2,325
Views
24
CrossRef citations to date
0
Altmetric
Report

Suppression of innate and adaptive B cell activation pathways by antibody coengagement of FcγRIIb and CD19

, , , , &
Pages 991-999 | Received 15 Jan 2014, Accepted 09 Apr 2014, Published online: 23 Apr 2014

References

  • Heyman B. Feedback regulation by IgG antibodies. Immunol Lett 2003; 88:157 - 61; http://dx.doi.org/10.1016/S0165-2478(03)00078-6; PMID: 12880686
  • Ravetch JV. Fc receptors. Curr Opin Immunol 1997; 9:121 - 5; http://dx.doi.org/10.1016/S0952-7915(97)80168-9; PMID: 9039776
  • Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8:34 - 47; http://dx.doi.org/10.1038/nri2206; PMID: 18064051
  • Daëron M. Building up the family of ITIM-bearing negative coreceptors. Immunol Lett 1996; 54:73 - 6; http://dx.doi.org/10.1016/S0165-2478(96)02652-1; PMID: 9052857
  • Van den Herik-Oudijk IE, Capel PJ, van der Bruggen T, Van de Winkel JG. Identification of signaling motifs within human Fc gamma RIIa and Fc gamma RIIb isoforms. Blood 1995; 85:2202 - 11; PMID: 7718892
  • Famiglietti SJ, Nakamura K, Cambier JC. Unique features of SHIP, SHP-1 and SHP-2 binding to FcgammaRIIb revealed by surface plasmon resonance analysis. Immunol Lett 1999; 68:35 - 40; http://dx.doi.org/10.1016/S0165-2478(99)00027-9; PMID: 10397153
  • Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 1996; 383:263 - 6; http://dx.doi.org/10.1038/383263a0; PMID: 8805703
  • Sármay G, Koncz G, Pecht I, Gergely J. Cooperation between SHP-2, phosphatidyl inositol 3-kinase and phosphoinositol 5-phosphatase in the Fc gamma RIIb mediated B cell regulation. Immunol Lett 1999; 68:25 - 34; http://dx.doi.org/10.1016/S0165-2478(99)00026-7; PMID: 10397152
  • Koncz G, Gergely J, Sármay G. Fc gammaRIIb inhibits both B cell receptor- and CD19-induced Ca2+ mobilization in Fc gammaR-transfected human B cells. Int Immunol 1998; 10:141 - 6; http://dx.doi.org/10.1093/intimm/10.2.141; PMID: 9533441
  • Tedder TF, Isaacs CM. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. A new member of the immunoglobulin superfamily. J Immunol 1989; 143:712 - 7; PMID: 2472450
  • Otero DC, Anzelon AN, Rickert RC. CD19 function in early and late B cell development: I. Maintenance of follicular and marginal zone B cells requires CD19-dependent survival signals. J Immunol 2003; 170:73 - 83; http://dx.doi.org/10.4049/jimmunol.170.1.73; PMID: 12496385
  • Otero DC, Rickert RC. CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J Immunol 2003; 171:5921 - 30; http://dx.doi.org/10.4049/jimmunol.171.11.5921; PMID: 14634103
  • Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med 1993; 178:1407 - 17; http://dx.doi.org/10.1084/jem.178.4.1407; PMID: 7690834
  • Tedder TF, Zhou LJ, Engel P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 1994; 15:437 - 42; http://dx.doi.org/10.1016/0167-5699(94)90274-7; PMID: 7524521
  • Fujimoto M, Poe JC, Jansen PJ, Sato S, Tedder TF. CD19 amplifies B lymphocyte signal transduction by regulating Src-family protein tyrosine kinase activation. J Immunol 1999; 162:7088 - 94; PMID: 10358152
  • Karnell JL, Dimasi N, Karnell FG 3rd, Fleming R, Kuta E, Wilson M, Wu H, Gao C, Herbst R, Ettinger R. CD19 and CD32b differentially regulate human B cell responsiveness. J Immunol 2014; 192:1480 - 90; http://dx.doi.org/10.4049/jimmunol.1301361; PMID: 24442430
  • Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A 2006; 103:4005 - 10; http://dx.doi.org/10.1073/pnas.0508123103; PMID: 16537476
  • Chu SY, Vostiar I, Karki S, Moore GL, Lazar GA, Pong E, Joyce PF, Szymkowski DE, Desjarlais JR. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol Immunol 2008; 45:3926 - 33; http://dx.doi.org/10.1016/j.molimm.2008.06.027; PMID: 18691763
  • Horton HM, Chu SY, Ortiz EC, Pong E, Cemerski S, Leung IW, Jacob N, Zalevsky J, Desjarlais JR, Stohl W, et al. Antibody-mediated coengagement of FcγRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J Immunol 2011; 186:4223 - 33; http://dx.doi.org/10.4049/jimmunol.1003412; PMID: 21357255
  • Szili D, Bankó Z, Tóth EA, Nagy G, Rojkovich B, Gáti T, Simon M, Hérincs Z, Sármay G. TGFb activated Kinase 1 (TAK1) at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B Cells. PLoS One 2014; 9:e96381; http://dx.doi.org/10.1371/journal.pone.0096381; PMID: 24801688
  • European Medicines Agency. EudraCT: European Clinical Trials Database; 2013.
  • Aman MJ, Lamkin TD, Okada H, Kurosaki T, Ravichandran KS. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J Biol Chem 1998; 273:33922 - 8; http://dx.doi.org/10.1074/jbc.273.51.33922; PMID: 9852043
  • Tridandapani S, Phee H, Shivakumar L, Kelley TW, Coggeshall KM. Role of SHIP in FcgammaRIIb-mediated inhibition of Ras activation in B cells. Mol Immunol 1998; 35:1135 - 46; http://dx.doi.org/10.1016/S0161-5890(98)00097-2; PMID: 10395202
  • Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2002; 2:580 - 92; PMID: 12154377
  • Tarasenko T, Dean JA, Bolland S. FcgammaRIIB as a modulator of autoimmune disease susceptibility. Autoimmunity 2007; 40:409 - 17; http://dx.doi.org/10.1080/08916930701464665; PMID: 17729034
  • Sebbag M, Chapuy-Regaud S, Auger I, Petit-Texeira E, Clavel C, Nogueira L, Vincent C, Cornélis F, Roudier J, Serre G. Clinical and pathophysiological significance of the autoimmune response to citrullinated proteins in rheumatoid arthritis. Joint Bone Spine 2004; 71:493 - 502; http://dx.doi.org/10.1016/j.jbspin.2004.07.004; PMID: 15589429
  • Yamada R, Suzuki A, Chang X, Yamamoto K. Citrullinated proteins in rheumatoid arthritis. Front Biosci 2005; 10:54 - 64; http://dx.doi.org/10.2741/1506; PMID: 15574347
  • Snir O, Widhe M, von Spee C, Lindberg J, Padyukov L, Lundberg K, Engström A, Venables PJ, Lundeberg J, Holmdahl R, et al. Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: association with HLA-DRB1 alleles. Ann Rheum Dis 2009; 68:736 - 43; http://dx.doi.org/10.1136/ard.2008.091355; PMID: 18635594
  • Peng SL. Signaling in B cells via Toll-like receptors. Curr Opin Immunol 2005; 17:230 - 6; http://dx.doi.org/10.1016/j.coi.2005.03.003; PMID: 15886111
  • Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J, Schmidt B. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J Leukoc Biol 2013; 94:123 - 35; http://dx.doi.org/10.1189/jlb.0612278; PMID: 23610148
  • Meyer-Bahlburg A, Rawlings DJ. B cell autonomous TLR signaling and autoimmunity. Autoimmun Rev 2008; 7:313 - 6; http://dx.doi.org/10.1016/j.autrev.2007.11.027; PMID: 18295736
  • Kenny EF, Quinn SR, Doyle SL, Vink PM, van Eenennaam H, O’Neill LA. Bruton’s tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS One 2013; 8:e74103; http://dx.doi.org/10.1371/journal.pone.0074103; PMID: 23967355
  • Otero DC, Omori SA, Rickert RC. CD19-dependent activation of Akt kinase in B-lymphocytes. J Biol Chem 2001; 276:1474 - 8; http://dx.doi.org/10.1074/jbc.M003918200; PMID: 11042164
  • Ruprecht CR, Lanzavecchia A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 2006; 36:810 - 6; http://dx.doi.org/10.1002/eji.200535744; PMID: 16541472
  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 2002; 3:499; http://dx.doi.org/10.1038/ni0602-499; PMID: 12032557
  • Bellatin MF, Han M, Fallena M, Fan L, Xia D, Olsen N, Branch V, Karp D, Stastny P. Production of autoantibodies against citrullinated antigens/peptides by human B cells. J Immunol 2012; 188:3542 - 50; http://dx.doi.org/10.4049/jimmunol.1100577; PMID: 22345652
  • Szarka E, Babos F, Magyar A, Huber K, Szittner Z, Papp K, et al. Recognition of new citrulline containing peptide epitopes by autoantibodies produced in vivo and in vitro by B cells of Rheumatoid arthritis patients. Immunology 2013; PMID: 24116744
  • Panayi GS. B cells: a fundamental role in the pathogenesis of rheumatoid arthritis?. Rheumatology (Oxford) 2005; 44:Suppl 2 ii3 - 7; http://dx.doi.org/10.1093/rheumatology/keh616; PMID: 15851524
  • Bugatti S, Codullo V, Caporali R, Montecucco C. B cells in rheumatoid arthritis. Autoimmun Rev 2007; 7:137 - 42; http://dx.doi.org/10.1016/j.autrev.2007.02.017; PMID: 18035324
  • Weyand CM, Goronzy JJ. Ectopic germinal center formation in rheumatoid synovitis. Ann N Y Acad Sci 2003; 987:140 - 9; http://dx.doi.org/10.1111/j.1749-6632.2003.tb06042.x; PMID: 12727633
  • Burmester GR, Feist E, Dorner T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol 2013.
  • Keystone EC. B cells in rheumatoid arthritis: from hypothesis to the clinic. Rheumatology (Oxford) 2005; 44:Suppl 2 ii8 - 12; http://dx.doi.org/10.1093/rheumatology/keh617; PMID: 15851525
  • Looney RJ, Anolik J, Sanz I. B cells as therapeutic targets for rheumatic diseases. Curr Opin Rheumatol 2004; 16:180 - 5; http://dx.doi.org/10.1097/00002281-200405000-00003; PMID: 15103242
  • Brinkman IH, van de Laar MA, Jansen TL, van Roon EN. The potential risk of infections during (prolonged) rituximab therapy in rheumatoid arthritis. Expert Opin Drug Saf 2011; 10:715 - 26; http://dx.doi.org/10.1517/14740338.2011.562188; PMID: 21401437
  • Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, Carter R, Justement LB, Bruckbauer A, Batista FD. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 2013; 38:461 - 74; http://dx.doi.org/10.1016/j.immuni.2012.11.019; PMID: 23499492
  • Callard RE, Rigley KP, Smith SH, Thurstan S, Shields JG. CD19 regulation of human B cell responses. B cell proliferation and antibody secretion are inhibited or enhanced by ligation of the CD19 surface glycoprotein depending on the stimulating signal used. J Immunol 1992; 148:2983 - 7; PMID: 1374445
  • Pezzutto A, Dörken B, Rabinovitch PS, Ledbetter JA, Moldenhauer G, Clark EA. CD19 monoclonal antibody HD37 inhibits anti-immunoglobulin-induced B cell activation and proliferation. J Immunol 1987; 138:2793 - 9; PMID: 2437199
  • Rigley KP, Callard RE. Inhibition of B cell proliferation with anti-CD19 monoclonal antibodies: anti-CD19 antibodies do not interfere with early signaling events triggered by anti-IgM or interleukin 4. Eur J Immunol 1991; 21:535 - 40; http://dx.doi.org/10.1002/eji.1830210302; PMID: 1707000
  • Fujimoto M, Poe JC, Satterthwaite AB, Wahl MI, Witte ON, Tedder TF. Complementary roles for CD19 and Bruton’s tyrosine kinase in B lymphocyte signal transduction. J Immunol 2002; 168:5465 - 76; http://dx.doi.org/10.4049/jimmunol.168.11.5465; PMID: 12023340
  • Fujimoto M, Poe JC, Hasegawa M, Tedder TF. CD19 regulates intrinsic B lymphocyte signal transduction and activation through a novel mechanism of processive amplification. Immunol Res 2000; 22:281 - 98; http://dx.doi.org/10.1385/IR:22:2-3:281; PMID: 11339363
  • Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010; 62:2569 - 81; http://dx.doi.org/10.1002/art.27584; PMID: 20872595
  • Biró A, Sármay G, Rozsnyay Z, Klein E, Gergely J. A trypsin-like serine protease activity on activated human B cells and various B cell lines. Eur J Immunol 1992; 22:2547 - 53; http://dx.doi.org/10.1002/eji.1830221013; PMID: 1396962
  • Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 1983; 65:109 - 21; http://dx.doi.org/10.1016/0022-1759(83)90308-3; PMID: 6361139
  • Jahnmatz M, Kesa G, Netterlid E, Buisman AM, Thorstensson R, Ahlborg N. Optimization of a human IgG B-cell ELISpot assay for the analysis of vaccine-induced B-cell responses. J Immunol Methods 2013; 391:50 - 9; http://dx.doi.org/10.1016/j.jim.2013.02.009; PMID: 23454005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.