2,288
Views
28
CrossRef citations to date
0
Altmetric
Report

A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells

, , , , , , , , , , , , , , , , , , & show all
Pages 736-747 | Received 24 Apr 2013, Accepted 03 Jul 2013, Published online: 15 Jul 2013

References

  • Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2012; 119:1810 - 20; http://dx.doi.org/10.1182/blood-2011-09-379214; PMID: 22186992
  • Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007; 7:292 - 304; http://dx.doi.org/10.1038/nri2062; PMID: 17380158
  • Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002; 99:111 - 20; http://dx.doi.org/10.1182/blood.V99.1.111; PMID: 11756160
  • Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 2013; 34:81 - 9; http://dx.doi.org/10.1016/j.it.2012.08.006; PMID: 23000011
  • Sherr CJ. Colony-stimulating factor-1 receptor. Blood 1990; 75:1 - 12; PMID: 2153029
  • Ide H, Seligson DB, Memarzadeh S, Xin L, Horvath S, Dubey P, et al. Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. Proc Natl Acad Sci U S A 2002; 99:14404 - 9; http://dx.doi.org/10.1073/pnas.222537099; PMID: 12381783
  • Smith HO, Anderson PS, Kuo DY, Goldberg GL, DeVictoria CL, Boocock CA, et al. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin Cancer Res 1995; 1:313 - 25; PMID: 9815987
  • Chambers SK. Role of CSF-1 in progression of epithelial ovarian cancer. Future Oncol 2009; 5:1429 - 40; http://dx.doi.org/10.2217/fon.09.103; PMID: 19903070
  • Hammes LS, Tekmal RR, Naud P, Edelweiss MI, Kirma N, Valente PT, et al. Up-regulation of VEGF, c-fms and COX-2 expression correlates with severity of cervical cancer precursor (CIN) lesions and invasive disease. Gynecol Oncol 2008; 110:445 - 51; http://dx.doi.org/10.1016/j.ygyno.2008.04.038; PMID: 18565574
  • Scholl SM, Lidereau R, de la Rochefordière A, Le-Nir CC, Mosseri V, Noguès C, et al. Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast Cancer Res Treat 1996; 39:275 - 83; http://dx.doi.org/10.1007/BF01806155; PMID: 8877007
  • Becker S, Warren MK, Haskill S. Colony-stimulating factor-induced monocyte survival and differentiation into macrophages in serum-free cultures. J Immunol 1987; 139:3703 - 9; PMID: 2824612
  • Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000; 1:510 - 4; http://dx.doi.org/10.1038/82763; PMID: 11101873
  • Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, et al. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998; 92:4778 - 91; PMID: 9845545
  • Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001; 193:727 - 40; http://dx.doi.org/10.1084/jem.193.6.727; PMID: 11257139
  • Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006; 42:717 - 27; http://dx.doi.org/10.1016/j.ejca.2006.01.003; PMID: 16520032
  • Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124:263 - 6; http://dx.doi.org/10.1016/j.cell.2006.01.007; PMID: 16439202
  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006; 66:11238 - 46; http://dx.doi.org/10.1158/0008-5472.CAN-06-1278; PMID: 17114237
  • Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 2009; 4:e6562; http://dx.doi.org/10.1371/journal.pone.0006562; PMID: 19668347
  • Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004; 64:7022 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-04-1449; PMID: 15466195
  • Smith W, Feldmann M, Londei M. Human macrophages induced in vitro by macrophage colony-stimulating factor are deficient in IL-12 production. Eur J Immunol 1998; 28:2498 - 507; http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08<2498::AID-IMMU2498>3.0.CO;2-Q; PMID: 9710227
  • Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177:7303 - 11; PMID: 17082649
  • Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 2007; 110:4319 - 30; http://dx.doi.org/10.1182/blood-2007-02-072587; PMID: 17848619
  • Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006; 79:285 - 93; http://dx.doi.org/10.1189/jlb.0105015; PMID: 16330536
  • Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008; 8:533 - 44; http://dx.doi.org/10.1038/nri2356; PMID: 18551128
  • Porcheray F, Viaud S, Rimaniol AC, Léone C, Samah B, Dereuddre-Bosquet N, et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 2005; 142:481 - 9; PMID: 16297160
  • Puig-Kröger A, Sierra-Filardi E, Domínguez-Soto A, Samaniego R, Corcuera MT, Gómez-Aguado F, et al. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 2009; 69:9395 - 403; http://dx.doi.org/10.1158/0008-5472.CAN-09-2050; PMID: 19951991
  • Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA, et al. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 2012; 375:196 - 206; PMID: 22075274
  • Beck AH, Espinosa I, Edris B, Li R, Montgomery K, Zhu S, et al. The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res 2009; 15:778 - 87; http://dx.doi.org/10.1158/1078-0432.CCR-08-1283; PMID: 19188147
  • Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86:1065 - 73; http://dx.doi.org/10.1189/jlb.0609385; PMID: 19741157
  • Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, et al. M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol 2009; 182:4415 - 22; http://dx.doi.org/10.4049/jimmunol.0713732; PMID: 19299742
  • Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 2004; 101:4560 - 5; http://dx.doi.org/10.1073/pnas.0400983101; PMID: 15070757
  • Schmieder A, Michel J, Schönhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 2012; 22:289 - 97; http://dx.doi.org/10.1016/j.semcancer.2012.02.002; PMID: 22349514
  • Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999; 190:1741 - 54; http://dx.doi.org/10.1084/jem.190.12.1741; PMID: 10601350
  • Hodge JM, Collier FM, Pavlos NJ, Kirkland MA, Nicholson GC. M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS One 2011; 6:e21462; http://dx.doi.org/10.1371/journal.pone.0021462; PMID: 21738673
  • Yagiz K, Rittling SR. Both cell-surface and secreted CSF-1 expressed by tumor cells metastatic to bone can contribute to osteoclast activation. Exp Cell Res 2009; 315:2442 - 52; http://dx.doi.org/10.1016/j.yexcr.2009.05.002; PMID: 19427849
  • Sherr CJ, Ashmun RA, Downing JR, Ohtsuka M, Quan SG, Golde DW, et al. Inhibition of colony-stimulating factor-1 activity by monoclonal antibodies to the human CSF-1 receptor. Blood 1989; 73:1786 - 93; PMID: 2540857
  • Chihara T, Suzu S, Hassan R, Chutiwitoonchai N, Hiyoshi M, Motoyoshi K, et al. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ 2010; 17:1917 - 27; http://dx.doi.org/10.1038/cdd.2010.60; PMID: 20489731
  • Wang C, Koistinen P, Yang GS, Williams DE, Lyman SD, Minden MD, et al. Mast cell growth factor, a ligand for the receptor encoded by c-kit, affects the growth in culture of the blast cells of acute myeloblastic leukemia. Leukemia 1991; 5:493 - 9; PMID: 1711640
  • Li W, Stanley ER. Role of dimerization and modification of the CSF-1 receptor in its activation and internalization during the CSF-1 response. EMBO J 1991; 10:277 - 88; PMID: 1825054
  • Jacquel A, Benikhlef N, Paggetti J, Lalaoui N, Guery L, Dufour EK, et al. Colony-stimulating factor-1-induced oscillations in phosphatidylinositol-3 kinase/AKT are required for caspase activation in monocytes undergoing differentiation into macrophages. Blood 2009; 114:3633 - 41; http://dx.doi.org/10.1182/blood-2009-03-208843; PMID: 19721010
  • Conway JG, McDonald B, Parham J, Keith B, Rusnak DW, Shaw E, et al. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc Natl Acad Sci U S A 2005; 102:16078 - 83; http://dx.doi.org/10.1073/pnas.0502000102; PMID: 16249345
  • Rissanen JP, Ylipahkala H, Fagerlund KM, Long C, Väänänen HK, Halleen JM. Improved methods for testing antiresorptive compounds in human osteoclast cultures. J Bone Miner Metab 2009; 27:105 - 9; http://dx.doi.org/10.1007/s00774-008-0002-1; PMID: 19018457
  • Akagawa KS. Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Int J Hematol 2002; 76:27 - 34; http://dx.doi.org/10.1007/BF02982715; PMID: 12138892
  • Paniagua RT, Chang A, Mariano MM, Stein EA, Wang Q, Lindstrom TM, et al. c-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res Ther 2010; 12:R32; http://dx.doi.org/10.1186/ar2940; PMID: 20181277
  • Boruchov AM, Heller G, Veri MC, Bonvini E, Ravetch JV, Young JW. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J Clin Invest 2005; 115:2914 - 23; http://dx.doi.org/10.1172/JCI24772; PMID: 16167082
  • Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 2009; 284:34342 - 54; http://dx.doi.org/10.1074/jbc.M109.042671; PMID: 19833726
  • Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 1995; 154:3821 - 35; PMID: 7706722
  • Horiguchi J, Warren MK, Kufe D. Expression of the macrophage-specific colony-stimulating factor in human monocytes treated with granulocyte-macrophage colony-stimulating factor. Blood 1987; 69:1259 - 61; PMID: 3030467
  • Bartocci A, Mastrogiannis DS, Migliorati G, Stockert RJ, Wolkoff AW, Stanley ER. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci U S A 1987; 84:6179 - 83; http://dx.doi.org/10.1073/pnas.84.17.6179; PMID: 2819867
  • Abès R, Dutertre CA, Agnelli L, Teillaud JL. Activating and inhibitory Fcgamma receptors in immunotherapy: being the actor or being the target. Expert Rev Clin Immunol 2009; 5:735 - 47; http://dx.doi.org/10.1586/eci.09.57; PMID: 20477693
  • Woof JM. Insights from Fc receptor biology: a route to improved antibody reagents. MAbs 2012; 4:291 - 3; http://dx.doi.org/10.4161/mabs.20100; PMID: 22531437
  • Kurlander RJ. Blockade of Fc receptor-mediated binding to U-937 cells by murine monoclonal antibodies directed against a variety of surface antigens. J Immunol 1983; 131:140 - 7; PMID: 6223069
  • Hogarth PM, Pietersz GA. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 2012; 11:311 - 31; http://dx.doi.org/10.1038/nrd2909; PMID: 22460124
  • Tanaka M, Krutzik SR, Sieling PA, Lee DJ, Rea TH, Modlin RL. Activation of Fc gamma RI on monocytes triggers differentiation into immature dendritic cells that induce autoreactive T cell responses. J Immunol 2009; 183:2349 - 55; http://dx.doi.org/10.4049/jimmunol.0801683; PMID: 19635920
  • Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475:222 - 5; http://dx.doi.org/10.1038/nature10138; PMID: 21654748
  • Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 2010; 52:215 - 20; http://dx.doi.org/10.1016/j.cyto.2010.08.005; PMID: 20829061
  • Vely F, Gruel N, Moncuit J, Cochet O, Rouard H, Dare S, et al. A new set of monoclonal antibodies against human Fc gamma RII (CD32) and Fc gamma RIII (CD16): characterization and use in various assays. Hybridoma 1997; 16:519 - 28; http://dx.doi.org/10.1089/hyb.1997.16.519; PMID: 9455704
  • Stroncek DF, Skubitz KM, Plachta LB, Shankar RA, Clay ME, Herman J, et al. Alloimmune neonatal neutropenia due to an antibody to the neutrophil Fc-gamma receptor III with maternal deficiency of CD16 antigen. Blood 1991; 77:1572 - 80; PMID: 1826224
  • Dougherty GJ, Selvendran Y, Murdoch S, Palmer DG, Hogg N. The human mononuclear phagocyte high-affinity Fc receptor, FcRI, defined by a monoclonal antibody, 10.1. Eur J Immunol 1987; 17:1453 - 9; http://dx.doi.org/10.1002/eji.1830171011; PMID: 3500057