(87)90074-0
  • Dennett DC. Intuition pumps and other tools for thinking. Norton WW and Co., New York. 2013. Pp. 40-41.
  • Larkin J 3rd, Johnson HM, Subramaniam PS. Differential nuclear localization of the IFNGR-1 and IFNGR-2 subunits of the IFN-gamma receptor complex following activation by IFN-gamma. J Interferon Cytokine Res 2000; 20:565 - 76; http://dx.doi.org/10.1089/10799900050044769; PMID: 10888113
  • Subramaniam PS, Larkin J 3rd, Mujtaba MG, Walter MR, Johnson HM. The COOH-terminal nuclear localization sequence of interferon gamma regulates STAT1 alpha nuclear translocation at an intracellular site. J Cell Sci 2000; 113:2771 - 81; PMID: 10893192
  • Noon-Song EN, Ahmed CM, Dabelic R, Canton J, Johnson HM. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ. Biochem Biophys Res Commun 2011; 410:648 - 53; http://dx.doi.org/10.1016/j.bbrc.2011.06.047; PMID: 21689637
  • Ahmed CM, Burkhart MA, Subramaniam PS, Mujtaba MG, Johnson HM. Peptide mimetics of gamma interferon possess antiviral properties against vaccinia virus and other viruses in the presence of poxvirus B8R protein. J Virol 2005; 79:5632 - 9; http://dx.doi.org/10.1128/JVI.79.9.5632-5639.2005; PMID: 15827178
  • Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447:407 - 12; http://dx.doi.org/10.1038/nature05915; PMID: 17522673
  • Mehta NT, Truax AD, Boyd NH, Greer SF. Early epigenetic events regulate the adaptive immune response gene CIITA. Epigenetics 2011; 6:516 - 25; http://dx.doi.org/10.4161/epi.6.4.14516; PMID: 21266852
  • Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, Kouzarides T. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 2009; 461:819 - 22; http://dx.doi.org/10.1038/nature08448; PMID: 19783980
  • Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S, Gilliland DG, Lodish H. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci U S A 2005; 102:18962 - 7; http://dx.doi.org/10.1073/pnas.0509714102; PMID: 16365288
  • Lu X, Huang LJ, Lodish HF. Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. J Biol Chem 2008; 283:5258 - 66; http://dx.doi.org/10.1074/jbc.M707125200; PMID: 18158285
  • Szente BE, Johnson HM. Binding of IFN γ and its C-terminal peptide to a cytoplasmic domain of its receptor that is essential for function. Biochem Biophys Res Commun 1994; 201:215 - 21; http://dx.doi.org/10.1006/bbrc.1994.1691; PMID: 8198577
  • Moss B. Poxviridae: The viruses and their replication. In Fields Virology, 3rd ed. D. M. Knipe, and P.M. Howley, eds. Lippincott, Williams, and Wilkins, Philadelphia, PA. 2007; pp. 2905-2946.
  • Alcamí A, Smith GL. The vaccinia virus soluble interferon-gamma receptor is a homodimer. J Gen Virol 2002; 83:545 - 9; PMID: 11842249
  • Ahmed CM, Martin JP, Johnson HM. IFN mimetic as a therapeutic for lethal vaccinia virus infection: possible effects on innate and adaptive immune responses. J Immunol 2007; 178:4576 - 83; PMID: 17372016
  • Ahmed CM, Dabelic R, Martin JP, Jager LD, Haider SM, Johnson HM. Enhancement of antiviral immunity by small molecule antagonist of suppressor of cytokine signaling. J Immunol 2010; 185:1103 - 13; http://dx.doi.org/10.4049/jimmunol.0902895; PMID: 20543109
  • Johnson HM, Noon-Song EN, Kemppainen K, Ahmed CM. Steroid-like signalling by interferons: making sense of specific gene activation by cytokines. Biochem J 2012; 443:329 - 38; http://dx.doi.org/10.1042/BJ20112187; PMID: 22452815
  • Alcamí A, Symons JA, Smith GL. The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 2000; 74:11230 - 9; http://dx.doi.org/10.1128/JVI.74.23.11230-11239.2000; PMID: 11070021
  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998; 67:227 - 64; http://dx.doi.org/10.1146/annurev.biochem.67.1.227; PMID: 9759489
  • Burks J. Interferon-beta1b for multiple sclerosis. Expert Rev Neurother 2005; 5:153 - 64; http://dx.doi.org/10.1586/14737175.5.2.153; PMID: 15853486
  • Castro-Borrero W, Graves D, Frohman TC, Flores AB, Hardeman P, Logan D, Orchard M, Greenberg B, Frohman EM. Current and emerging therapies in multiple sclerosis: a systematic review. Ther Adv Neurol Disord 2012; 5:205 - 20; http://dx.doi.org/10.1177/1756285612450936; PMID: 22783370
  • Schwid SR, Thorpe J, Sharief M, Sandberg-Wollheim M, Rammohan K, Wendt J, Panitch H, Goodin D, Li D, Chang P, et al, EVIDENCE (Evidence of Interferon Dose-Response: European North American Comparative Efficacy) Study Group, University of British Columbia MS/MRI Research Group. Enhanced benefit of increasing interferon beta-1a dose and frequency in relapsing multiple sclerosis: the EVIDENCE Study. Arch Neurol 2005; 62:785 - 92; http://dx.doi.org/10.1001/archneur.62.5.785; PMID: 15883267
  • Francis GS, Grumser Y, Alteri E, Micaleff A, O’Brien F, Alsop J, Stam Moraga M, Kaplowitz N. Hepatic reactions during treatment of multiple sclerosis with interferon-beta-1a: incidence and clinical significance. Drug Saf 2003; 26:815 - 27; http://dx.doi.org/10.2165/00002018-200326110-00006; PMID: 12908850
  • Subramaniam PS, Khan SA, Pontzer CH, Johnson HM. Differential recognition of the type I interferon receptor by interferons τ and α is responsible for their disparate cytotoxicities. Proc Natl Acad Sci U S A 1995; 92:12270 - 4; http://dx.doi.org/10.1073/pnas.92.26.12270; PMID: 8618883
  • Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE, Glenn JS, et al. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 2011; 146:621 - 32; http://dx.doi.org/10.1016/j.cell.2011.06.048; PMID: 21854986
  • Weigel NL, Moore NL. Kinases and protein phosphorylation as regulators of steroid hormone action. Nucl Recept Signal 2007; 5:e005; PMID: 17525795
  • Vicent GP, Nacht AS, Zaurín R, Ballaré C, Clausell J, Beato M. Minireview: role of kinases and chromatin remodeling in progesterone signaling to chromatin. Mol Endocrinol 2010; 24:2088 - 98; http://dx.doi.org/10.1210/me.2010-0027; PMID: 20484412
  • Wang YN, Hung MC. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell Biosci 2012; 2:13; http://dx.doi.org/10.1186/2045-3701-2-13; PMID: 22520625
  • Hagan CR, Faivre EJ, Lange CA. Scaffolding actions of membrane-associated progesterone receptors. Steroids 2009; 74:568 - 72; http://dx.doi.org/10.1016/j.steroids.2008.12.004; PMID: 19135465
  • Stanisić V, Lonard DM, O’Malley BW. Modulation of steroid hormone receptor activity. Prog Brain Res 2010; 181:153 - 76; http://dx.doi.org/10.1016/S0079-6123(08)81009-6; PMID: 20478437