1,222
Views
13
CrossRef citations to date
0
Altmetric
Review

JAK-STAT signaling and myocardial glucose metabolism

&
Article: e26458 | Received 30 Aug 2013, Accepted 11 Sep 2013, Published online: 27 Sep 2013

References

  • Opie LH. The Heart: Physiology, from Cell to Circulation. 3rd ed. Philadelphia, New York: Lippincott-Raven; 1998.
  • Stryer L. Biochemistry. 2nd ed. San Francisco: W.H. Freeman and Company; 1981.
  • Lopaschuk GD, Gamble J. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Pharmacol 1994; 72:1101 - 9; http://dx.doi.org/10.1139/y94-156; PMID: 7882173
  • Tamm C, Benzi R, Papageorgiou I, Tardy I, Lerch R. Substrate competition in postischemic myocardium. Effect of substrate availability during reperfusion on metabolic and contractile recovery in isolated rat hearts. Circ Res 1994; 75:1103 - 12; http://dx.doi.org/10.1161/01.RES.75.6.1103; PMID: 7955147
  • Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA. The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci 2007; 64:3069 - 83; http://dx.doi.org/10.1007/s00018-007-7332-3; PMID: 17882378
  • Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 2006; 571:253 - 73; http://dx.doi.org/10.1113/jphysiol.2005.101444; PMID: 16410283
  • Santalucía T, Camps M, Castelló A, Muñoz P, Nuel A, Testar X, Palacin M, Zorzano A. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 1992; 130:837 - 46; http://dx.doi.org/10.1210/en.130.2.837; PMID: 1370797
  • Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci U S A 1991; 88:7815 - 9; http://dx.doi.org/10.1073/pnas.88.17.7815; PMID: 1881917
  • Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 2009; 84:111 - 8; http://dx.doi.org/10.1093/cvr/cvp190; PMID: 19509029
  • Wheeler TJ, Fell RD, Hauck MA. Translocation of two glucose transporters in heart: effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia. Biochim Biophys Acta 1994; 1196:191 - 200; http://dx.doi.org/10.1016/0005-2736(94)00211-8; PMID: 7841183
  • Sun D, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC 3rd. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994; 89:793 - 8; http://dx.doi.org/10.1161/01.CIR.89.2.793; PMID: 8313568
  • Bertrand L, Horman S, Beauloye C, Vanoverschelde J-L. Insulin signalling in the heart. Cardiovasc Res 2008; 79:238 - 48; http://dx.doi.org/10.1093/cvr/cvn093; PMID: 18390897
  • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13:251 - 62; http://dx.doi.org/10.1038/nrm3311; PMID: 22436748
  • Thong FSL, Bilan PJ, Klip A. The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes 2007; 56:414 - 23; http://dx.doi.org/10.2337/db06-0900; PMID: 17259386
  • Montessuit C, Lerch R. Regulation and dysregulation of glucose transport in cardiomyocytes. Biochim Biophys Acta 2013; 1833:848 - 56; http://dx.doi.org/10.1016/j.bbamcr.2012.08.009; PMID: 22967513
  • Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561 - 79; http://dx.doi.org/10.1042/BJ20040752; PMID: 15170386
  • Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 1998; 329:191 - 6; PMID: 9405293
  • Caruso M, Maitan MA, Bifulco G, Miele C, Vigliotta G, Oriente F, Formisano P, Beguinot F. Activation and mitochondrial translocation of protein kinase Cdelta are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells. J Biol Chem 2001; 276:45088 - 97; http://dx.doi.org/10.1074/jbc.M105451200; PMID: 11577086
  • Darnell JE Jr.. STATs and gene regulation. Science 1997; 277:1630 - 5; http://dx.doi.org/10.1126/science.277.5332.1630; PMID: 9287210
  • Levy DE, Darnell JE Jr.. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3:651 - 62; http://dx.doi.org/10.1038/nrm909; PMID: 12209125
  • Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007; 282:20059 - 63; http://dx.doi.org/10.1074/jbc.R700016200; PMID: 17502367
  • Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors 2012; 30:88 - 106; http://dx.doi.org/10.3109/08977194.2012.660936; PMID: 22339650
  • Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 1999; 84:1127 - 36; http://dx.doi.org/10.1161/01.RES.84.10.1127; PMID: 10347087
  • Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci U S A 2001; 98:9050 - 5; http://dx.doi.org/10.1073/pnas.161283798; PMID: 11481471
  • Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 1997; 94:3801 - 4; http://dx.doi.org/10.1073/pnas.94.8.3801; PMID: 9108058
  • Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 2004; 95:187 - 95; http://dx.doi.org/10.1161/01.RES.0000134921.50377.61; PMID: 15192020
  • Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA, Das DK. Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 2001; 33:1929 - 36; http://dx.doi.org/10.1006/jmcc.2001.1456; PMID: 11708838
  • Smith RM, Suleman N, Lacerda L, Opie LH, Akira S, Chien KR, Sack MN. Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning. Cardiovasc Res 2004; 63:611 - 6; http://dx.doi.org/10.1016/j.cardiores.2004.06.019; PMID: 15306216
  • Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 2008; 102:131 - 5; http://dx.doi.org/10.1161/CIRCRESAHA.107.164699; PMID: 17967780
  • Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN. Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 2002; 34:509 - 18; http://dx.doi.org/10.1006/jmcc.2002.1533; PMID: 12056855
  • Fuglesteg BN, Suleman N, Tiron C, Kanhema T, Lacerda L, Andreasen TV, Sack MN, Jonassen AK, Mjøs OD, Opie LH, et al. Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol 2008; 103:444 - 53; http://dx.doi.org/10.1007/s00395-008-0728-x; PMID: 18500485
  • Lamont KT, Somers S, Lacerda L, Opie LH, Lecour S. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J Pineal Res 2011; 50:374 - 80; http://dx.doi.org/10.1111/j.1600-079X.2010.00853.x; PMID: 21342247
  • Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S. Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. Cardiovasc Drugs Ther 2012; 26:227 - 37; http://dx.doi.org/10.1007/s10557-012-6376-2; PMID: 22392184
  • Frias MA, Pedretti S, Hacking D, Somers S, Lacerda L, Opie LH, James RW, Lecour S. HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity. Atherosclerosis 2013; 228:110 - 6; http://dx.doi.org/10.1016/j.atherosclerosis.2013.02.003; PMID: 23497785
  • Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Yamada S, Okabe M, Kishimoto T, Yamauchi-Takihara K. Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci U S A 2000; 97:315 - 9; http://dx.doi.org/10.1073/pnas.97.1.315; PMID: 10618415
  • Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 2008; 120:172 - 85; http://dx.doi.org/10.1016/j.pharmthera.2008.08.002; PMID: 18786563
  • Yamaura G, Turoczi T, Yamamoto F, Siddqui MAQ, Maulik N, Das DK. STAT signaling in ischemic heart: a role of STAT5A in ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285:H476 - 82; PMID: 12860560
  • Barry SP, Townsend PA, Latchman DS, Stephanou A. Role of the JAK-STAT pathway in myocardial injury. Trends Mol Med 2007; 13:82 - 9; http://dx.doi.org/10.1016/j.molmed.2006.12.002; PMID: 17194625
  • Hirota H, Chen J, Betz UAK, Rajewsky K, Gu Y, Ross JJ Jr., Müller W, Chien KR. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97:189 - 98; http://dx.doi.org/10.1016/S0092-8674(00)80729-1; PMID: 10219240
  • Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA, Latchman DS. Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem 2000; 275:10002 - 8; http://dx.doi.org/10.1074/jbc.275.14.10002; PMID: 10744676
  • McCormick J, Suleman N, Scarabelli TM, Knight RA, Latchman DS, Stephanou A. STAT1 deficiency in the heart protects against myocardial infarction by enhancing autophagy. J Cell Mol Med 2012; 16:386 - 93; http://dx.doi.org/10.1111/j.1582-4934.2011.01323.x; PMID: 21447043
  • Shen Y, Devgan G, Darnell JE Jr., Bromberg JF. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci U S A 2001; 98:1543 - 8; http://dx.doi.org/10.1073/pnas.98.4.1543; PMID: 11171987
  • Saad MJA, Carvalho CRO, Thirone ACP, Velloso LA. Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat. J Biol Chem 1996; 271:22100 - 4; http://dx.doi.org/10.1074/jbc.271.36.22100; PMID: 8703019
  • Gual P, Baron V, Lequoy V, Van Obberghen E. Interaction of Janus kinases JAK-1 and JAK-2 with the insulin receptor and the insulin-like growth factor-1 receptor. Endocrinology 1998; 139:884 - 93; http://dx.doi.org/10.1210/en.139.3.884; PMID: 9492017
  • Chen J, Sadowski HB, Kohanski RA, Wang L-H. Stat5 is a physiological substrate of the insulin receptor. Proc Natl Acad Sci U S A 1997; 94:2295 - 300; http://dx.doi.org/10.1073/pnas.94.6.2295; PMID: 9122188
  • Sawka-Verhelle D, Tartare-Deckert S, Decaux J-F, Girard J, Van Obberghen E. Stat 5B, activated by insulin in a Jak-independent fashion, plays a role in glucokinase gene transcription. Endocrinology 2000; 141:1977 - 88; http://dx.doi.org/10.1210/en.141.6.1977; PMID: 10830280
  • Le MN, Kohanski RA, Wang L-H, Sadowski HB. Dual mechanism of signal transducer and activator of transcription 5 activation by the insulin receptor. Mol Endocrinol 2002; 16:2764 - 79; http://dx.doi.org/10.1210/me.2002-0017; PMID: 12456798
  • Coffer PJ, van Puijenbroek A, Burgering BM, Klop-de Jonge M, Koenderman L, Bos JL, Kruijer W. Insulin activates Stat3 independently of p21ras-ERK and PI-3K signal transduction. Oncogene 1997; 15:2529 - 39; http://dx.doi.org/10.1038/sj.onc.1201429; PMID: 9399641
  • Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Häring HU. Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 1997; 40:1358 - 62; http://dx.doi.org/10.1007/s001250050832; PMID: 9389430
  • Thirone ACP, Carvalho CRO, Saad MJA. Growth hormone stimulates the tyrosine kinase activity of JAK2 and induces tyrosine phosphorylation of insulin receptor substrates and Shc in rat tissues. Endocrinology 1999; 140:55 - 62; http://dx.doi.org/10.1210/en.140.1.55; PMID: 9886807
  • Goodman MD, Koch SE, Afzal MR, Butler KL. STAT subtype specificity and ischemic preconditioning in mice: is STAT-3 enough?. Am J Physiol Heart Circ Physiol 2011; 300:H522 - 6; http://dx.doi.org/10.1152/ajpheart.00231.2010; PMID: 21131482
  • Negoro S, Kunisada K, Tone E, Funamoto M, Oh H, Kishimoto T, Yamauchi-Takihara K. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 2000; 47:797 - 805; http://dx.doi.org/10.1016/S0008-6363(00)00138-3; PMID: 10974228
  • Omura T, Yoshiyama M, Ishikura F, Kobayashi H, Takeuchi K, Beppu S, Yoshikawa J. Myocardial ischemia activates the JAK-STAT pathway through angiotensin II signaling in in vivo myocardium of rats. J Mol Cell Cardiol 2001; 33:307 - 16; http://dx.doi.org/10.1006/jmcc.2000.1303; PMID: 11162135
  • Asrih M, Gardier S, Papageorgiou I, Montessuit C. Dual effect of the heart-targeting cytokine cardiotrophin-1 on glucose transport in cardiomyocytes. J Mol Cell Cardiol 2013; 56:106 - 15; http://dx.doi.org/10.1016/j.yjmcc.2012.12.015; PMID: 23277190
  • Thirone ACP, JeBailey L, Bilan PJ, Klip A. Opposite effect of JAK2 on insulin-dependent activation of mitogen-activated protein kinases and Akt in muscle cells: possible target to ameliorate insulin resistance. Diabetes 2006; 55:942 - 51; http://dx.doi.org/10.2337/diabetes.55.04.06.db05-1265; PMID: 16567515
  • Bates SH, Gardiner JV, Jones RB, Bloom SR, Bailey CJ. Acute stimulation of glucose uptake by leptin in l6 muscle cells. Horm Metab Res 2002; 34:111 - 5; http://dx.doi.org/10.1055/s-2002-23192; PMID: 11972298
  • Hosseinzadeh Z, Bhavsar SK, Shojaiefard M, Saxena A, Merches K, Sopjani M, Alesutan I, Lang F. Stimulation of the glucose carrier SGLT1 by JAK2. Biochem Biophys Res Commun 2011; 408:208 - 13; http://dx.doi.org/10.1016/j.bbrc.2011.03.036; PMID: 21406183
  • McWhinney CD, Dostal D, Baker K. Angiotensin II activates Stat5 through Jak2 kinase in cardiac myocytes. J Mol Cell Cardiol 1998; 30:751 - 61; http://dx.doi.org/10.1006/jmcc.1998.0639; PMID: 9602424
  • McWhinney CD, Hunt RA, Conrad KM, Dostal DE, Baker KM. The type I angiotensin II receptor couples to Stat1 and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J Mol Cell Cardiol 1997; 29:2513 - 24; http://dx.doi.org/10.1006/jmcc.1997.0489; PMID: 9299374
  • Calegari VC, Alves M, Picardi PK, Inoue RY, Franchini KG, Saad MJA, Velloso LA. Suppressor of cytokine signaling-3 Provides a novel interface in the cross-talk between angiotensin II and insulin signaling systems. Endocrinology 2005; 146:579 - 88; http://dx.doi.org/10.1210/en.2004-0466; PMID: 15514089
  • Latchman DS. Cardiotrophin-1 (CT-1): a novel hypertrophic and cardioprotective agent. Int J Exp Pathol 1999; 80:189 - 96; http://dx.doi.org/10.1046/j.1365-2613.1999.00114.x; PMID: 10583628
  • Lu C, Schwartzbauer G, Sperling MA, Devaskar SU, Thamotharan S, Robbins PD, McTiernan CF, Liu J-L, Jiang J, Frank SJ, et al. Demonstration of direct effects of growth hormone on neonatal cardiomyocytes. J Biol Chem 2001; 276:22892 - 900; http://dx.doi.org/10.1074/jbc.M011647200; PMID: 11303022
  • Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T. Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 1996; 94:2626 - 32; http://dx.doi.org/10.1161/01.CIR.94.10.2626; PMID: 8921810
  • Florholmen G, Thoresen GH, Rustan AC, Jensen J, Christensen G, Aas V. Leukaemia inhibitory factor stimulates glucose transport in isolated cardiomyocytes and induces insulin resistance after chronic exposure. Diabetologia 2006; 49:724 - 31; http://dx.doi.org/10.1007/s00125-006-0150-6; PMID: 16489447
  • Adams TE, Hansen JA, Starr R, Nicola NA, Hilton DJ, Billestrup N. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 1998; 273:1285 - 7; http://dx.doi.org/10.1074/jbc.273.3.1285; PMID: 9430658
  • Yasukawa H, Hoshijima M, Gu Y, Nakamura T, Pradervand S, Hanada T, Hanakawa Y, Yoshimura A, Ross J Jr., Chien KR. Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest 2001; 108:1459 - 67; PMID: 11714737
  • Calegari VC, Bezerra RMN, Torsoni MA, Torsoni AS, Franchini KG, Saad MJA, Velloso LA. Suppressor of cytokine signaling 3 is induced by angiotensin II in heart and isolated cardiomyocytes, and participates in desensitization. Endocrinology 2003; 144:4586 - 96; http://dx.doi.org/10.1210/en.2003-0046; PMID: 12960061
  • Hamanaka I, Saito Y, Yasukawa H, Kishimoto I, Kuwahara K, Miyamoto Y, Harada M, Ogawa E, Kajiyama N, Takahashi N, et al. Induction of JAB/SOCS-1/SSI-1 and CIS3/SOCS-3/SSI-3 is involved in gp130 resistance in cardiovascular system in rat treated with cardiotrophin-1 in vivo. Circ Res 2001; 88:727 - 32; http://dx.doi.org/10.1161/hh0701.088512; PMID: 11304496
  • Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003; 278:13740 - 6; http://dx.doi.org/10.1074/jbc.M210689200; PMID: 12560330
  • Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K, Hilton DJ, Hotamisligil GS, Van Obberghen E. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-α in the adipose tissue of obese mice. J Biol Chem 2001; 276:47944 - 9; PMID: 11604392
  • Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002; 277:42394 - 8; http://dx.doi.org/10.1074/jbc.C200444200; PMID: 12228220
  • Asrih M, Lerch R, Papageorgiou I, Pellieux C, Montessuit C. Differential regulation of stimulated glucose transport by free fatty acids and PPARα or -δ agonists in cardiac myocytes. Am J Physiol Endocrinol Metab 2012; 302:E872 - 84; http://dx.doi.org/10.1152/ajpendo.00427.2011; PMID: 22297301
  • Auernhammer CJ, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter. Proc Natl Acad Sci U S A 1999; 96:6964 - 9; http://dx.doi.org/10.1073/pnas.96.12.6964; PMID: 10359822
  • Davey HW, McLachlan MJ, Wilkins RJ, Hilton DJ, Adams TE. STAT5b mediates the GH-induced expression of SOCS-2 and SOCS-3 mRNA in the liver. Mol Cell Endocrinol 1999; 158:111 - 6; http://dx.doi.org/10.1016/S0303-7207(99)00175-6; PMID: 10630411
  • Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 2000; 275:15985 - 91; http://dx.doi.org/10.1074/jbc.275.21.15985; PMID: 10821852
  • Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, Paschke R. Insulin resistance-inducing cytokines differentially regulate SOCS mRNA expression via growth factor- and Jak/Stat-signaling pathways in 3T3-L1 adipocytes. J Endocrinol 2004; 181:129 - 38; http://dx.doi.org/10.1677/joe.0.1810129; PMID: 15072573
  • Carvalheira JBC, Calegari VC, Zecchin HG, Nadruz W Jr., Guimarães RB, Ribeiro EB, Franchini KG, Velloso LA, Saad MJA. The cross-talk between angiotensin and insulin differentially affects phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-mediated signaling in rat heart: implications for insulin resistance. Endocrinology 2003; 144:5604 - 14; http://dx.doi.org/10.1210/en.2003-0788; PMID: 12960006
  • Velloso LA, Folli F, Sun XJ, White MF, Saad MJA, Kahn CR. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A 1996; 93:12490 - 5; http://dx.doi.org/10.1073/pnas.93.22.12490; PMID: 8901609
  • Asrih M, Pellieux C, Papageorgiou I, Lerch R, Montessuit C. Role of ERK1/2 activation in microtubule stabilization and glucose transport in cardiomyocytes. Am J Physiol Endocrinol Metab 2011; 301:E836 - 43; http://dx.doi.org/10.1152/ajpendo.00160.2011; PMID: 21771966
  • White UA, Coulter AA, Miles TK, Stephens JM. The STAT5A-mediated induction of pyruvate dehydrogenase kinase 4 expression by prolactin or growth hormone in adipocytes. Diabetes 2007; 56:1623 - 9; http://dx.doi.org/10.2337/db06-1286; PMID: 17360981
  • Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, Wagg CS, Kassiri Z, Lopaschuk GD, Oudit GY. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail 2012; 5:493 - 503; http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.966705; PMID: 22705769