1,149
Views
18
CrossRef citations to date
0
Altmetric
Review

Lepidopteran cells, an alternative for the production of recombinant antibodies?

&
Pages 294-309 | Published online: 26 Apr 2012

References

  • Smith GE, Summers MD, Fraser MJ. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 1983; 3:2156 - 65; PMID: 6318086
  • Hasemann CA, Capra JD. High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proc Natl Acad Sci U S A 1990; 87:3942 - 6; http://dx.doi.org/10.1073/pnas.87.10.3942; PMID: 2111022
  • zu Putlitz J, Kubasek WL, Duchêne M, Marget M, von Specht B-U, Domdey H. Antibody production in baculovirus-infected insect cells. Biotechnology (N Y) 1990; 8:651 - 4; http://dx.doi.org/10.1038/nbt0790-651; PMID: 1367456
  • Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 1994; 202:586 - 605; http://dx.doi.org/10.1006/viro.1994.1380; PMID: 8030224
  • Miller LK. Baculoviruses as gene expression vectors. Annu Rev Microbiol 1988; 42:177 - 99; http://dx.doi.org/10.1146/annurev.mi.42.100188.001141; PMID: 3059993
  • Kitts PA, Possee RD. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 1993; 14:810 - 7; PMID: 8512707
  • Luckow VA, Lee SC, Barry GF, Olins PO. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli.. J Virol 1993; 67:4566 - 79; PMID: 8392598
  • Noad RJ, Stewart M, Boyce M, Celma CC, Willison KR, Roy P. Multigene expression of protein complexes by iterative modification of genomic Bacmid DNA. BMC Mol Biol 2009; 10:87 - 99; http://dx.doi.org/10.1186/1471-2199-10-87; PMID: 19725957
  • Sokolenko S, George S, Wagner A, Tuladhar A, Andrich JM, Aucoin MG. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 2012; 30:766 - 81; http://dx.doi.org/10.1016/j.biotechadv.2012.01.009; PMID: 22297133
  • Poul M-A, Cérutti M, Chaabihi H, Devauchelle G, Kaczorek M, Lefranc M-P. Design of cassette baculovirus vectors for the production of therapeutic antibodies in insect cells. Immunotechnology 1995; 1:189 - 96; http://dx.doi.org/10.1016/1380-2933(95)00019-4; PMID: 9373347
  • Liang M, Dübel S, Li D, Queitsch I, Li W, Bautz EKF. Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. J Immunol Methods 2001; 247:119 - 30; http://dx.doi.org/10.1016/S0022-1759(00)00322-7; PMID: 11150543
  • Kamita SG, Maeda S, Hammock BD. High-frequency homologous recombination between baculoviruses involves DNA replication. J Virol 2003; 77:13053 - 61; http://dx.doi.org/10.1128/JVI.77.24.13053-13061.2003; PMID: 14645562
  • Crouch EA, Passarelli AL. Genetic requirements for homologous recombination in Autographa californica nucleopolyhedrovirus. J Virol 2002; 76:9323 - 34; http://dx.doi.org/10.1128/JVI.76.18.9323-9334.2002; PMID: 12186915
  • Mikhailov VS, Okano K, Rohrmann GF. Baculovirus alkaline nuclease possesses a 5′-->3′ exonuclease activity and associates with the DNA-binding protein LEF-3. J Virol 2003; 77:2436 - 44; http://dx.doi.org/10.1128/JVI.77.4.2436-2444.2003; PMID: 12551981
  • Roelvink PW, van Meer MMM, de Kort CAD, Possee RD, Hammock BD, Vlak JM. Dissimilar expression of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus polyhedrin and p10 genes. J Gen Virol 1992; 73:1481 - 9; http://dx.doi.org/10.1099/0022-1317-73-6-1481; PMID: 1607866
  • Chaabihi H, Ogliastro MH, Martin M, Giraud C, Devauchelle G, Cérutti M. Competition between baculovirus polyhedrin and p10 gene expression during infection of insect cells. J Virol 1993; 67:2664 - 71; PMID: 8474166
  • Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM, et al. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell 2009; 34:569 - 79; http://dx.doi.org/10.1016/j.molcel.2009.04.028; PMID: 19524537
  • Furuta T, Ogawa T, Katsuda T, Fujii I, Yamaji H. Efficient production of an antibody Fab fragment using the baculovirus-insect cell system. J Biosci Bioeng 2010; 110:577 - 81; http://dx.doi.org/10.1016/j.jbiosc.2010.06.001; PMID: 20591732
  • Hashimoto Y, Zhang S, Blissard GW. Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins. BMC Biotechnol 2010; 10:50 - 65; http://dx.doi.org/10.1186/1472-6750-10-50; PMID: 20602790
  • Hancock K, Narang S, Pattabhi S, Yushak ML, Khan A, Lin S-C, et al. False positive reactivity of recombinant, diagnostic, glycoproteins produced in High Five insect cells: effect of glycosylation. J Immunol Methods 2008; 330:130 - 6; http://dx.doi.org/10.1016/j.jim.2007.08.002; PMID: 17868684
  • Hasemann CA, Capra JD. Mutational analysis of arsonate binding by a CRIA+ antibody. VH and VL junctional diversity are essential for binding activity. J Biol Chem 1991; 266:7626 - 32; PMID: 2019590
  • Hasemann CA, Capra JD. Mutational analysis of the cross-reactive idiotype of the A strain mouse. J Immunol 1991; 147:3170 - 9; PMID: 1717589
  • Nesbit M, Fu ZF, McDonald-Smith J, Steplewski Z, Curtis PJ. Production of a functional monoclonal antibody recognizing human colorectal carcinoma cells from a baculovirus expression system. J Immunol Methods 1992; 151:201 - 8; http://dx.doi.org/10.1016/0022-1759(92)90118-D; PMID: 1629610
  • Hsu T-A, Eiden JJ, Bourgarel P, Meo T, Betenbaugh MJ. Effects of co-expressing chaperone BiP on functional antibody production in the baculovirus system. Protein Expr Purif 1994; 5:595 - 603; http://dx.doi.org/10.1006/prep.1994.1082; PMID: 7858430
  • Ailor E, Betenbaugh MJ. Overexpression of a cytosolic chaperone to improve solubility and secretion of a recombinant IgG protein in insect cells. Biotechnol Bioeng 1998; 58:196 - 203; http://dx.doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<196::AID-BIT12>3.0.CO;2-B; PMID: 10191390
  • Poul M-A, Cérutti M, Chaabihi H, Ticchioni M, Deramoudt F-X, Bernard A, et al. Cassette baculovirus vectors for the production of chimeric, humanized, or human antibodies in insect cells. Eur J Immunol 1995; 25:2005 - 9; http://dx.doi.org/10.1002/eji.1830250731; PMID: 7542600
  • Hu P, Glasky MS, Yun A, Alauddin MM, Hornick JL, Khawli LA, et al. A human-mouse chimeric Lym-1 monoclonal antibody with specificity for human lymphomas expressed in a baculovirus system. Hum Antibodies Hybridomas 1995; 6:57 - 67; PMID: 7492752
  • Troadec S, Bès C, Chentouf M, Nguyen B, Briant L, Jacquet C, et al. Biological activities on T lymphocytes of a baculovirus-expressed chimeric recombinant IgG1 antibody with specificity for the CDR3-like loop on the D1 domain of the CD4 molecule. Clin Immunol 2006; 119:38 - 50; http://dx.doi.org/10.1016/j.clim.2005.11.013; PMID: 16426893
  • Huang Y-X, Han J, Dong C-F, Sun L, Gao C, Wang X-F, et al. Generation of genetic engineering monoclonal antibodies against prion protein. Med Microbiol Immunol 2007; 196:241 - 6; http://dx.doi.org/10.1007/s00430-007-0049-y; PMID: 17486363
  • Jar AM, Osorio FA, López OJ. Mouse x pig chimeric antibodies expressed in Baculovirus retain the same properties of their parent antibodies. Biotechnol Prog 2009; 25:516 - 23; http://dx.doi.org/10.1002/btpr.113; PMID: 19301248
  • Edelman L, Margaritte C, Chaabihi H, Monchâtre E, Blanchard D, Cardona A, et al. Obtaining a functional recombinant anti-rhesus (D) antibody using the baculovirus-insect cell expression system. Immunology 1997; 91:13 - 9; http://dx.doi.org/10.1046/j.1365-2567.1997.00219.x; PMID: 9203960
  • Lieby P, Soley A, Levallois H, Hugel B, Freyssinet J-M, Cérutti M, et al. The clonal analysis of anticardiolipin antibodies in a single patient with primary antiphospholipid syndrome reveals an extreme antibody heterogeneity. Blood 2001; 97:3820 - 8; http://dx.doi.org/10.1182/blood.V97.12.3820; PMID: 11389022
  • Lieby P, Soley A, Knapp A-M, Cérutti M, Freyssinet J-M, Pasquali J-L, et al. Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals. Blood 2003; 102:2459 - 65; http://dx.doi.org/10.1182/blood-2003-01-0180; PMID: 12791657
  • Koch J, Liang M, Queitsch I, Kraus AA, Bautz EKF. Human recombinant neutralizing antibodies against hantaan virus G2 protein. Virology 2003; 308:64 - 73; http://dx.doi.org/10.1016/S0042-6822(02)00094-6; PMID: 12706090
  • Liang M, Mahler M, Koch J, Ji Y, Li D, Schmaljohn C, et al. Generation of an HFRS patient-derived neutralizing recombinant antibody to Hantaan virus G1 protein and definition of the neutralizing domain. J Med Virol 2003; 69:99 - 107; http://dx.doi.org/10.1002/jmv.10259; PMID: 12436484
  • Lieby P, Poindron V, Roussi S, Klein C, Knapp A-M, Garaud J-C, et al. Pathogenic antiphospholipid antibody: an antigen-selected needle in a haystack. Blood 2004; 104:1711 - 5; http://dx.doi.org/10.1182/blood-2004-02-0462; PMID: 15166038
  • Duan T, Wang X-F, Xiao S-Y, Gu S-Y, Liang M-F. Recombinant human IgG antibodies against human cytomegalovirus. Biomed Environ Sci 2008; 21:372 - 80; http://dx.doi.org/10.1016/S0895-3988(08)60057-4; PMID: 19133610
  • Sun L, Lu X, Li C, Wang M, Liu Q, Li Z, et al. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses. PLoS One 2009; 4:e5476; http://dx.doi.org/10.1371/journal.pone.0005476; PMID: 19421326
  • Thurner L, Müller A, Cérutti M, Martin T, Pasquali J-L, Gross WL, et al. Wegener’s granuloma harbors B lymphocytes with specificities against a proinflammatory transmembrane protein and a tetraspanin. J Autoimmun 2011; 36:87 - 90; http://dx.doi.org/10.1016/j.jaut.2010.09.002; PMID: 20951001
  • Carayannopoulos L, Max EE, Capra JD. Recombinant human IgA expressed in insect cells. Proc Natl Acad Sci U S A 1994; 91:8348 - 52; http://dx.doi.org/10.1073/pnas.91.18.8348; PMID: 8078886
  • Potter KN, Li Y, Mageed RA, Jefferis R, Capra JD. Anti-idiotypic antibody D12 and superantigen SPA both interact with human VH3-encoded antibodies on the external face of the heavy chain involving FR1, CDR2 and FR3. Mol Immunol 1998; 35:1179 - 87; http://dx.doi.org/10.1016/S0161-5890(98)00103-5; PMID: 10199392
  • Fukushima N, Nalbandian G, Van De Water J, White K, Ansari AA, Leung P, et al. Characterization of recombinant monoclonal IgA anti-PDC-E2 autoantibodies derived from patients with PBC. Hepatology 2002; 36:1383 - 92; PMID: 12447863
  • Vangelista L, Laffer S, Turek R, Grönlund H, Sperr WR, Valent P, et al. The immunoglobulin-like modules Cepsilon3 and α2 are the minimal units necessary for human IgE-FcepsilonRI interaction. J Clin Invest 1999; 103:1571 - 8; http://dx.doi.org/10.1172/JCI6551; PMID: 10359566
  • Björklund JEM, Schmidt M, Magnusson CGM. Characterisation of recombinant human IgE-Fc fragments expressed in baculovirus-infected insect cells. Mol Immunol 2000; 37:169 - 77; http://dx.doi.org/10.1016/S0161-5890(00)00028-6; PMID: 10865116
  • Vernersson M, Pejler G, Kristersson T, Alving K, Hellman L. Cloning, structural analysis, and expression of the pig IgE ε chain. Immunogenetics 1997; 46:461 - 8; http://dx.doi.org/10.1007/s002510050306; PMID: 9321425
  • Rindisbacher L, Cottet S, Wittek R, Kraehenbuhl JP, Corthésy B. Production of human secretory component with dimeric IgA binding capacity using viral expression systems. J Biol Chem 1995; 270:14220 - 8; http://dx.doi.org/10.1074/jbc.270.23.14220; PMID: 7775483
  • Laroche Y, Demaeyer M, Stassen J-M, Gansemans Y, Demarsin E, Matthyssens G, et al. Characterization of a recombinant single-chain molecule comprising the variable domains of a monoclonal antibody specific for human fibrin fragment D-dimer. J Biol Chem 1991; 266:16343 - 9; PMID: 1885569
  • Kretzschmar T, Aoustin L, Zingel O, Marangi M, Vonach B, Towbin H, et al. High-level expression in insect cells and purification of secreted monomeric single-chain Fv antibodies. J Immunol Methods 1996; 195:93 - 101; http://dx.doi.org/10.1016/0022-1759(96)00093-2; PMID: 8814324
  • Lemeulle C, Chardès T, Montavon C, Chaabihi H, Mani JC, Pugnière M, et al. Anti-digoxin scFv fragments expressed in bacteria and in insect cells have different antigen binding properties. FEBS Lett 1998; 423:159 - 66; http://dx.doi.org/10.1016/S0014-5793(98)00029-5; PMID: 9512350
  • Demangel C, Zhou J, Choo ABH, Shoebridge G, Halliday GM, Britton WJ. Single chain antibody fragments for the selective targeting of antigens to dendritic cells. Mol Immunol 2005; 42:979 - 85; http://dx.doi.org/10.1016/j.molimm.2004.09.034; PMID: 15829289
  • Yoshida S, Kobayashi T, Matsuoka H, Seki C, Gosnell WL, Chang SP, et al. T-cell activation and cytokine production via a bispecific single-chain antibody fragment targeted to blood-stage malaria parasites. Blood 2003; 101:2300 - 6; http://dx.doi.org/10.1182/blood-2002-03-0831; PMID: 12411309
  • Abrams C, Deng Y-J, Steiner B, O’Toole T, Shattil SJ. Determinants of specificity of a baculovirus-expressed antibody Fab fragment that binds selectively to the activated form of integrin α IIb β 3. J Biol Chem 1994; 269:18781 - 8; PMID: 7518445
  • Bès C, Cérutti M, Briant-Longuet L, Bresson D, Peraldi-Roux S, Pugnière M, et al. The chimeric mouse-human anti-CD4 Fab 13B8.2 expressed in baculovirus inhibits both antigen presentation and HIV-1 promoter activation. Hum Antibodies 2001; 10:67 - 76; PMID: 11673661
  • Yamaji H, Manabe T, Watakabe K, Muraoka M, Fujii I, Fukuda H. Production of functional antibody Fab fragment by recombinant insect cells. Biochem Eng J 2008; 41:203 - 9; http://dx.doi.org/10.1016/j.bej.2008.04.017
  • Johnson GA, Hansen TR, Austin KJ, Van Kirk EA, Murdoch WJ. Baculovirus-insect cell production of bioactive choriogonadotropin-immunoglobulin G heavy-chain fusion proteins in sheep. Biol Reprod 1995; 52:68 - 73; http://dx.doi.org/10.1095/biolreprod52.1.68; PMID: 7711185
  • Bei R, Schlom J, Kashmiri SVS. Baculovirus expression of a functional single-chain immunoglobulin and its IL-2 fusion protein. J Immunol Methods 1995; 186:245 - 55; http://dx.doi.org/10.1016/0022-1759(95)00149-5; PMID: 7594624
  • Hu P, Hornick JL, Glasky MS, Yun A, Milkie MN, Khawli LA, et al. A chimeric Lym-1/interleukin 2 fusion protein for increasing tumor vascular permeability and enhancing antibody uptake. Cancer Res 1996; 56:4998 - 5004; PMID: 8895756
  • Muraki M, Honda S. Efficient production of human Fas receptor extracellular domain-human IgG1 heavy chain Fc domain fusion protein using baculovirus/silkworm expression system. Protein Expr Purif 2010; 73:209 - 16; http://dx.doi.org/10.1016/j.pep.2010.05.007; PMID: 20576530
  • Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, et al. Production of human α-interferon in silkworm using a baculovirus vector. Nature 1985; 315:592 - 4; http://dx.doi.org/10.1038/315592a0; PMID: 2989694
  • Reis U, Blum B, von Specht B-U, Domdey H, Collins J. Antibody production in silkworm cells and silkworm larvae infected with a dual recombinant Bombyx mori nuclear polyhedrosis virus. Biotechnology (N Y) 1992; 10:910 - 2; http://dx.doi.org/10.1038/nbt0892-910; PMID: 1368987
  • Sakamoto S, Pongkitwitoon B, Nakamura S, Maenaka K, Tanaka H, Morimoto S. Efficient silkworm expression of single-chain variable fragment antibody against ginsenoside Re using Bombyx mori nucleopolyhedrovirus bacmid DNA system and its application in enzyme-linked immunosorbent assay for quality control of total ginsenosides. J Biochem 2010; 148:335 - 40; http://dx.doi.org/10.1093/jb/mvq072; PMID: 20592135
  • Park EY, Ishikiriyama M, Nishina T, Kato T, Yagi H, Kato K, et al. Human IgG1 expression in silkworm larval hemolymph using BmNPV bacmids and its N-linked glycan structure. J Biotechnol 2009; 139:108 - 14; http://dx.doi.org/10.1016/j.jbiotec.2008.09.013; PMID: 18984019
  • Dojima T, Nishina T, Kato T, Uno T, Yagi H, Kato K, et al. Improved secretion of molecular chaperone-assisted human IgG in silkworm, and no alterations in their N-linked glycan structures. Biotechnol Prog 2010; 26:232 - 8; PMID: 19918885
  • O’Connell KP, Kovaleva E, Campbell JH, Anderson PE, Brown SG, Davis DC, et al. Production of a recombinant antibody fragment in whole insect larvae. Mol Biotechnol 2007; 36:44 - 51; http://dx.doi.org/10.1007/s12033-007-0014-4; PMID: 17827537
  • McCarroll L, King LA. Stable insect cell cultures for recombinant protein production. Curr Opin Biotechnol 1997; 8:590 - 4; http://dx.doi.org/10.1016/S0958-1669(97)80034-1; PMID: 9353223
  • Farrell PJ, Behie LA, Iatrou K. Transformed Lepidopteran insect cells: new sources of recombinant human tissue plasminogen activator. Biotechnol Bioeng 1999; 64:426 - 33; http://dx.doi.org/10.1002/(SICI)1097-0290(19990820)64:4<426::AID-BIT5>3.0.CO;2-#; PMID: 10397881
  • Tessier DC, Thomas DY, Khouri HE, Laliberté F, Vernet T. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene 1991; 98:177 - 83; http://dx.doi.org/10.1016/0378-1119(91)90171-7; PMID: 2016060
  • Yokoyama N, Hirata M, Ohtsuka K, Nishiyama Y, Fujii K, Fujita M, et al. Co-expression of human chaperone Hsp70 and Hsdj or Hsp40 co-factor increases solubility of overexpressed target proteins in insect cells. Biochim Biophys Acta 2000; 1493:119 - 24; PMID: 10978513
  • Nakajima M, Kato T, Kanamasa S, Park EY. Molecular chaperone-assisted production of human α-1,4-N-acetylglucosaminyltransferase in silkworm larvae using recombinant BmNPV bacmids. Mol Biotechnol 2009; 43:67 - 75; http://dx.doi.org/10.1007/s12033-009-9174-8; PMID: 19418270
  • Feige MJ, Hendershot LM, Buchner J. How antibodies fold. Trends Biochem Sci 2010; 35:189 - 98; http://dx.doi.org/10.1016/j.tibs.2009.11.005; PMID: 20022755
  • Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K. Stably transformed insect cell lines: tools for expression of secreted and membrane-anchored proteins and high-throughput screening platforms for drug and insecticide discovery. Adv Virus Res 2006; 68:113 - 56; http://dx.doi.org/10.1016/S0065-3527(06)68004-4; PMID: 16997011
  • Guttieri MC, Bookwalter C, Schmaljohn C, Schmaljohn CS. Expression of a human, neutralizing monoclonal antibody specific to puumala virus G2-protein in stably-transformed insect cells. J Immunol Methods 2000; 246:97 - 108; http://dx.doi.org/10.1016/S0022-1759(00)00299-4; PMID: 11121551
  • Guttieri MC, Sinha T, Bookwalter C, Liang M, Schmaljohn CS. Cassette vectors for conversion of Fab fragments into full-length human IgG1 monoclonal antibodies by expression in stably transformed insect cells. Hybrid Hybridomics 2003; 22:135 - 45; http://dx.doi.org/10.1089/153685903322286548; PMID: 12954098
  • Liang M, Guttieri M, Lundkvist A, Schmaljohn C. Baculovirus expression of a human G2-specific, neutralizing IgG monoclonal antibody to Puumala virus. Virology 1997; 235:252 - 60; http://dx.doi.org/10.1006/viro.1997.8695; PMID: 9281505
  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 2002; 277:26733 - 40; http://dx.doi.org/10.1074/jbc.M202069200; PMID: 11986321
  • Marchal I, Mir AM, Kmiécik D, Verbert A, Cacan R. Use of inhibitors to characterize intermediates in the processing of N-glycans synthesized by insect cells: a metabolic study with Sf9 cell line. Glycobiology 1999; 9:645 - 54; http://dx.doi.org/10.1093/glycob/9.7.645; PMID: 10362833
  • Altmann F, Kornfeld G, Dalik T, Staudacher E, Glössl J. Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology 1993; 3:619 - 25; http://dx.doi.org/10.1093/glycob/3.6.619; PMID: 8130393
  • Lopez M, Coddeville B, Langridge J, Lemoine J, Plancke H, Chaabihi H, et al. Microheterogeneity of the oligosaccharides carried by the N-glycosylation sites of the bovine lactotransferrin expressed in Mamestra brassicae using a baculovirus vector. Glycobiology 1997; 7:635 - 51; http://dx.doi.org/10.1093/glycob/7.5.635; PMID: 9254046
  • Altmann F, Schwihla H, Staudacher E, Glössl J, März L. Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem 1995; 270:17344 - 9; http://dx.doi.org/10.1074/jbc.270.29.17344; PMID: 7615537
  • Staudacher E, Kubelka V, März L. Distinct N-glycan fucosylation potentials of three lepidopteran cell lines. Eur J Biochem 1992; 207:987 - 93; http://dx.doi.org/10.1111/j.1432-1033.1992.tb17134.x; PMID: 1499571
  • Prenner C, Mach L, Glössl J, März L. The antigenicity of the carbohydrate moiety of an insect glycoprotein, honey-bee (Apis mellifera) venom phospholipase A2. The role of alpha 1,3-fucosylation of the asparagine-bound N-acetylglucosamine. Biochem J 1992; 284:377 - 80; PMID: 1376112
  • Song M, Park D-Y, Kim Y, Lee K-J, Lu Z, Ko K, et al. Characterization of N-glycan structures and biofunction of anti-colorectal cancer monoclonal antibody CO17-1A produced in baculovirus-insect cell expression system. J Biosci Bioeng 2010; 110:135 - 40; http://dx.doi.org/10.1016/j.jbiosc.2010.01.013; PMID: 20547339
  • Aumiller JJ, Mabashi-Asazuma H, Hillar A, Shi X, Jarvis DL. A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 2012; 22:417 - 28; http://dx.doi.org/10.1093/glycob/cwr160; PMID: 22042767
  • Wagner R, Liedtke S, Kretzschmar E, Geyer H, Geyer R, Klenk HD. Elongation of the N-glycans of fowl plague virus hemagglutinin expressed in Spodoptera frugiperda (Sf9) cells by coexpression of human beta 1,2-N-acetylglucosaminyltransferase I. Glycobiology 1996; 6:165 - 75; http://dx.doi.org/10.1093/glycob/6.2.165; PMID: 8727789
  • Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99:754 - 8; http://dx.doi.org/10.1182/blood.V99.3.754; PMID: 11806974
  • Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, et al. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 2005; 306:151 - 60; http://dx.doi.org/10.1016/j.jim.2005.08.009; PMID: 16219319
  • Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 2004; 64:2127 - 33; http://dx.doi.org/10.1158/0008-5472.CAN-03-2068; PMID: 15026353
  • Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, et al. Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res 2010; 70:4481 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-09-3704; PMID: 20484044
  • Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M, et al. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 2010; 335:213 - 22; http://dx.doi.org/10.1124/jpet.110.168062; PMID: 20605905
  • Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 2011; 108:12669 - 74; http://dx.doi.org/10.1073/pnas.1108455108; PMID: 21768335
  • Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 2009; 30:356 - 62; http://dx.doi.org/10.1016/j.tips.2009.04.007; PMID: 19552968
  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 2007; 25:21 - 50; http://dx.doi.org/10.1146/annurev.immunol.25.022106.141702; PMID: 17029568
  • Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, et al. Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 2009; 276:5806 - 20; http://dx.doi.org/10.1111/j.1742-4658.2009.07262.x; PMID: 19740109
  • Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 2003; 101:1045 - 52; http://dx.doi.org/10.1182/blood-2002-06-1761; PMID: 12393541
  • Raju TS. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 2008; 20:471 - 8; http://dx.doi.org/10.1016/j.coi.2008.06.007; PMID: 18606225
  • Wright A, Morrison SL. Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 1998; 160:3393 - 402; PMID: 9531299
  • Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro.. Biotechnol Prog 2005; 21:1644 - 52; http://dx.doi.org/10.1021/bp050228w; PMID: 16321047
  • Raju ST. Impact of Fc glycosylation on monoclonal antibody effector functions and degradation by proteases. Current Trends in Monoclonal Antibody Development and Manufacturing Biotechnology: Pharmaceutical Aspects. Edited by Shire SJ, Gombotz W, Bechtold-Peters K, Andya J. New-York: Springer 2010; 11: 249-69.
  • Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8:34 - 47; http://dx.doi.org/10.1038/nri2206; PMID: 18064051
  • Troadec S, Chentouf M, Cérutti M, Nguyen B, Olive D, Bès C, et al. In vitro antitumoral activity of baculovirus-expressed chimeric recombinant anti-CD4 antibody 13B8.2 on T-cell lymphomas. J Immunother 2007; 30:190 - 202; http://dx.doi.org/10.1097/01.cji.0000211331.61019.26; PMID: 17471166
  • Swanson JA, Hoppe AD. The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 2004; 76:1093 - 103; http://dx.doi.org/10.1189/jlb.0804439; PMID: 15466916
  • Bologna L, Gotti E, Manganini M, Rambaldi A, Intermesoli T, Introna M, et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J Immunol 2011; 186:3762 - 9; http://dx.doi.org/10.4049/jimmunol.1000303; PMID: 21296976
  • Ashraf SQ, Umana P, Mössner E, Ntouroupi T, Brünker P, Schmidt C, et al. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis. Br J Cancer 2009; 101:1758 - 68; http://dx.doi.org/10.1038/sj.bjc.6605355; PMID: 19904275
  • Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev 2006; 58:671 - 85; http://dx.doi.org/10.1016/j.addr.2005.12.006; PMID: 16822577
  • Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 2009; 8:226 - 34; http://dx.doi.org/10.1038/nrd2804; PMID: 19247305
  • Olivier S, Jacoby M, Brillon C, Bouletreau S, Mollet T, Nerriere O, et al. EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity. MAbs 2010; 2:405 - 15; PMID: 20562528
  • Arnold DF, Misbah SA. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 2008; 358:2735 - , author reply 2735-6; http://dx.doi.org/10.1056/NEJMc080834; PMID: 18565869
  • Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 2009; 19:936 - 49; http://dx.doi.org/10.1093/glycob/cwp079; PMID: 19494347
  • Kaern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 2005; 6:451 - 64; http://dx.doi.org/10.1038/nrg1615; PMID: 15883588
  • Pilbrough W, Munro TP, Gray P. Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 2009; 4:e8432; http://dx.doi.org/10.1371/journal.pone.0008432; PMID: 20037651
  • Geisse S. reflections on more than 10 years of TGE (Transient Gene Expression) approaches. Protein Expr Purif 2009; 64:99 - 107; http://dx.doi.org/10.1016/j.pep.2008.10.017; PMID: 19027070
  • Wood CR, Boss MA, Kenten JH, Calvert JE, Roberts NA, Emtage JS. The synthesis and in vivo assembly of functional antibodies in yeast. Nature 1985; 314:446 - 9; http://dx.doi.org/10.1038/314446a0; PMID: 3920532
  • Horwitz AH, Chang CP, Better M, Hellstrom KE, Robinson RR. Secretion of functional antibody and Fab fragment from yeast cells. Proc Natl Acad Sci U S A 1988; 85:8678 - 82; http://dx.doi.org/10.1073/pnas.85.22.8678; PMID: 3054890
  • Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 2009; 103:1192 - 201; http://dx.doi.org/10.1002/bit.22338; PMID: 19459139
  • Evans L, Hughes M, Waters J, Cameron J, Dodsworth N, Tooth D, et al. The production, characterisation and enhanced pharmacokinetics of scFv-albumin fusions expressed in Saccharomyces cerevisiae. Protein Expr Purif 2010; 73:113 - 24; http://dx.doi.org/10.1016/j.pep.2010.05.009; PMID: 20546898
  • Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 2009; 4:58 - 70; http://dx.doi.org/10.1038/nprot.2008.213; PMID: 19131957
  • Kuroda K, Kobayashi K, Kitagawa Y, Nakagawa T, Tsumura H, Komeda T, et al. Efficient antibody production upon suppression of O mannosylation in the yeast Ogataea minuta.. Appl Environ Microbiol 2008; 74:446 - 53; http://dx.doi.org/10.1128/AEM.02106-07; PMID: 18039826
  • Choi B-K, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 2003; 100:5022 - 7; http://dx.doi.org/10.1073/pnas.0931263100; PMID: 12702754
  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, et al. Production of complex human glycoproteins in yeast. Science 2003; 301:1244 - 6; http://dx.doi.org/10.1126/science.1088166; PMID: 12947202
  • Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, et al. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 2004; 14:757 - 66; http://dx.doi.org/10.1093/glycob/cwh104; PMID: 15190003
  • Hamilton SR, Gerngross TU. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 2007; 18:387 - 92; http://dx.doi.org/10.1016/j.copbio.2007.09.001; PMID: 17951046
  • Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh AA. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol Immunol 2006; 43:426 - 35; http://dx.doi.org/10.1016/j.molimm.2005.03.003; PMID: 16337485
  • Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 2006; 24:210 - 5; http://dx.doi.org/10.1038/nbt1178; PMID: 16429149
  • Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, et al. Characterization of humanized antibodies secreted by Aspergillus niger.. Appl Environ Microbiol 2004; 70:2567 - 76; http://dx.doi.org/10.1128/AEM.70.5.2567-2576.2004; PMID: 15128505
  • Nyyssönen E, Penttilä M, Harkki A, Saloheimo A, Knowles JKC, Keränen S. Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Biotechnology (N Y) 1993; 11:591 - 5; http://dx.doi.org/10.1038/nbt0593-591; PMID: 7763606
  • Wallis GLF, Easton RL, Jolly K, Hemming FW, Peberdy JF. Galactofuranoic-oligomannose N-linked glycans of α-galactosidase A from Aspergillus niger. Eur J Biochem 2001; 268:4134 - 43; http://dx.doi.org/10.1046/j.1432-1327.2001.02322.x; PMID: 11488905
  • Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature 1989; 342:76 - 8; http://dx.doi.org/10.1038/342076a0; PMID: 2509938
  • Peters J, Stoger E. Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies. Hum Vaccin 2011; 7:367 - 74; http://dx.doi.org/10.4161/hv.7.3.14303; PMID: 21346415
  • Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859 - 76; http://dx.doi.org/10.1586/erv.10.85; PMID: 20673010
  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, et al. Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 2010; 8:638 - 54; http://dx.doi.org/10.1111/j.1467-7652.2009.00495.x; PMID: 20514694
  • Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, et al. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci U S A 2006; 103:14701 - 6; http://dx.doi.org/10.1073/pnas.0606631103; PMID: 16973752
  • Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G, Zeitlin L, et al. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 2010; 106:9 - 17; PMID: 20047189
  • Cabanes-Macheteau M, Fitchette-Lainé A-C, Loutelier-Bourhis C, Lange C, Vine ND, Ma JK, et al. N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 1999; 9:365 - 72; http://dx.doi.org/10.1093/glycob/9.4.365; PMID: 10089210
  • Schähs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 2007; 5:657 - 63; http://dx.doi.org/10.1111/j.1467-7652.2007.00273.x; PMID: 17678502
  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, et al. Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci U S A 2001; 98:2899 - 904; http://dx.doi.org/10.1073/pnas.031419998; PMID: 11226338
  • Paccalet T, Bardor M, Rihouey C, Delmas F, Chevalier C, D’Aoust MA, et al. Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes. Plant Biotechnol J 2007; 5:16 - 25; http://dx.doi.org/10.1111/j.1467-7652.2006.00211.x; PMID: 17207253
  • Gasdaska J, Spencer D, Dickey L. Advantages of therapeutic protein production in the aquatic plant lemna. Bioprocess J 2003; 2:49 - 56
  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 2006; 24:1591 - 7; http://dx.doi.org/10.1038/nbt1260; PMID: 17128273
  • Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G, et al. Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2004; 2:517 - 23; http://dx.doi.org/10.1111/j.1467-7652.2004.00100.x; PMID: 17147624
  • Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 2009; 104:663 - 73; PMID: 19562731
  • Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373 - 83; http://dx.doi.org/10.1007/s10529-010-0326-5; PMID: 20556634
  • Boss MA, Kenten JH, Wood CR, Emtage JS. Assembly of functional antibodies from immunoglobulin heavy and light chains synthesised in E. coli. Nucleic Acids Res 1984; 12:3791 - 806; http://dx.doi.org/10.1093/nar/12.9.3791; PMID: 6328437
  • Cabilly S, Riggs AD, Pande H, Shively JE, Holmes WE, Rey M, et al. Generation of antibody activity from immunoglobulin polypeptide chains produced in Escherichia coli. Proc Natl Acad Sci U S A 1984; 81:3273 - 7; http://dx.doi.org/10.1073/pnas.81.11.3273; PMID: 6374653
  • Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 2002; 263:133 - 47; http://dx.doi.org/10.1016/S0022-1759(02)00036-4; PMID: 12009210
  • Reilly DE, Yansura DG. Production of monoclonal antibodies in E.coli. In current trends in monoclonal antibody development and manufacturing. Edited by Shire SJ, Gombotz W, Bechtold-Peters K, Andya J. New-York: Springer; 2010: 295-308.
  • Raju TS, Scallon BJ. Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun 2006; 341:797 - 803; http://dx.doi.org/10.1016/j.bbrc.2006.01.030; PMID: 16442075
  • Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD. Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 2008; 105:20167 - 72; http://dx.doi.org/10.1073/pnas.0809257105; PMID: 19074274
  • Jung ST, Kang TH, Kelton W, Georgiou G. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 2011; 22:858 - 67; http://dx.doi.org/10.1016/j.copbio.2011.03.002; PMID: 21420850
  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 2003; 325:979 - 89; http://dx.doi.org/10.1016/S0022-2836(02)01250-0; PMID: 12527303
  • Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2011; 10:1063 - 81; http://dx.doi.org/10.1586/erv.11.24; PMID: 21806400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.