2,455
Views
59
CrossRef citations to date
0
Altmetric
Review

Antibodies directed against receptor tyrosine kinases

Current and future strategies to fight cancer

&
Pages 838-851 | Received 02 Apr 2014, Accepted 30 Apr 2014, Published online: 14 May 2014

References

  • Jiang X-R, Song A, Bergelson S, Arroll T, Parekh B, May K, Chung S, Strouse R, Mire-Sluis A, Schenerman M. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discov 2011; 10:101 - 11; http://dx.doi.org/10.1038/nrd3365; PMID: 21283105
  • Sharkey RM, Goldenberg DM. Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin 2006; 56:226 - 43; http://dx.doi.org/10.3322/canjclin.56.4.226; PMID: 16870998
  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2:127 - 37; http://dx.doi.org/10.1038/35052073; PMID: 11252954
  • Roskoski R Jr.. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 2014; 79:34 - 74; http://dx.doi.org/10.1016/j.phrs.2013.11.002; PMID: 24269963
  • Hudis CA. Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 2007; 357:39 - 51; http://dx.doi.org/10.1056/NEJMra043186; PMID: 17611206
  • Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 1999; 21:309 - 18; http://dx.doi.org/10.1016/S0149-2918(00)88288-0; PMID: 10211534
  • Nahta R. Molecular Mechanisms of Trastuzumab-Based Treatment in HER2-Overexpressing Breast Cancer. ISRN Oncol 2012; 2012:428062; http://dx.doi.org/10.5402/2012/428062; PMID: 23227361
  • McLarty K, Cornelissen B, Cai Z, Scollard DA, Costantini DL, Done SJ, Reilly RM. Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med 2009; 50:1340 - 8; http://dx.doi.org/10.2967/jnumed.109.062224; PMID: 19617342
  • Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther 2011; 11:263 - 75; http://dx.doi.org/10.1586/era.10.226; PMID: 21342044
  • Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM, Dennis PA, Lipkowitz S. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 2001; 61:4892 - 900; PMID: 11406568
  • Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism?. Br J Cancer 2006; 94:259 - 67; http://dx.doi.org/10.1038/sj.bjc.6602930; PMID: 16404427
  • Prang N, Preithner S, Brischwein K, Göster P, Wöppel A, Müller J, Steiger C, Peters M, Baeuerle PA, da Silva AJ. Cellular and complement-dependent cytotoxicity of Ep-CAM-specific monoclonal antibody MT201 against breast cancer cell lines. Br J Cancer 2005; 92:342 - 9; PMID: 15655555
  • Kumar R, Mandal M, Vadlamudi R. New insights into anti-HER-2 receptor monoclonal antibody research. Semin Oncol 2000; 27:Suppl 11 84 - 91, discussion 92-100; PMID: 11236033
  • Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 2002; 62:4132 - 41; PMID: 12124352
  • Emlet DR, Brown KA, Kociban DL, Pollice AA, Smith CA, Ong BBL, Shackney SE. Response to trastuzumab, erlotinib, and bevacizumab, alone and in combination, is correlated with the level of human epidermal growth factor receptor-2 expression in human breast cancer cell lines. Mol Cancer Ther 2007; 6:2664 - 74; http://dx.doi.org/10.1158/1535-7163.MCT-07-0079; PMID: 17938260
  • Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9:463 - 75; http://dx.doi.org/10.1038/nrc2656; PMID: 19536107
  • Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2:127 - 37; http://dx.doi.org/10.1016/S1535-6108(02)00097-1; PMID: 12204533
  • Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, McKeever K, Sliwkowski MX. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 2006; 55:717 - 27; http://dx.doi.org/10.1007/s00262-005-0058-x; PMID: 16151804
  • Hughes JB, Berger C, Rødland MS, Hasmann M, Stang E, Madshus IH. Pertuzumab increases epidermal growth factor receptor down-regulation by counteracting epidermal growth factor receptor-ErbB2 heterodimerization. Mol Cancer Ther 2009; 8:1885 - 92; http://dx.doi.org/10.1158/1535-7163.MCT-09-0291; PMID: 19584234
  • Metzger-Filho O, Winer EP, Krop I. Pertuzumab: optimizing HER2 blockade. Clin Cancer Res 2013; 19:5552 - 6; http://dx.doi.org/10.1158/1078-0432.CCR-13-0518; PMID: 23942091
  • Lee-Hoeflich ST, Crocker L, Yao E, Pham T, Munroe X, Hoeflich KP, Sliwkowski MX, Stern HM. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 2008; 68:5878 - 87; http://dx.doi.org/10.1158/0008-5472.CAN-08-0380; PMID: 18632642
  • Tanner B, Hasenclever D, Stern K, Schormann W, Bezler M, Hermes M, Brulport M, Bauer A, Schiffer IB, Gebhard S, et al. ErbB-3 predicts survival in ovarian cancer. J Clin Oncol 2006; 24:4317 - 23; http://dx.doi.org/10.1200/JCO.2005.04.8397; PMID: 16896008
  • Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 2009; 69:9330 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-08-4597; PMID: 19934333
  • Sak MM, Szymanska M, Bertelsen V, Hasmann M, Madshus IH, Stang E. Pertuzumab counteracts the inhibitory effect of ErbB2 on degradation of ErbB3. Carcinogenesis 2013; 34:2031 - 8; http://dx.doi.org/10.1093/carcin/bgt173; PMID: 23698633
  • Fuentes G, Scaltriti M, Baselga J, Verma CS. Synergy between trastuzumab and pertuzumab for human epidermal growth factor 2 (Her2) from colocalization: an in silico based mechanism. Breast Cancer Res 2011; 13:R54; http://dx.doi.org/10.1186/bcr2888; PMID: 21600050
  • Kao H-F, Lin C-C, Yang JC-H. EGFR inhibitors as the first-line systemic treatment for advanced non-small-cell lung cancer. Future Oncol 2013; 9:991 - 1003; http://dx.doi.org/10.2217/fon.13.56; PMID: 23837762
  • Warnault P, Yasri A, Coisy-Quivy M, Chevé G, Boriès C, Fauvel B, Benhida R. Recent advances in drug design of epidermal growth factor receptor inhibitors. Curr Med Chem 2013; 20:2043 - 67; http://dx.doi.org/10.2174/0929867311320160001; PMID: 23410174
  • Krawczyk P, Chocholska S, Milanowski J. Anti-HER therapeutic agents in the treatment of non-small-cell lung cancer. Ann Univ Mariae Curie Sklodowska Med 2003; 58:113 - 7; PMID: 15314969
  • Patel D, Bassi R, Hooper A, Prewett M, Hicklin DJ, Kang X. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol 2009; 34:25 - 32; PMID: 19082474
  • Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1995; 1:1311 - 8; PMID: 9815926
  • Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999; 5:257 - 65; PMID: 10037173
  • Kimura H, Sakai K, Arao T, Shimoyama T, Tamura T, Nishio K. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci 2007; 98:1275 - 80; http://dx.doi.org/10.1111/j.1349-7006.2007.00510.x; PMID: 17498200
  • Hsu Y-F, Ajona D, Corrales L, Lopez-Picazo JM, Gurpide A, Montuenga LM, Pio R. Complement activation mediates cetuximab inhibition of non-small cell lung cancer tumor growth in vivo. Mol Cancer 2010; 9:139; http://dx.doi.org/10.1186/1476-4598-9-139; PMID: 20529262
  • Roda JM, Joshi T, Butchar JP, McAlees JW, Lehman A, Tridandapani S, Carson WE 3rd. The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 2007; 13:6419 - 28; http://dx.doi.org/10.1158/1078-0432.CCR-07-0865; PMID: 17962339
  • Ashraf SQ, Nicholls AM, Wilding JL, Ntouroupi TG, Mortensen NJ, Bodmer WF. Direct and immune mediated antibody targeting of ERBB receptors in a colorectal cancer cell-line panel. Proc Natl Acad Sci U S A 2012; 109:21046 - 51; http://dx.doi.org/10.1073/pnas.1218750110; PMID: 23213241
  • Eller JL, Longo SL, Hicklin DJ, Canute GW. Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme. Neurosurgery 2002; 51:1005 - 13, discussion 1013-4; PMID: 12234411
  • Hotz B, Keilholz U, Fusi A, Buhr HJ, Hotz HG. In vitro and in vivo antitumor activity of cetuximab in human gastric cancer cell lines in relation to epidermal growth factor receptor (EGFR) expression and mutational phenotype. Gastric Cancer 2012; 15:252 - 64; http://dx.doi.org/10.1007/s10120-011-0102-9; PMID: 22011788
  • Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 1999; 59:1935 - 40; PMID: 10213503
  • Modest DP, Stintzing S, Laubender RP, Neumann J, Jung A, Giessen C, Haas M, Aubele P, Schulz C, Boeck S, et al. Clinical characterization of patients with metastatic colorectal cancer depending on the KRAS status. Anticancer Drugs 2011; 22:913 - 8; http://dx.doi.org/10.1097/CAD.0b013e3283493160; PMID: 21795973
  • Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, Celik I, Köhne C-H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012; 48:1466 - 75; http://dx.doi.org/10.1016/j.ejca.2012.02.057; PMID: 22446022
  • Yang B-B, Lum P, Chen A, Arends R, Roskos L, Smith B, Pérez Ruixo JJ. Pharmacokinetic and pharmacodynamic perspectives on the clinical drug development of panitumumab. Clin Pharmacokinet 2010; 49:729 - 40; http://dx.doi.org/10.2165/11535970-000000000-00000; PMID: 20923247
  • Giannopoulou E, Antonacopoulou A, Matsouka P, Kalofonos HP. Autophagy: novel action of panitumumab in colon cancer. Anticancer Res 2009; 29:5077 - 82; PMID: 20044619
  • Foon KA, Yang X-D, Weiner LM, Belldegrun AS, Figlin RA, Crawford J, Rowinsky EK, Dutcher JP, Vogelzang NJ, Gollub J, et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 2004; 58:984 - 90; http://dx.doi.org/10.1016/j.ijrobp.2003.09.098; PMID: 14967460
  • Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider-Merck T, Lammerts van Bueren JJ, Bleeker WK, Parren PWHI, van de Winkel JGJ, et al. Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res 2008; 68:4998 - 5003; http://dx.doi.org/10.1158/0008-5472.CAN-07-6226; PMID: 18593896
  • Patel D, Guo X, Ng S, Melchior M, Balderes P, Burtrum D, Persaud K, Luna X, Ludwig DL, Kang X. IgG isotype, glycosylation, and EGFR expression determine the induction of antibody-dependent cellular cytotoxicity in vitro by cetuximab. Hum Antibodies 2010; 19:89 - 99; PMID: 21178280
  • Schneider-Merck T, Lammerts van Bueren JJ, Berger S, Rossen K, van Berkel PHC, Derer S, Beyer T, Lohse S, Bleeker WK, Peipp M, et al. Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage. J Immunol 2010; 184:512 - 20; http://dx.doi.org/10.4049/jimmunol.0900847; PMID: 19949082
  • Koch T, Derer S, Staudinger M, Rossen K, Glorius P, Peipp M, Kellner C, Kunzendorf U, Valerius T, Dechant M. Antibody-dependent cellular cytotoxicity in patients on chronic hemodialysis. Am J Nephrol 2013; 38:379 - 87; http://dx.doi.org/10.1159/000355972; PMID: 24157422
  • Doi T, Tahara M, Yoshino T, Yamazaki K, Tamura T, Yamada Y, Yang B-B, Oliner KS, Otani S, Asahi D. Tumor KRAS status predicts responsiveness to panitumumab in Japanese patients with metastatic colorectal cancer. Jpn J Clin Oncol 2011; 41:210 - 6; http://dx.doi.org/10.1093/jjco/hyq229; PMID: 21169348
  • Hocking CM, Price TJ. Panitumumab in the management of patients with KRAS wild-type metastatic colorectal cancer. Therap Adv Gastroenterol 2014; 7:20 - 37; http://dx.doi.org/10.1177/1756283X13498660; PMID: 24381645
  • Kumar SS, Price TJ, Mohyieldin O, Borg M, Townsend A, Hardingham JE. KRAS G13D Mutation and Sensitivity to Cetuximab or Panitumumab in a Colorectal Cancer Cell Line Model. Gastrointest Cancer Res 2014; 7:23 - 6; PMID: 24558511
  • Crombet-Ramos T, Rak J, Pérez R, Viloria-Petit A. Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: A humanized anti-EGFR antibody. Int J Cancer 2002; 101:567 - 75; http://dx.doi.org/10.1002/ijc.10647; PMID: 12237899
  • Boland WK, Bebb G. Nimotuzumab: a novel anti-EGFR monoclonal antibody that retains anti-EGFR activity while minimizing skin toxicity. Expert Opin Biol Ther 2009; 9:1199 - 206; http://dx.doi.org/10.1517/14712590903110709; PMID: 19624281
  • Garrido G, Tikhomirov IA, Rabasa A, Yang E, Gracia E, Iznaga N, Fernández LE, Crombet T, Kerbel RS, Pérez R. Bivalent binding by intermediate affinity of nimotuzumab: a contribution to explain antibody clinical profile. Cancer Biol Ther 2011; 11:373 - 82; http://dx.doi.org/10.4161/cbt.11.4.14097; PMID: 21150278
  • Teresa Solomon M, Miranda N, Jorrín E, Chong I, Marinello JJ, Alert J, Lorenzo-Luaces P, Crombet T. Nimotuzumab in combination with radiotherapy in high grade glioma patients: A single institution experience. Cancer Biol Ther 2014; 15:504 - 9
  • Su D, Jiao S-C, Wang L-J, Shi W-W, Long Y-Y, Li J, Bai L. Efficacy of nimotuzumab plus gemcitabine usage as first-line treatment in patients with advanced pancreatic cancer. Tumour Biol 2014; 35:2313 - 8; http://dx.doi.org/10.1007/s13277-013-1306-x; PMID: 24142531
  • Gala K, Chandarlapaty S. Molecular Pathways: HER3 Targeted Therapy. Clin Cancer Res Off J Am Assoc Cancer Res 2014
  • Li S, Kussie P, Ferguson KM. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8. Structure 2008; 16:216 - 27; http://dx.doi.org/10.1016/j.str.2007.11.009; PMID: 18275813
  • Dienstmann R, Tabernero J. Necitumumab, a fully human IgG1 mAb directed against the EGFR for the potential treatment of cancer. Curr Opin Investig Drugs 2010; 11:1434 - 41; PMID: 21154125
  • Garrett TPJ, Burgess AW, Gan HK, Luwor RB, Cartwright G, Walker F, Orchard SG, Clayton AHA, Nice EC, Rothacker J, et al. Antibodies specifically targeting a locally misfolded region of tumor associated EGFR. Proc Natl Acad Sci U S A 2009; 106:5082 - 7; http://dx.doi.org/10.1073/pnas.0811559106; PMID: 19289842
  • Gan HK, Burgess AW, Clayton AHA, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 2012; 72:2924 - 30; http://dx.doi.org/10.1158/0008-5472.CAN-11-3898; PMID: 22659454
  • Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Kragh M. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 2010; 70:588 - 97; http://dx.doi.org/10.1158/0008-5472.CAN-09-1417; PMID: 20068188
  • Iida M, Brand TM, Starr MM, Li C, Huppert EJ, Luthar N, Pedersen MW, Horak ID, Kragh M, Wheeler DL. Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab. Neoplasia 2013; 15:1196 - 206; PMID: 24204198
  • Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, Li H, Ciccarone V, Zhang T, Stavenhagen J, et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res 2011; 13:R123; http://dx.doi.org/10.1186/bcr3069; PMID: 22129105
  • Schoeberl B, Faber AC, Li D, Liang M-C, Crosby K, Onsum M, Burenkova O, Pace E, Walton Z, Nie L, et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res 2010; 70:2485 - 94; http://dx.doi.org/10.1158/0008-5472.CAN-09-3145; PMID: 20215504
  • Garrett JT, Sutton CR, Kuba MG, Cook RS, Arteaga CL. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function. Clin Cancer Res 2013; 19:610 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-12-2024; PMID: 23224399
  • Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, Sineshchekova O, Saxena P, Sutton CR, Chen D, et al. An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res 2013; 73:6024 - 35; http://dx.doi.org/10.1158/0008-5472.CAN-13-1198; PMID: 23928993
  • Garrett JT, Sutton CR, Kurupi R, Bialucha CU, Ettenberg SA, Collins SD, Sheng Q, Wallweber J, Defazio-Eli L, Arteaga CL. Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110α inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res 2013; 73:6013 - 23; http://dx.doi.org/10.1158/0008-5472.CAN-13-1191; PMID: 23918797
  • Zhang L, Luan B, Yang K, Castanaro C, Papadopoulos N, Thurston G, Daly C. Abstract 2718: REGN1400, a fully-human ERBB3 antibody, potently inhibits tumor growth in preclinical models, both as a monotherapy and in combination with EGFR or HER2 blockers. Cancer Res 2012; 72:2718 - 2718; http://dx.doi.org/10.1158/1538-7445.AM2012-2718
  • Huang J, Wang S, Lyu H, Cai B, Yang X, Wang J, Liu B. The anti-erbB3 antibody MM-121/SAR256212 in combination with trastuzumab exerts potent antitumor activity against trastuzumab-resistant breast cancer cells. Mol Cancer 2013; 12:134; http://dx.doi.org/10.1186/1476-4598-12-134; PMID: 24215614
  • Wang S, Huang J, Lyu H, Cai B, Yang X, Li F, Tan J, Edgerton SM, Thor AD, Lee C-K, et al. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer. Breast Cancer Res 2013; 15:R101; http://dx.doi.org/10.1186/bcr3563; PMID: 24168763
  • Mirschberger C, Schiller CB, Schräml M, Dimoudis N, Friess T, Gerdes CA, Reiff U, Lifke V, Hoelzlwimmer G, Kolm I, et al. RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res 2013; 73:5183 - 94; http://dx.doi.org/10.1158/0008-5472.CAN-13-0099; PMID: 23780344
  • Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev 2013; 39:793 - 801; http://dx.doi.org/10.1016/j.ctrv.2013.02.001; PMID: 23453860
  • Vearing C, Lee F-T, Wimmer-Kleikamp S, Spirkoska V, To C, Stylianou C, Spanevello M, Brechbiel M, Boyd AW, Scott AM, et al. Concurrent binding of anti-EphA3 antibody and ephrin-A5 amplifies EphA3 signaling and downstream responses: potential as EphA3-specific tumor-targeting reagents. Cancer Res 2005; 65:6745 - 54; http://dx.doi.org/10.1158/0008-5472.CAN-05-0758; PMID: 16061656
  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4:915 - 25; http://dx.doi.org/10.1038/nrm1261; PMID: 14685170
  • Rosário M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol 2003; 13:328 - 35; http://dx.doi.org/10.1016/S0962-8924(03)00104-1; PMID: 12791299
  • Davis IJ, McFadden AW, Zhang Y, Coxon A, Burgess TL, Wagner AJ, Fisher DE. Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma. Cancer Res 2010; 70:639 - 45; http://dx.doi.org/10.1158/0008-5472.CAN-09-1121; PMID: 20068147
  • Jin H, Yang R, Zheng Z, Romero M, Ross J, Bou-Reslan H, Carano RAD, Kasman I, Mai E, Young J, et al. MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res 2008; 68:4360 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-07-5960; PMID: 18519697
  • Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, Huang A, Yang NY, Nishimura M, Greve J, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A 2013; 110:E2987 - 96; http://dx.doi.org/10.1073/pnas.1302725110; PMID: 23882082
  • Roche provides update on phase III study of onartuzumab in people with specific type of lung cancer [Internet]. 2014. Available from: http://www.roche.com/media/media_releases/med-cor-2014-03-03.htm
  • Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 2013; 19:1389 - 400; http://dx.doi.org/10.1038/nm.3388; PMID: 24202392
  • Goetsch L, Broussas M, Fabre-Lafay S, Robert A, Lepecquet A-M, Gonzalez A, Wurch T, Bailly C, Corvaia N. Abstract 2448: h224G11, a humanized whole antibody targeting the c-Met receptor, induces c-Met down-regulation and triggers ADCC functions. Cancer Res 2011; 70:2448 - 2448; http://dx.doi.org/10.1158/1538-7445.AM10-2448
  • Zeng W, Yan L, Peek V, Wortinger M, Tetreault J, Xia J, Chow C-K, Manro JR, Stephens JR, Weir SN, et al. Abstract 2734: c-Met antibody LY2875358 (LA480) shows differential antitumor effects in non-small cell lung cancer. Cancer Res 2012; 72:2734 - 2734; http://dx.doi.org/10.1158/1538-7445.AM2012-2734
  • Goetsch L, Gonzalez A, Geronimi F, Fabre-Lafay S, Broussas M, Lepecquet A-M, Wurch T. corvaia N, Bailly C. Abstract B127: Single or combined in vivo therapies of cancer with h224G11, a humanized antibody targeting the c-Met receptor. Mol Cancer Ther 2009; 8:B127 - 127; http://dx.doi.org/10.1158/1535-7163.TARG-09-B127
  • Yao H-P, Zhou Y-Q, Zhang R, Wang M-H. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat Rev Cancer 2013; 13:466 - 81; http://dx.doi.org/10.1038/nrc3545; PMID: 23792360
  • Wang M-H, Padhye SS, Guin S, Ma Q, Zhou YQ. Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacol Sin 2010; 31:1181 - 8; http://dx.doi.org/10.1038/aps.2010.106; PMID: 20694025
  • Zou Y, Howell GM, Humphrey LE, Wang J, Brattain MG. Ron knockdown and Ron monoclonal antibody IMC-RON8 sensitize pancreatic cancer to histone deacetylase inhibitors (HDACi). PLoS One 2013; 8:e69992; http://dx.doi.org/10.1371/journal.pone.0069992; PMID: 23922886
  • Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther 2007; 6:1 - 12; http://dx.doi.org/10.1158/1535-7163.MCT-06-0080; PMID: 17237261
  • Werner H, LeRoith D. The role of the insulin-like growth factor system in human cancer. Adv Cancer Res 1996; 68:183 - 223; http://dx.doi.org/10.1016/S0065-230X(08)60354-1; PMID: 8712068
  • Grothey A, Voigt W, Schöber C, Müller T, Dempke W, Schmoll HJ. The role of insulin-like growth factor I and its receptor in cell growth, transformation, apoptosis, and chemoresistance in solid tumors. J Cancer Res Clin Oncol 1999; 125:166 - 73; http://dx.doi.org/10.1007/s004320050259; PMID: 10235470
  • Yee D. Insulin-like growth factor receptor inhibitors: baby or the bathwater?. J Natl Cancer Inst 2012; 104:975 - 81; http://dx.doi.org/10.1093/jnci/djs258; PMID: 22761272
  • Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL. IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 2007; 13:5549s - 55s; http://dx.doi.org/10.1158/1078-0432.CCR-07-1109; PMID: 17875788
  • Beltran PJ, Mitchell P, Chung Y-A, Cajulis E, Lu J, Belmontes B, Ho J, Tsai MM, Zhu M, Vonderfecht S, et al. AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Mol Cancer Ther 2009; 8:1095 - 105; http://dx.doi.org/10.1158/1535-7163.MCT-08-1171; PMID: 19366899
  • Gao J, Chang YS, Jallal B, Viner J. Targeting the insulin-like growth factor axis for the development of novel therapeutics in oncology. Cancer Res 2012; 72:3 - 12; http://dx.doi.org/10.1158/0008-5472.CAN-11-0550; PMID: 22215692
  • Scartozzi M, Bianconi M, Maccaroni E, Giampieri R, Berardi R, Cascinu S. Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr Opin Mol Ther 2010; 12:361 - 71; PMID: 20521225
  • Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 2008; 6:1795 - 806; http://dx.doi.org/10.1158/1541-7786.MCR-08-0244; PMID: 19074825
  • Xi H-Q, Wu X-S, Wei B, Chen L. Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med 2012; 16:2894 - 909; http://dx.doi.org/10.1111/j.1582-4934.2012.01612.x; PMID: 22862837
  • Nievergall E, Saunders T, Lackmann M. Targeting of EPH receptor tyrosine kinases for anticancer therapy. Crit Rev Oncog 2012; 17:211 - 32; http://dx.doi.org/10.1615/CritRevOncog.v17.i2.60; PMID: 22471709
  • Boyd AW, Bartlett PF, Lackmann M. Therapeutic targeting of EPH receptors and their ligands. Nat Rev Drug Discov 2014; 13:39 - 62; http://dx.doi.org/10.1038/nrd4175; PMID: 24378802
  • Clarke JM, Hurwitz HI. Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin Biol Ther 2013; 13:1187 - 96; http://dx.doi.org/10.1517/14712598.2013.810717; PMID: 23803182
  • Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 2013; 153:13 - 9; http://dx.doi.org/10.1093/jb/mvs136; PMID: 23172303
  • Schwartz JD, Rowinsky EK, Youssoufian H, Pytowski B, Wu Y. Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer 2010; 116:Suppl 1027 - 32; http://dx.doi.org/10.1002/cncr.24789; PMID: 20127948
  • Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs 2009; 10:597 - 605; PMID: 19513949
  • Hsu JY, Wakelee HA. Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs 2009; 23:289 - 304; http://dx.doi.org/10.2165/11317600-000000000-00000; PMID: 19754219
  • Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, dos Santos LV, Aprile G, Ferry DR, et al, REGARD Trial Investigators. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014; 383:31 - 9; http://dx.doi.org/10.1016/S0140-6736(13)61719-5; PMID: 24094768
  • Garcia JA, Hudes GR, Choueiri TK, Stadler WM, Wood LS, Gurtler J, Bhatia S, Joshi A, Hozak RR, Xu Y, et al. A phase 2, single-arm study of ramucirumab in patients with metastatic renal cell carcinoma with disease progression on or intolerance to tyrosine kinase inhibitor therapy. Cancer 2014; Forthcoming http://dx.doi.org/10.1002/cncr.28634; PMID: 24577874
  • Lee SH. Tanibirumab (TTAC-0001): a fully human monoclonal antibody targets vascular endothelial growth factor receptor 2 (VEGFR-2). Arch Pharm Res 2011; 34:1223 - 6; http://dx.doi.org/10.1007/s12272-011-0821-9; PMID: 21910042
  • Tvorogov D, Anisimov A, Zheng W, Leppänen V-M, Tammela T, Laurinavicius S, Holnthoner W, Heloterä H, Holopainen T, Jeltsch M, et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 2010; 18:630 - 40; http://dx.doi.org/10.1016/j.ccr.2010.11.001; PMID: 21130043
  • Persaud K, Tille J-C, Liu M, Zhu Z, Jimenez X, Pereira DS, Miao H-Q, Brennan LA, Witte L, Pepper MS, et al. Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 2004; 117:2745 - 56; http://dx.doi.org/10.1242/jcs.01138; PMID: 15150322
  • Goldman J, Rutkowski JM, Shields JD, Pasquier MC, Cui Y, Schmökel HG, Willey S, Hicklin DJ, Pytowski B, Swartz MA. Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J 2007; 21:1003 - 12; http://dx.doi.org/10.1096/fj.06-6656com; PMID: 17210781
  • Liang J, Wu Y-L, Chen B-J, Zhang W, Tanaka Y, Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci 2013; 9:435 - 43; http://dx.doi.org/10.7150/ijbs.6087; PMID: 23678293
  • Ostman A, Heldin C-H. PDGF receptors as targets in tumor treatment. Adv Cancer Res 2007; 97:247 - 74; http://dx.doi.org/10.1016/S0065-230X(06)97011-0; PMID: 17419949
  • Shah GD, Loizos N, Youssoufian H, Schwartz JD, Rowinsky EK. Rationale for the development of IMC-3G3, a fully human immunoglobulin G subclass 1 monoclonal antibody targeting the platelet-derived growth factor receptor alpha. Cancer 2010; 116:Suppl 1018 - 26; http://dx.doi.org/10.1002/cncr.24788; PMID: 20127943
  • Chiorean EG, Sweeney C, Youssoufian H, Qin A, Dontabhaktuni A, Loizos N, Nippgen J, Amato R. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFRα) monoclonal antibody, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73:595 - 604; http://dx.doi.org/10.1007/s00280-014-2389-9; PMID: 24452395
  • Dieci MV, Arnedos M, Andre F, Soria JC. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov 2013; 3:264 - 79; http://dx.doi.org/10.1158/2159-8290.CD-12-0362; PMID: 23418312
  • Liang G, Liu Z, Wu J, Cai Y, Li X. Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol Sci 2012; 33:531 - 41; http://dx.doi.org/10.1016/j.tips.2012.07.001; PMID: 22884522
  • Knights V, Cook SJ. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 2010; 125:105 - 17; http://dx.doi.org/10.1016/j.pharmthera.2009.10.001; PMID: 19874848
  • Tiong KH, Mah LY, Leong C-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis 2013; 18:1447 - 68; http://dx.doi.org/10.1007/s10495-013-0886-7; PMID: 23900974
  • Gerald D, Chintharlapalli S, Augustin HG, Benjamin LE. Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy. Cancer Res 2013; 73:1649 - 57; http://dx.doi.org/10.1158/0008-5472.CAN-12-4697; PMID: 23467610
  • Eroglu Z, Stein CA, Pal SK. Targeting angiopoietin-2 signaling in cancer therapy. Expert Opin Investig Drugs 2013; 22:813 - 25; http://dx.doi.org/10.1517/13543784.2013.793306; PMID: 23621441
  • Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M, Akhondi M, Lagercrantz S, Larsson C, Osterborg A, et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer 2008; 123:1190 - 5; http://dx.doi.org/10.1002/ijc.23587; PMID: 18546292
  • Rebagay G, Yan S, Liu C, Cheung N-K. ROR1 and ROR2 in Human Malignancies: Potentials for Targeted Therapy. Front Oncol 2012; 2:34; http://dx.doi.org/10.3389/fonc.2012.00034; PMID: 22655270
  • Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, Chow AK, Weiser DA, Belcastro LT, Winter C, et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 2012; 31:4859 - 67; http://dx.doi.org/10.1038/onc.2011.647; PMID: 22266870
  • Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 2013; 13:685 - 700; http://dx.doi.org/10.1038/nrc3580; PMID: 24060861
  • Linger RMA, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 2008; 100:35 - 83; http://dx.doi.org/10.1016/S0065-230X(08)00002-X; PMID: 18620092
  • Nguyen K-Q, Tsou W-I, Kotenko S, Birge RB. TAM receptors in apoptotic cell clearance, autoimmunity, and cancer. Autoimmunity 2013; 46:294 - 7; http://dx.doi.org/10.3109/08916934.2013.794515; PMID: 23662598
  • Demarest SJ, Gardner J, Vendel MC, Ailor E, Szak S, Huang F, Doern A, Tan X, Yang W, Grueneberg DA, et al. Evaluation of Tyro3 expression, Gas6-mediated Akt phosphorylation, and the impact of anti-Tyro3 antibodies in melanoma cell lines. Biochemistry 2013; 52:3102 - 18; http://dx.doi.org/10.1021/bi301588c; PMID: 23570341
  • Linger RMA, Keating AK, Earp HS, Graham DK. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin Ther Targets 2010; 14:1073 - 90; http://dx.doi.org/10.1517/14728222.2010.515980; PMID: 20809868
  • Verma A, Warner SL, Vankayalapati H, Bearss DJ, Sharma S. Targeting Axl and Mer kinases in cancer. Mol Cancer Ther 2011; 10:1763 - 73; http://dx.doi.org/10.1158/1535-7163.MCT-11-0116; PMID: 21933973
  • Cook RS, Jacobsen KM, Wofford AM, DeRyckere D, Stanford J, Prieto AL, Redente E, Sandahl M, Hunter DM, Strunk KE, et al. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Invest 2013; 123:3231 - 42; http://dx.doi.org/10.1172/JCI67655; PMID: 23867499
  • Cummings CT, Deryckere D, Earp HS, Graham DK. Molecular pathways: MERTK signaling in cancer. Clin Cancer Res 2013; 19:5275 - 80; http://dx.doi.org/10.1158/1078-0432.CCR-12-1451; PMID: 23833304
  • Linger RMA, Cohen RA, Cummings CT, Sather S, Migdall-Wilson J, Middleton DHG, Lu X, Barón AE, Franklin WA, Merrick DT, et al. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 2013; 32:3420 - 31; http://dx.doi.org/10.1038/onc.2012.355; PMID: 22890323
  • Rho JK, Choi YJ, Kim SY, Kim TW, Choi EK, Yoon S-J, Park BM, Park E, Bae JH, Choi C-M, et al. MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation. Cancer Res 2014; 74:253 - 62; http://dx.doi.org/10.1158/0008-5472.CAN-13-1103; PMID: 24165158
  • Dufies M, Jacquel A, Belhacene N, Robert G, Cluzeau T, Luciano F, Cassuto JP, Raynaud S, Auberger P. Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells. Oncotarget 2011; 2:874 - 85; PMID: 22141136
  • Hong C-C, Lay J-D, Huang J-S, Cheng A-L, Tang J-L, Lin M-T, Lai G-M, Chuang S-E. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett 2008; 268:314 - 24; http://dx.doi.org/10.1016/j.canlet.2008.04.017; PMID: 18502572
  • Li Y, Ye X, Tan C, Hongo J-A, Zha J, Liu J, Kallop D, Ludlam MJC, Pei L. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009; 28:3442 - 55; http://dx.doi.org/10.1038/onc.2009.212; PMID: 19633687
  • Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, Weimer R, Wu Y, Pei L. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 2010; 29:5254 - 64; http://dx.doi.org/10.1038/onc.2010.268; PMID: 20603615
  • Leconet W, Larbouret C, Chardès T, Thomas G, Neiveyans M, Busson M, Jarlier M, Radosevic-Robin N, Pugnière M, Bernex F, et al. Preclinical validation of AXL receptor as a target for antibody-based pancreatic cancer immunotherapy. Oncogene 2013; Forthcoming http://dx.doi.org/10.1038/onc.2013.487; PMID: 24240689
  • Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7:493 - 507; http://dx.doi.org/10.1038/nrclinonc.2010.97; PMID: 20551942
  • Pohlmann PR, Mayer IA, Mernaugh R. Resistance to Trastuzumab in Breast Cancer. Clin Cancer Res 2009; 15:7479 - 91; http://dx.doi.org/10.1158/1078-0432.CCR-09-0636; PMID: 20008848
  • Thery J-C, Spano J-P, Azria D, Raymond E, Penault Llorca F. Resistance to human epidermal growth factor receptor type 2-targeted therapies. Eur J Cancer 2014; 50:892 - 901; http://dx.doi.org/10.1016/j.ejca.2014.01.003; PMID: 24462377
  • Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D, Totpal K, Wong A, Lee CV, Stawicki S, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 2011; 20:472 - 86; http://dx.doi.org/10.1016/j.ccr.2011.09.003; PMID: 22014573
  • Huang S, Li C, Armstrong EA, Peet CR, Saker J, Amler LC, Sliwkowski MX, Harari PM. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation. Cancer Res 2013; 73:824 - 33; http://dx.doi.org/10.1158/0008-5472.CAN-12-1611; PMID: 23172311
  • Fitzgerald JB, Johnson BW, Baum J, Adams S, Iadevaia S, Tang J, Rimkunas V, Xu L, Kohli N, Rennard R, et al. MM-141, an IGF-IR- and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol Cancer Ther 2014; 13:410 - 25; http://dx.doi.org/10.1158/1535-7163.MCT-13-0255; PMID: 24282274
  • Stemmler HJ, Salat C, Lindhofer H, Menzel H, Untch M, Kahlert S, Konecny G, Sauer H, Ledderose G, Heinemann V, et al. Combined treatment of metastatic breast cancer (MBC) by high-dose chemotherapy (HDCT) and bispecific antibodies: a pilot study. Anticancer Res 2005; 25:3047 - 54; PMID: 16080564
  • Hess J, Ruf P, Lindhofer H. Cancer therapy with trifunctional antibodies: linking innate and adaptive immunity. Future Oncol 2012; 8:73 - 85; http://dx.doi.org/10.2217/fon.11.138; PMID: 22149036
  • Diermeier-Daucher S, Ortmann O, Buchholz S, Brockhoff G. Trifunctional antibody ertumaxomab: Non-immunological effects on Her2 receptor activity and downstream signaling. MAbs 2012; 4:614 - 22; http://dx.doi.org/10.4161/mabs.21003; PMID: 22820509
  • Schroeder P, Lindemann C, Dettmar K, Brieger J, Gosepath J, Pogorzelski B, Seimetz D, Atz J. Trifunctional antibodies induce efficient antitumour activity with immune cells from head and neck squamous cell carcinoma patients after radio-chemotherapy treatment. Clin Transl Oncol 2011; 13:889 - 98; http://dx.doi.org/10.1007/s12094-011-0751-5; PMID: 22126733
  • Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 2013; 13:663 - 73; http://dx.doi.org/10.1038/nrc3559; PMID: 23949426
  • Emde A, Pradeep C-R, Ferraro DA, Ben-Chetrit N, Sela M, Ribba B, Kam Z, Yarden Y. Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth. Oncogene 2011; 30:1631 - 42; http://dx.doi.org/10.1038/onc.2010.547; PMID: 21132012
  • Spangler JB, Neil JR, Abramovitch S, Yarden Y, White FM, Lauffenburger DA, Wittrup KD. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci U S A 2010; 107:13252 - 7; http://dx.doi.org/10.1073/pnas.0913476107; PMID: 20616078
  • Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, Fujimoto-Ouchi K. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res 2011; 17:5060 - 70; http://dx.doi.org/10.1158/1078-0432.CCR-10-2927; PMID: 21700765
  • Dong J, Demarest SJ, Sereno A, Tamraz S, Langley E, Doern A, Snipas T, Perron K, Joseph I, Glaser SM, et al. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response. Mol Cancer Ther 2010; 9:2593 - 604; http://dx.doi.org/10.1158/1535-7163.MCT-09-1018; PMID: 20716637
  • Cante D, La Porta MR, Franco P, Sciacero P, Girelli GF, Marra A, Numico G, Denaro N, Russi EG, Ricardi U. Management of ‘in-field’ skin toxicity in head and neck cancer patients treated with combined cetuximab and radiotherapy. Oncology 2013; 85:257 - 61; http://dx.doi.org/10.1159/000355579; PMID: 24192693
  • Drachman JG, Senter PD. Antibody-drug conjugates: the chemistry behind empowering antibodies to fight cancer. Hematology Am Soc Hematol Educ Program 2013; 2013:306 - 10; http://dx.doi.org/10.1182/asheducation-2013.1.306; PMID: 24319196
  • Burgess T, Coxon A, Meyer S, Sun J, Rex K, Tsuruda T, Chen Q, Ho S-Y, Li L, Kaufman S, et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 2006; 66:1721 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-05-3329; PMID: 16452232
  • Gao J, Chesebrough JW, Cartlidge SA, Ricketts S-A, Incognito L, Veldman-Jones M, Blakey DC, Tabrizi M, Jallal B, Trail PA, et al. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res 2011; 71:1029 - 40; http://dx.doi.org/10.1158/0008-5472.CAN-10-2274; PMID: 21245093

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.