52,578
Views
327
CrossRef citations to date
0
Altmetric
Review

Disulfide bond structures of IgG molecules

Structural variations, chemical modifications and possible impacts to stability and biological function

&
Pages 17-23 | Received 31 Aug 2011, Accepted 07 Oct 2011, Published online: 01 Jan 2012

References

  • Milstein C. The disulphide bridges of immunoglobulin kappa-chains. Biochem J 1966; 101:338 - 351; PMID: 4165119
  • Pink JR, Milstein C. Inter heavy-light chain disulphide bridge in immune globulins. Nature 1967; 214:92 - 94; PMID: 4166384; http://dx.doi.org/10.1038/214092a0
  • Frangione B, Milstein C. Disulphide bridges of immunoglobin G-1 heavy chains. Nature 1967; 216:939 - 941; PMID: 4169396; http://dx.doi.org/10.1038/216939b0
  • Pink JR, Milstein C. Disulphide bridges of a human immunoglobulin G protein. Nature 1967; 216:941 - 942; PMID: 4169397; http://dx.doi.org/10.1038/216941a0
  • Frangione B, Milstein C, Franklin EC. Intrachain disulphide bridges in immunoglobulin G heavy chains. The Fc fragment. Biochem J 1968; 106:15 - 21; PMID: 4889360
  • Frangione B, Milstein C. Variations in the S-S bridges of immunoglobins G: interchain disulfide bridges of gammaG3 myeloma proteins. J Mol Biol 1968; 33:893 - 906; PMID: 4178186; http://dx.doi.org/10.1016/0022-2836(68)90326-4
  • Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ. The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci USA 1969; 63:78 - 85; PMID: 5257969; http://dx.doi.org/10.1073/pnas.63.1.78
  • Frangione B, Milstein C, Pink JR. Structural studies of immunoglobulin G. Nature 1969; 221:145 - 148; PMID: 5782707; http://dx.doi.org/10.1038/221145a0
  • Lefranc MP, Pommie C, Kaas Q, Duprat E, Bosc N, Guiraudou D, et al. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev Comp Immunol 2005; 29:185 - 203; PMID: 15572068; http://dx.doi.org/10.1016/j.dci.2004.07.003
  • Lefranc MP, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L, et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 2003; 27:55 - 77; PMID: 12477501; http://dx.doi.org/10.1016/S0145-305X(02)00039-3
  • Amzel LM, Poljak RJ. Three-dimensional structure of immunoglobulins. Annu Rev Biochem 1979; 48:961 - 997; PMID: 89832; http://dx.doi.org/10.1146/annurev.bi.48.070179.004525
  • Kikuchi H, Goto Y, Hamaguchi K. Reduction of the buried intrachain disulfide bond of the constant fragment of the immunoglobulin light chain: global unfolding under physiological conditions. Biochemistry 1986; 25:2009 - 2013; PMID: 3085710; http://dx.doi.org/10.1021/bi00356a026
  • Bloom JW, Madanat MS, Marriott D, Wong T, Chan SY. Intrachain disulfide bond in the core hinge region of human IgG4. Protein Sci 1997; 6:407 - 415; PMID: 9041643; http://dx.doi.org/10.1002/pro.5560060217
  • Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 2008; 283:16194 - 16205; PMID: 18339624; http://dx.doi.org/10.1074/jbc.M709987200
  • Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem 2008; 283:16206 - 16215; PMID: 18339626; http://dx.doi.org/10.1074/jbc.M709988200
  • Martinez T, Guo A, Allen MJ, Han M, Pace D, Jones J, et al. Disulfide connectivity of human immunoglobulin G2 structural isoforms. Biochemistry 2008; 47:7496 - 7508; PMID: 18549248; http://dx.doi.org/10.1021/bi800576c
  • Liu YD, Chen X, Enk JZ, Plant M, Dillon TM, Flynn GC. Human IgG2 antibody disulfide rearrangement in vivo. J Biol Chem 2008; 283:29266 - 29272; PMID: 18713741; http://dx.doi.org/10.1074/jbc.M804787200
  • Wang X, Kumar S, Singh S. Disulfide bond scrambling in IgG2 monoclonal antibodies: insights from molecular dynamics simulations. Pharm Res 2011; http://dx.doi.org/10.1007/s11095-011-0503-9; PMID: 21671135
  • Yoo EM, Wims LA, Chan LA, Morrison SL. Human IgG2 can form covalent dimers. J Immunol 2003; 170:3134 - 3138; PMID: 12626570
  • Petersen JG, Dorrington KJ. An in vitro system for studying the kinetics of interchain disulfide bond formation in immunoglobulin G. J Biol Chem 1974; 249:5633 - 5641; PMID: 4212934
  • Colcher D, Milenic D, Roselli M, Raubitschek A, Yarranton G, King D, et al. Characterization and biodistribution of recombinant and recombinant/chimeric constructs of monoclonal antibody B72.3. Cancer Res 1989; 49:1738 - 1745; PMID: 2924317
  • King DJ, Adair JR, Angal S, Low DC, Proudfoot KA, Lloyd JC, et al. Expression, purification and characterization of a mouse-human chimeric antibody and chimeric Fab' fragment. Biochem J 1992; 281:317 - 323; PMID: 1736881
  • Angal S, King DJ, Bodmer MW, Turner A, Lawson AD, Roberts G, et al. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 1993; 30:105 - 108; PMID: 8417368; http://dx.doi.org/10.1016/0161-5890(93)90432-B
  • Schuurman J, Perdok GJ, Gorter AD, Aalberse RC. The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol 2001; 38:1 - 8; PMID: 11483205; http://dx.doi.org/10.1016/S0161-5890(01)00050-5
  • van der Zee JS, van Swieten P, Aalberse RC. Serologic aspects of IgG4 antibodies. II. IgG4 antibodies form small, nonprecipitating immune complexes due to functional monovalency. J Immunol 1986; 137:3566 - 3571; PMID: 3782791
  • Schuurman J, Van Ree R, Perdok GJ, Van Doorn HR, Tan KY, Aalberse RC. Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology 1999; 97:693 - 698; PMID: 10457225; http://dx.doi.org/10.1046/j.1365-2567.1999.00845.x
  • van der NeutKolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 2007; 317:1554 - 1557; PMID: 17872445; http://dx.doi.org/10.1126/science.1144603
  • Schauenstein E, Sorger S, Reiter M, Dachs F. Free thiol groups and labile disulfide bonds in the IgG fraction of human serum. J Immunol Methods 1982; 50:51 - 56; PMID: 7086149; http://dx.doi.org/10.1016/0022-1759(82)90303-9
  • Schauenstein E, Dachs F, Reiter M, Gombotz H, List W. Labile disulfide bonds and free thiol groups in human IgG. I. Assignment to IgG1 and IgG2 subclasses. Int Arch Allergy Appl Immunol 1986; 80:174 - 179; PMID: 3710611; http://dx.doi.org/10.1159/000234048
  • Gevondyan NM, Volynskaia AM, Gevondyan VS. Four free cysteine residues found in human IgG1 of healthy donors. Biochemistry (Mosc) 2006; 71:279 - 284; PMID: 16545064; http://dx.doi.org/10.1134/S0006297906030072
  • Lacy ER, Baker M, Brigham-Burke M. Free sulfhydryl measurement as an indicator of antibody stability. Anal Biochem 2008; 382:66 - 68; PMID: 18675772; http://dx.doi.org/10.1016/j.ab.2008.07.016
  • Zhang W, Czupryn MJ. Free sulfhydryl in recombinant monoclonal antibodies. Biotechnol Prog 2002; 18:509 - 513; PMID: 12052067; http://dx.doi.org/10.1021/bp025511z
  • Liu H, Gaza-Bulseco G, Chumsae C, Newby-Kew A. Characterization of lower molecular weight artifact bands of recombinant monoclonal IgG1 antibodies on non-reducing SDS-PAGE. Biotechnol Lett 2007; 29:1611 - 1622; PMID: 17609855; http://dx.doi.org/10.1007/s10529-007-9449-8
  • Brych SR, Gokarn YR, Hultgen H, Stevenson RJ, Rajan R, Matsumura M. Characterization of antibody aggregation: role of buried, unpaired cysteines in particle formation. J Pharm Sci 2010; 99:764 - 781; PMID: 19691118
  • Franey H, Brych SR, Kolvenbach CG, Rajan RS. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Sci 2010; 19:1601 - 1615; PMID: 20556807; http://dx.doi.org/10.1002/pro.434
  • Chumsae C, Gaza-Bulseco G, Liu H. Identification and localization of unpaired cysteine residues in monoclonal antibodies by fluorescence labeling and mass spectrometry. Anal Chem 2009; 81:6449 - 6457; PMID: 19572546; http://dx.doi.org/10.1021/ac900815z
  • Xiang T, Chumsae C, Liu H. Localization and quantitation of free sulfhydryl in recombinant monoclonal antibodies by differential labeling with 12C and 13C iodoacetic acid and LC-MS analysis. Anal Chem 2009; 81:8101 - 8108; PMID: 19722496; http://dx.doi.org/10.1021/ac901311y
  • Harris RJ. Heterogeneity of recombinant antibodies: linking structure to function. Dev Biol (Basel) 2005; 122:117 - 127; PMID: 16375256
  • Ouellette D, Alessandri L, Chin A, Grinnell C, Tarcsa E, Radziejewski C, et al. Studies in serum support rapid formation of disulfide bond between unpaired cysteine residues in the VH domain of an immunoglobulin G1 molecule. Anal Biochem 2010; 397:37 - 47; PMID: 19766583; http://dx.doi.org/10.1016/j.ab.2009.09.027
  • Chaderjian WB, Chin ET, Harris RJ, Etcheverry TM. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnol Prog 2005; 21:550 - 553; PMID: 15801797; http://dx.doi.org/10.1021/bp0497029
  • Nashef AS, Osuga DT, Lee HS, Ahmed AI, Whitaker JR, Feeney RE. Effects of alkali on proteins. Disulfides and their products. J Agric Food Chem 1977; 25:245 - 251; PMID: 838959; http://dx.doi.org/10.1021/mjf60210a020
  • Florence TM. Degradation of protein disulphide bonds in dilute alkali. Biochem J 1980; 189:507 - 520; PMID: 7213343
  • Galande AK, Trent JO, Spatola AF. Understanding base-assisted desulfurization using a variety of disulfide-bridged peptides. Biopolymers 2003; 71:534 - 551; PMID: 14635094; http://dx.doi.org/10.1002/bip.10532
  • Tous GI, Wei Z, Feng J, Bilbulian S, Bowen S, Smith J, et al. Characterization of a novel modification to monoclonal antibodies: thioether cross-link of heavy and light chains. Anal Chem 2005; 77:2675 - 2682; PMID: 15859580; http://dx.doi.org/10.1021/ac0500582
  • Cohen SL, Price C, Vlasak J. Beta-elimination and peptide bond hydrolysis: two distinct mechanisms of human IgG1 hinge fragmentation upon storage. J Am Chem Soc 2007; 129:6976 - 6977; PMID: 17500521; http://dx.doi.org/10.1021/ja0705994
  • Pristatsky P, Cohen SL, Krantz D, Acevedo J, Ionescu R, Vlasak J. Evidence for trisulfide bonds in a recombinant variant of a human IgG2 monoclonal antibody. Anal Chem 2009; 81:6148 - 6155; PMID: 19591437; http://dx.doi.org/10.1021/ac9006254
  • Gu S, Wen D, Weinreb PH, Sun Y, Zhang L, Foley SF, et al. Characterization of trisulfide modification in antibodies. Anal Biochem 2010; 400:89 - 98; PMID: 20085742; http://dx.doi.org/10.1016/j.ab.2010.01.019
  • Nielsen RW, Tachibana C, Hansen N, Winther J. Trisulfides in proteins. Antioxid Redox Signal 2011; 15:67 - 75; PMID: 20977350; http://dx.doi.org/10.1089/ars.2010.3677
  • McAuley A, Jacob J, Kolvenbach CG, Westland K, Lee HJ, Brych SR, et al. Contributions of a disulfide bond to the structure, stability and dimerization of human IgG1 antibody CH3 domain. Protein Sci 2008; 17:95 - 106; PMID: 18156469; http://dx.doi.org/10.1110/ps.073134408
  • Thies MJ, Mayer J, Augustine JG, Frederick CA, Lilie H, Buchner J. Folding and association of the antibody domain CH3: prolyl isomerization preceeds dimerization. J Mol Biol 1999; 293:67 - 79; PMID: 10512716; http://dx.doi.org/10.1006/jmbi.1999.3128
  • Proba K, Honegger A, Pluckthun A. A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J Mol Biol 1997; 265:161 - 172; PMID: 9020980; http://dx.doi.org/10.1006/jmbi.1996.0726
  • Burton DR. Immunoglobulin G: functional sites. Mol Immunol 1985; 22:161 - 206; PMID: 3889592; http://dx.doi.org/10.1016/0161-5890(85)90151-8
  • Rudikoff S, Pumphrey JG. Functional antibody lacking a variable-region disulfide bridge. Proc Natl Acad Sci USA 1986; 83:7875 - 7878; PMID: 3094016; http://dx.doi.org/10.1073/pnas.83.20.7875
  • Goto Y, Hamaguchi K. The role of the intrachain disulfide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain. J Biochem 1979; 86:1433 - 1441; PMID: 118170
  • Dorrington KJ, Smith BR. Conformational changes accompanying the dissociation and association of immunoglobulin-G subunits. Biochim Biophys Acta 1972; 263:70 - 81; PMID: 5013292
  • Chan LM, Cathou RE. The role of the inter-heavy chain disulfide bond in modulating the flexibility of immunoglobulin G antibody. J Mol Biol 1977; 112:653 - 656; PMID: 406410; http://dx.doi.org/10.1016/S0022-2836(77)80170-8
  • Olins DE, Edelman GM. Reconstitution of 7S molecules from L and H polypeptide chains of antibody and gamma-globulins. J Exp Med 1964; 119:789 - 815; PMID: 14157031; http://dx.doi.org/10.1084/jem.119.5.789
  • Björk I, Tanford C. Recovery of native conformation of rabbit immunoglobulin G upon recombination of separately renatured heavy and light chains at near-neutral pH. Biochemistry 1971; 10:1289 - 1295; PMID: 4996348; http://dx.doi.org/10.1021/bi00784a003
  • Michaelsen TE, Naess LM, Aase A. Human IgG3 is decreased and IgG1, IgG2 and IgG4 are unchanged in molecular size by mild reduction and reoxidation without any major change in effector functions. Mol Immunol 1993; 30:35 - 45; PMID: 8417373; http://dx.doi.org/10.1016/0161-5890(93)90424-A
  • Seegan GW, Smith CA, Schumaker VN. Changes in quaternary structure of IgG upon reduction of the interheavy-chain disulfide bond. Proc Natl Acad Sci USA 1979; 76:907 - 911; PMID: 106398; http://dx.doi.org/10.1073/pnas.76.2.907
  • Michaelsen TE. Alteration of the conformation of human IgG subclasses by reduction of the hinge S-S bonds. Mol Immunol 1988; 25:639 - 646; PMID: 3419438; http://dx.doi.org/10.1016/0161-5890(88)90099-5
  • Johnson BA, Hoffmann LG. Effect of reduction and alkylation on structure and function of rabbit IgG antibody-I. Effect on ability to activate complement depends on conditions of reduction. Mol Immunol 1981; 18:181 - 188; PMID: 7266486; http://dx.doi.org/10.1016/0161-5890(81)90084-5
  • Goers JW, Ziccardi RJ, Schumaker VN, Glovsky MM. The mechanism of activation of the first component of complement by a univalent hapten-IgG antibody complex. J Immunol 1977; 118:2182 - 2191; PMID: 559020
  • Schur PH, Christian GD. The role of disulfide bonds in the complement-fixing and precipitating properties of 7S rabbit and sheep antibodies. J Exp Med 1964; 120:531 - 545; PMID: 14212117; http://dx.doi.org/10.1084/jem.120.4.531
  • Press EM. Fixation of the first component of complement by immune complexes: effect of reduction and fragmentation of antibody. Biochem J 1975; 149:285 - 288; PMID: 1238086
  • Isenman DE, Dorrington KJ, Painter RH. The structure and function of immunoglobulin domains. II. The importance of interchain disulfide bonds and the possible role of molecular flexibility in the interaction between immunoglobulin G and complement. J Immunol 1975; 114:1726 - 1729; PMID: 1127227
  • Klein M, Neauport-Sautes C, Ellerson JR, Fridman WH. Binding site of human IgG subclasses and their domains for Fc receptors of activated murine T cells. J Immunol 1977; 119:1077 - 1083; PMID: 330745
  • McNabb T, Koh TY, Dorrington KJ, Painter RH. Structure and function of immunoglobulin domains. V. Binding, University of immunoglobulin G and fragments to placental membrane preparations. J Immunol 1976; 117:882 - 888; PMID: 956658
  • Michaelsen TE, Wisloff F, Natvig JB. Structural requirements in the Fc region of rabbit IgG antibodies necessary to induce cytotoxicity by human lymphocytes. Scand J Immunol 1975; 4:71 - 78; PMID: 1079629; http://dx.doi.org/10.1111/j.1365-3083.1975.tb02601.x
  • Barnett Foster DE, Dorrington KJ, Painter RH. Structure and function of immunoglobulin domains. VII. Studies on the structural requirements of human immunoglobulin G for granulocyte binding. J Immunol 1978; 120:1952 - 1956; PMID: 659887
  • Liu H, Chumsae C, Gaza-Bulseco G, Hurkmans K, Radziejewski CH. Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation and LC-MS analysis. Anal Chem 2010; 82:5219 - 5226; PMID: 20491447; http://dx.doi.org/10.1021/ac100575n
  • Remmele RL Jr, Callahan WJ, Krishnan S, Zhou L, Bondarenko PV, Nichols AC, et al. Active dimer of Epratuzumab provides insight into the complex nature of an antibody aggregate. J Pharm Sci 2006; 95:126 - 145; PMID: 16315222; http://dx.doi.org/10.1002/jps.20515
  • Van Buren N, Rehder D, Gadgil H, Matsumura M, Jacob J. Elucidation of two major aggregation pathways in an IgG2 antibody. J Pharm Sci 2009; 98:3013 - 3030; PMID: 18680168; http://dx.doi.org/10.1002/jps.21514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.