10,774
Views
329
CrossRef citations to date
0
Altmetric
Review

Dual targeting strategies with bispecific antibodies

Pages 182-197 | Received 08 Nov 2011, Accepted 09 Dec 2011, Published online: 01 Mar 2012

References

  • Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs 2011; 3:76 - 99; PMID: 21051951; http://dx.doi.org/10.4161/mabs.3.1.13895
  • Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 2010; 9:767 - 774; PMID: 20811384; http://dx.doi.org/10.1038/nrd3229
  • Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 2006; 58:640 - 656; PMID: 16904789; http://dx.doi.org/10.1016/j.addr.2006.01.026
  • Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 2008; 20:460 - 470; PMID: 18656541; http://dx.doi.org/10.1016/j.coi.2008.06.012
  • Rothe A, Rubbert A. Recombinant proteins in rheumatology—recent advances. N Biotechnol 2011; 28:502 - 510; PMID: 21473939; http://dx.doi.org/10.1016/j.nbt.2011.03.019
  • Jones HE, Gee JMW, Hutcheson IR, Knowlden JM, Barrow D, Nicholson RI. Growth factor receptor interplay and resistance in cancer. Endocr Relat Cancer 2006; 13:45 - 51; PMID: 17259558; http://dx.doi.org/10.1677/erc.1.01275
  • van der Veeken J, Oliveira S, Schiffelers RM, Storm G, van Bergen En Henegouwen PM, Roovers RC. Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy. Curr Cancer Drug Targets 2009; 9:748 - 760; PMID: 19754359; http://dx.doi.org/10.2174/156800909789271495
  • Morgillo F, Lee HY. Resistance to epidermal growth factor receptor-targeted therapy. Drug Resist Updat 2005; 8:298 - 310; PMID: 16172017; http://dx.doi.org/10.1016/j.drup.2005.08.004
  • Dong J, Sereno A, Aivazian D, Langley E, Miller BR, Snyder WB, et al. A stable IgG-like bispecific antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor demonstrates superior anti-tumor activity. MAbs 2011; 3:273 - 288; PMID: 21393993; http://dx.doi.org/10.4161/mabs.3.3.15188
  • Demarest SJ, Hariharan K, Dong J. Emerging antibody combinations in oncology. MAbs 2011; 3:338 - 351; PMID: 21697653; http://dx.doi.org/10.4161/mabs.3.4.16615
  • Haurum JS. Recombinant polyclonal antibodies: the next generation of antibody therapeutics?. Drug Discov Today 2006; 11:655 - 660; PMID: 16793535; http://dx.doi.org/10.1016/j.drudis.2006.05.009
  • Koefoed K, Steinaa L, Søderberg JN, Kjær I, Jacobsen HJ, Meijer PJ, et al. Rational identification of an optimal antibody mixture for targeting the epidermal growth factor receptor. MAbs 2011; 3; In press PMID: 22123060
  • Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, et al. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 2010; 70:588 - 597; PMID: 20068188; http://dx.doi.org/10.1158/0008-5472.CAN-09-1417
  • Skartved NJ, Jacobsen HJ, Pedersen MW, Jensen PF, Sen JW, Jørgensen TK, et al. Preclinical pharmacokinetics and safety of Sym004: a synergistic antibody mixture directed against epidermal growth factor receptor. Clin Cancer Res 2011; 17:5962 - 5972; PMID: 21825041; http://dx.doi.org/10.1158/1078-0432.CCR-11-1209
  • Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 2010; 10:301 - 316; PMID: 20414204; http://dx.doi.org/10.1038/nri2761
  • Müller D, Kontermann RE. Bispecific antibodies for cancer immunotherapy: Current perspectives. BioDrugs 2010; 24:89 - 98; PMID: 20199124; http://dx.doi.org/10.2165/11530960-000000000-00000
  • Kontermann RE. Bispecific antibodies 2011; Springer ISBN 978-3-642-20909-3
  • Seimetz D, Lindhofer H, Bokemeyer C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 2010; 36:458 - 467; PMID: 20347527; http://dx.doi.org/10.1016/j.ctrv.2010.03.001
  • Graziano RF, Guptill P. Chemical production of bispecific antibodies. Methods Mol Biol 2004; 283:71 - 85; PMID: 15197303
  • Doppalapudi VR, Huang J, Liu D, Jin P, Liu B, Li L, et al. Chemical generation of bispecific antibodies. Proc Natl Acad Sci USA 2010; 107:22611 - 22616; PMID: 21149738
  • Coloma MJ, Morrison SL. Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol 1997; 15:159 - 163; PMID: 9035142; http://dx.doi.org/10.1038/nbt0297-159
  • Orcutt KD, Ackerman ME, Cieslewicz M, Quiroz E, Slusarczyk AL, Frangioni JV, et al. A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel 2010; 23:221 - 228; PMID: 20019028; http://dx.doi.org/10.1093/protein/gzp077
  • Dong J, Sereno A, Snyder WB, Miller BR, Tamraz S, Doern A, et al. Stable IgG-like bispecific antibodies directed toward the type I insulin-like growth factor receptor demonstrate enhanced ligand blockade and anti-tumor activity. J Biol Chem 2011; 286:4703 - 4717; PMID: 21123183; http://dx.doi.org/10.1074/jbc.M110.184317
  • Schanzer J, Jekle A, Nezu J, Lochner A, Croasdale R, Dioszegi M, et al. Development of tetravalent, bispecific CCR5 antibodies with antiviral activity against CCR5 monoclonal antibody-resistant HIV-1 strains. Antimicrob Agents Chemother 2011; 55:2369 - 2378; PMID: 21300827; http://dx.doi.org/10.1128/AAC.00215-10
  • Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 2007; 25:1290 - 1297; PMID: 17934452; http://dx.doi.org/10.1038/nbt1345
  • Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009; 323:1610 - 1614; PMID: 19299620; http://dx.doi.org/10.1126/science.1165480
  • Wozniak-Knopp G, Bartl S, Bauer A, Mostageer M, Woisetschläger M, Antes B, et al. Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 2010; 23:289 - 297; PMID: 20150180; http://dx.doi.org/10.1093/protein/gzq005
  • Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996; 9:617 - 621; PMID: 8844834; http://dx.doi.org/10.1093/protein/9.7.617
  • Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, et al. An efficient route to human bispecific IgG. Nat Biotechnol 1998; 16:677 - 681; PMID: 9661204; http://dx.doi.org/10.1038/nbt0798677
  • Schaefer W, Regula JT, Bähner M, Schanzer J, Croasdale R, Dürr H, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci USA 2011; 108:11187 - 11192; PMID: 21690412; http://dx.doi.org/10.1073/pnas.1019002108
  • Gunasekaran K, Pentony M, Shen M, Garrett L, Forte C, Woodward A, et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem 2010; 285:19637 - 19646; PMID: 20400508; http://dx.doi.org/10.1074/jbc.M110.117382
  • Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo KM, et al. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23:195 - 202; PMID: 20299542; http://dx.doi.org/10.1093/protein/gzp094
  • Moore GL, Bautista C, Pong E, Nguyen DHT, Jacinto J, Eivazi A, et al. A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. MAbs 2011; 3; In press PMID: 22123055
  • Kontermann RE. Alternative antibody formats. Curr Opin Mol Ther 2010; 12:176 - 183; PMID: 20373261
  • Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H, et al. A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 2008; 31:871 - 884; PMID: 18833000; http://dx.doi.org/10.1097/CJI.0b013e318186c8b4
  • Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 1993; 90:6444 - 6448; PMID: 8341653; http://dx.doi.org/10.1073/pnas.90.14.6444
  • FitzGerald K, Holliger P, Winter G. Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris. Protein Eng 1997; 10:1221 - 1225; PMID: 9488147; http://dx.doi.org/10.1093/protein/10.10.1221
  • Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 2010; 399:436 - 449; PMID: 20382161; http://dx.doi.org/10.1016/j.jmb.2010.04.001
  • Brüsselbach S, Korn T, Völkel T, Müller R, Kontermann RE. Enzyme recruitment and tumor cell killing in vitro by a secreted bispecific single-chain diabody. Tumor Targeting 1999; 4:115 - 123
  • Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von der Lieth CW, Matys ER, et al. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 1999; 293:41 - 56; PMID: 10512714; http://dx.doi.org/10.1006/jmbi.1999.3156
  • Schoonjans R, Willems A, Schoonooghe S, Leoen J, Grooten J, Mertens N. A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain. Biomol Eng 2001; 17:193 - 202; PMID: 11337278; http://dx.doi.org/10.1016/S1389-0344(01)00066-1
  • Goldenberg DM, Rossi EA, Sharkey RM, McBride WJ, Chang CH. Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med 2008; 49:158 - 163; PMID: 18077530; http://dx.doi.org/10.2967/jnumed.107.046185
  • Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 2009; 23:93 - 109; PMID: 19489651; http://dx.doi.org/10.2165/00063030-200923020-00003
  • Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 2011; Epub ahead of print PMID: 21862310
  • Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 2008; 65:1566 - 1584; PMID: 18259690; http://dx.doi.org/10.1007/s00018-008-7440-8
  • Tao Y, Pinzi V, Bourhis J, Deutsch E. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer. Nat Clin Pract Oncol 2007; 4:591 - 602; PMID: 17898809; http://dx.doi.org/10.1038/ncponc0934
  • Ludovini V, Bellezza G, Pistola L, Bianconi F, Di Carlo L, Sidoni A, et al. High coexpression of both insulin-like growth factor receptor-1 (IGFR-1) and epidermal growth factor receptor (EGFR) is associated with shorter disease-free survival in resected non-small-cell lung cancer patients. Ann Oncol 2009; 20:842 - 849; PMID: 19153117; http://dx.doi.org/10.1093/annonc/mdn727
  • Ueda S, Hatsuse K, Tsuda H, Ogata S, Kawarabayashi N, Takigawa T, et al. Potential crosstalk between insulin-like growth factor receptor type 1 and epidermal growth factor receptor in progression and metastasis of pancreatic cancer. Mod Pathol 2006; 19:788 - 796; PMID: 16575403
  • Lu D, Zhang H, Ludwig D, Persaud A, Jimenez X, Burtrum D, et al. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem 2004; 279:2856 - 2865; PMID: 14576153; http://dx.doi.org/10.1074/jbc.M310132200
  • Lu D, Jimenez X, Witte L, Zhu Z. The effect of variable domain orientation and arrangement on the antigen-binding activity of a recombinant human bispecific diabody. Biochem Biophys Res Commun 2004; 318:507 - 513; PMID: 15120630; http://dx.doi.org/10.1016/j.bbrc.2004.04.060
  • Lu D, Zhang H, Koo H, Tonra J, Balderes P, Prewett M, et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 2005; 280:19665 - 19672; PMID: 15757893; http://dx.doi.org/10.1074/jbc.M500815200
  • Emanuel SL, Engle LJ, Chao G, Zhu RR, Cao C, Lin Z, et al. A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor. MAbs 2011; 3:38 - 48; PMID: 21099371; http://dx.doi.org/10.4161/mabs.3.1.14168
  • Nielsen U, Huhalov A, Harms B, Paragas V, Adams S, Gu J, et al. MM-111: a novel bispecific antibody targeting ErbB3 with potent anti-tumor activity in ErbB2 overexpressing malignancies. Cancer Res 2009; 69:4166
  • Shen J, Vil MD, Jimenez X, Zhang H, Iacolina M, Mangalampalli V, et al. Single variable domain antibody as a versatile building block for the construction of IgG-like bispecific antibodies. J Immunol Methods 2007; 318:65 - 74; PMID: 17126853; http://dx.doi.org/10.1016/j.jim.2006.09.020
  • Yu J, Ustach C, Kim HRC. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 2003; 36:49 - 59; PMID: 12542975; http://dx.doi.org/10.5483/BMBRep.2003.36.1.049
  • Board R, Jayson GC. Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Updat 2005; 8:75 - 83; PMID: 15939344; http://dx.doi.org/10.1016/j.drup.2005.03.004
  • Shen J, Vil MD, Jimenez X, Iacolina M, Zhang H, Zhu Z. Single variable domain-IgG fusion. A novel recombinant approach to Fc domain-containing bispecific antibodies. J Biol Chem 2006; 281:10706 - 10714; PMID: 16481314; http://dx.doi.org/10.1074/jbc.M513415200
  • Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 2011; 32:88 - 111; PMID: 21565214; http://dx.doi.org/10.1016/j.mam.2011.04.004
  • Jimenez X, Lu D, Brennan L, Persaud K, Liu M, Miao H, et al. A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 2005; 4:427 - 434; PMID: 15767551
  • Lu D, Jimenez X, Zhang H, Atkins A, Brennan L, Balderes P, et al. Di-diabody: a novel tetravalent bispecific antibody molecule by design. J Immunol Methods 2003; 279:219 - 232; PMID: 12969563; http://dx.doi.org/10.1016/S0022-1759(03)00251-5
  • Leonard JP, Schuster SJ, Emmanouilides C, Couture F, Teoh N, Wegener WA, et al. Durable complete responses from therapy with combined epratuzumab and rituximab: final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. Cancer 2008; 113:2714 - 2723; PMID: 18853418; http://dx.doi.org/10.1002/cncr.23890
  • Qu Z, Goldenberg DM, Cardillo TM, Shi V, Hansen HJ, Chang CH. Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood 2008; 111:2211 - 2219; PMID: 18025153; http://dx.doi.org/10.1182/blood-2007-08-110072
  • Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Chang CH. Hexavalent bispecific antibodies represent a new class of anticancer therapeutics: 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood 2009; 113:6161 - 6171; PMID: 19372261; http://dx.doi.org/10.1182/blood-2008-10-187138
  • Gupta P, Goldenberg DM, Rossi EA, Chang CH. Multiple signaling pathways induced by hexavalent, monospecific, anti-CD20 and hexavalent, bispecific, anti-CD20/CD22 humanized antibodies correlate with enhanced toxicity to B-cell lymphomas and leukemias. Blood 2010; 116:3258 - 3267; PMID: 20628151; http://dx.doi.org/10.1182/blood-2010-03-276857
  • Tuscano JM, Ma Y, Martin SM, Kato J, O'Donnell RT. The Bs20 × 22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone. Cancer Immunol Immunother 2011; 60:771 - 780; PMID: 21347809; http://dx.doi.org/10.1007/s00262-011-0978-6
  • Ashkenazi A, Holland P, Eckhardt SG. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol 2008; 26:3621 - 3630; PMID: 18640940; http://dx.doi.org/10.1200/JCO.2007.15.7198
  • Michaelson JS, Demarest SJ, Miller B, Amatucci A, Snyder WB, Wu X, et al. Anti-tumor activity of stability-engineered IgG-like bispecific antibodies targeting TRAIL-R2 and LTbetaR. MAbs 2009; 1:128 - 141; PMID: 20061822; http://dx.doi.org/10.4161/mabs.1.2.7631
  • Looney RJ. B cells as a therapeutic target in autoimmune diseases other than rheumatoid arthritis. Rheumatology (Oxford) 2005; 44:13 - 17; PMID: 15851522; http://dx.doi.org/10.1093/rheumatology/keh618
  • Edwards JCW, Cambridge G, Leandro MJ. B cell depletion therapy in rheumatic disease. Best Pract Res Clin Rheumatol 2006; 20:915 - 928; PMID: 16980214; http://dx.doi.org/10.1016/j.berh.2006.05.010
  • Cohen SB. Targeting the B cell in rheumatoid arthritis. Best Pract Res Clin Rheumatol 2010; 24:553 - 563; PMID: 20732652; http://dx.doi.org/10.1016/j.berh.2009.11.006
  • Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 2010; 10:328 - 343; PMID: 20414206; http://dx.doi.org/10.1038/nri2762
  • Veri MC, Burke S, Huang L, Li H, Gorlatov S, Tuaillon N, et al. Therapeutic control of B cell activation via recruitment of Fcγ receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum (Munch) 2010; 62:1933 - 1943
  • Zhang K, Kepley CL, Terada T, Zhu D, Perez H, Saxon A. Inhibition of allergen-specific IgE reactivity by a human Ig Fcgamma-Fcepsilon bifunctional fusion protein. J Allergy Clin Immunol 2004; 114:321 - 327; PMID: 15316510; http://dx.doi.org/10.1016/j.jaci.2004.03.058
  • Jackman J, Chen Y, Huang A, Moffat B, Scheer JM, Leong SR, et al. Development of a two-part strategy to identify a therapeutic human bispecific antibody that inhibits IgE receptor signaling. J Biol Chem 2010; 285:20850 - 20859; PMID: 20444694; http://dx.doi.org/10.1074/jbc.M110.113910
  • Tam SW, Demissie S, Thomas D, Daëron M. A bispecific antibody against human IgE and human FcgammaRII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy 2004; 59:772 - 780; PMID: 15180766; http://dx.doi.org/10.1111/j.1398-9995.2004.00332.x
  • Saylor C, Dadachova E, Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine 2009; 27:38 - 46; PMID: 20006139
  • Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2004; 2:695 - 703; PMID: 15372080; http://dx.doi.org/10.1038/nrmicro974
  • Lim CS, Rosli R, Seow HF, Chong PP. Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis 2911; Epub ahead of print PMID: 21544694
  • De Bernardis F, Liu H, O'Mahony R, La Valle R, Bartollino S, Sandini S, et al. Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis 2007; 195:149 - 157; PMID: 17152019; http://dx.doi.org/10.1086/509891
  • Dong J, Demarest SJ, Sereno A, Tamraz S, Langley E, Doern A, et al. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response. Mol Cancer Ther 2010; 9:2593 - 2604; PMID: 20716637; http://dx.doi.org/10.1158/1535-7163.MCT-09-1018
  • Eggel A, Baumann MJ, Amstutz P, Stadler BM, Vogel M. DARPins as bispecific receptor antagonists analyzed for immunoglobulin E receptor blockage. J Mol Biol 2009; 393:598 - 607; PMID: 19683003; http://dx.doi.org/10.1016/j.jmb.2009.08.014
  • Thomson NC, Chaudhuri R, Spears M. Emerging therapies for severe asthma. BMC Med 2011; 9:102; PMID: 21896202; http://dx.doi.org/10.1186/1741-7015-9-102
  • Nowak D. Management of asthma with anti-immunoglobulin E: a review of clinical trials of omalizumab. Respir Med 2006; 100:1907 - 1917; PMID: 16949266; http://dx.doi.org/10.1016/j.rmed.2005.10.004
  • Laventie BJ, Rademaker HJ, Saleh M, de Boer E, Janssens R, Bourcier T, et al. Heavy chain-only antibodies and tetravalent bispecific antibody neutralizing Staphylococcus aureus leukotoxins. Proc Natl Acad Sci USA 2011; 108:16404 - 16409; PMID: 21930905; http://dx.doi.org/10.1073/pnas.1102265108
  • Hmila I, Saerens D, Ben Abderrazek R, Vincke C, Abidi N, Benlasfar Z, et al. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J 2010; 24:3479 - 3489; PMID: 20410443; http://dx.doi.org/10.1096/fj.09-148213
  • Hammoudi-Triki D, Lefort J, Rougeot C, Robbe-Vincent A, Bon C, Laraba-Djebari F, et al. Toxicokinetic and toxicodynamic analyses of Androctonus australis hector venom in rats: optimization of antivenom therapy. Toxicol Appl Pharmacol 2007; 218:205 - 214; PMID: 17198719; http://dx.doi.org/10.1016/j.taap.2006.11.003
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249 - 257; PMID: 11001068; http://dx.doi.org/10.1038/35025220
  • Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004; 25:581 - 611; PMID: 15294883; http://dx.doi.org/10.1210/er.2003-0027
  • Kou G, Shi J, Chen L, Zhang D, Hou S, Zhao L, et al. A bispecific antibody effectively inhibits tumor growth and metastasis by simultaneous blocking vascular endothelial growth factor A and osteopontin. Cancer Lett 2010; 299:130 - 136; PMID: 20826049; http://dx.doi.org/10.1016/j.canlet.2010.08.011
  • Rader C, Sinha SC, Popkov M, Lerner RA, Barbas CF 3rd. Chemically programmed monoclonal antibodies for cancer therapy: adaptor immunotherapy based on a covalent antibody catalyst. Proc Natl Acad Sci USA 2003; 100:5396 - 5400; PMID: 12702756; http://dx.doi.org/10.1073/pnas.0931308100
  • Weinblatt M, Schiff M, Goldman A, Kremer J, Luggen M, Li T, et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann Rheum Dis 2007; 66:228 - 234; PMID: 16935912; http://dx.doi.org/10.1136/ard.2006.055111
  • Wu C, Ying H, Bose S, Miller R, Medina L, Santora L, et al. Molecular construction and optimization of anti-human IL-1α/β dual variable domain immunoglobulin (DVD-Ig) molecules. MAbs 2009; 1:339 - 347; PMID: 20068402; http://dx.doi.org/10.4161/mabs.1.4.8755
  • Mabry R, Lewis KE, Moore M, McKernan PA, Bukowski TR, Bontadelli K, et al. Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng Des Sel 2010; 23:115 - 127; PMID: 20022918; http://dx.doi.org/10.1093/protein/gzp073
  • McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity 2008; 28:445 - 453; PMID: 18400187; http://dx.doi.org/10.1016/j.immuni.2008.03.001
  • Cornelissen F, van Hamburg JP, Lubberts E. The IL-12/IL-23 axis and its role in Th17 cell development, pathology and plasticity in arthritis. Curr Opin Investig Drugs 2009; 10:452 - 462; PMID: 19431078
  • Le XF, Mao W, Lu C, Thornton A, Heymach JV, Sood AK, et al. Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2. Cell Cycle 2008; 7:3747 - 3758; PMID: 19029832; http://dx.doi.org/10.4161/cc.7.23.7212
  • Yang W, Klos K, Yang Y, Smith TL, Shi D, Yu D. ErbB2 overexpression correlates with increased expression of vascular endothelial growth factors A, C and D in human breast carcinoma. Cancer 2002; 94:2855 - 2861; PMID: 12115372; http://dx.doi.org/10.1002/cncr.10553
  • Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 2004; 18:338 - 340; PMID: 14657001
  • Shen J, Vil MD, Zhang H, Tonra JR, Rong LL, Damoci C, et al. An antibody directed against PDGF receptor beta enhances the antitumor and the anti-angiogenic activities of an anti-VEGF receptor 2 antibody. Biochem Biophys Res Commun 2007; 357:1142 - 1147; PMID: 17462601; http://dx.doi.org/10.1016/j.bbrc.2007.04.075
  • Mabry R, Gilbertson DG, Frank A, Vu T, Ardourel D, Ostrander C, et al. A dual-targeting PDGFRbeta/VEGF-A molecule assembled from stable antibody fragments demonstrates anti-angiogenic activity in vitro and in vivo. MAbs 2010; 2:20 - 34; PMID: 20065654; http://dx.doi.org/10.4161/mabs.2.1.10498
  • Lum LG, Davol PA. Retargeting T cells and immune effector cells with bispecific antibodies. Cancer Chemother Biol Response Modif 2005; 22:273 - 291; PMID: 16110617
  • Müller D, Kontermann RE. Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr Opin Mol Ther 2007; 9:319 - 326; PMID: 17694444
  • Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008; 321:974 - 977; PMID: 18703743; http://dx.doi.org/10.1126/science.1158545
  • Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011; 29:2493 - 2498; PMID: 21576633; http://dx.doi.org/10.1200/JCO.2010.32.7270
  • Kügler M, Stein C, Kellner C, Mentz K, Saul D, Schwenkert M, et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br J Haematol 2010; 150:574 - 586; PMID: 20636437; http://dx.doi.org/10.1111/j.1365-2141.2010.08300.x
  • Schubert I, Kellner C, Stein C, Kügler M, Schwenkert M, Saul D, et al. A single-chain triplebody with specificity for CD19 and CD33 mediates effective lysis of mixed lineage leukemia cells by dual targeting. MAbs 2011; 3:21 - 30; PMID: 21081841; http://dx.doi.org/10.4161/mabs.3.1.14057
  • Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med 2007; 58:221 - 237; PMID: 17059365; http://dx.doi.org/10.1146/annurev.med.58.070605.115320
  • Choudhary S, Mathew M, Verma RS. Therapeutic potential of anticancer immunotoxins. Drug Discov Today 2011; 16:495 - 503; PMID: 21511052; http://dx.doi.org/10.1016/j.drudis.2011.04.003
  • Manoukian G, Hagemeister F. Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther 2009; 9:1445 - 1451; PMID: 19817678; http://dx.doi.org/10.1517/14712590903348135
  • Onda M, Beers R, Xiang L, Lee B, Weldon JE, Kreitman RJ, et al. Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc Natl Acad Sci USA 2011; 108:5742 - 5747; PMID: 21436054; http://dx.doi.org/10.1073/pnas.1102746108
  • Frankel AE, Woo JH. Bispecific immunotoxins. Leuk Res 2009; 33:1173 - 1174; PMID: 19406472; http://dx.doi.org/10.1016/j.leukres.2009.03.037
  • Duke-Cohan JS, Morimoto C, Schlossman SF. Targeting of an activated T-cell subset using a bispecific antibody-toxin conjugate directed against CD4 and CD26. Blood 1993; 82:2224 - 2234; PMID: 8104537
  • Duke-Cohan JS, Morimoto C, Schlossman SF. Depletion of the helper/inducer (memory) T cell subset using a bispecific antibody-toxin conjugate directed against CD4 and CD29. Transplantation 1993; 56:1188 - 1196; PMID: 7504344; http://dx.doi.org/10.1097/00007890-199311000-00027
  • Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res 2005; 11:3879 - 3888; PMID: 15897589; http://dx.doi.org/10.1158/1078-0432.CCR-04-2290
  • Vallera DA, Chen H, Sicheneder AR, Panoskaltsis-Mortari A, Taras EP. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009; 33:1233 - 1242; PMID: 19327829; http://dx.doi.org/10.1016/j.leukres.2009.02.006
  • Vallera DA, Oh S, Chen H, Shu Y, Frankel AE. Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol Cancer Ther 2010; 9:1872 - 1883; PMID: 20530709; http://dx.doi.org/10.1158/1535-7163.MCT-10-0203
  • Stish BJ, Chen H, Shu Y, Panoskaltsis-Mortari A, Vallera DA. Increasing anticarcinoma activity of an anti-erbB2 recombinant immunotoxin by the addition of an anti-EpCAM sFv. Clin Cancer Res 2007; 13:3058 - 3067; PMID: 17505009; http://dx.doi.org/10.1158/1078-0432.CCR-06-2454
  • Stish BJ, Chen H, Shu Y, Panoskaltsis-Mortari A, Vallera DA. A bispecific recombinant cytotoxin (DTEGF13) targeting human interleukin-13 and epidermal growth factor receptors in a mouse xenograft model of prostate cancer. Clin Cancer Res 2007; 13:6486 - 6493; PMID: 17975161; http://dx.doi.org/10.1158/1078-0432.CCR-07-0938
  • Stish BJ, Oh S, Vallera DA. Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human IL-13 and EGF receptors in a mouse xenograft model. J Neurooncol 2008; 87:51 - 61; PMID: 18084721; http://dx.doi.org/10.1007/s11060-007-9499-8
  • Vallera DA, Stish BJ, Shu Y, Chen H, Saluja A, Buchsbaum DJ, et al. Genetically designing a more potent antipancreatic cancer agent by simultaneously co-targeting human IL13 and EGF receptors in a mouse xenograft model. Gut 2008; 57:634 - 641; PMID: 18222985; http://dx.doi.org/10.1136/gut.2007.137802
  • Oh S, Ohlfest JR, Todhunter DA, Vallera VD, Hall WA, Chen H, et al. Intracranial elimination of human glioblastoma brain tumors in nude rats using the bispecific ligand-directed toxin, DTEGF13 and convection enhanced delivery. J Neurooncol 2009; 95:331 - 342; PMID: 19517064; http://dx.doi.org/10.1007/s11060-009-9932-2
  • Oh S, Stish BJ, Vickers SM, Buchsbaum DJ, Saluja AK, Vallera DA. A new drug delivery method of bispecific ligand-directed toxins, which reduces toxicity and promotes efficacy in a model of orthotopic pancreatic cancer. Pancreas 2010; 39:913 - 922; PMID: 20182395; http://dx.doi.org/10.1097/MPA.0b013e3181cbd908
  • Todhunter DA, Hall WA, Rustamzadeh E, Shu Y, Doumbia SO, Vallera DA. A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel 2004; 17:157 - 164; PMID: 15047912; http://dx.doi.org/10.1093/protein/gzh023
  • Hall WA, Vallera DA. Efficacy of antiangiogenic targeted toxins against glioblastoma multiforme. Neurosurg Focus 2006; 20:23; PMID: 16709029; http://dx.doi.org/10.3171/foc.2006.20.4.15
  • Rustamzadeh E, Vallera DA, Todhunter DA, Low WC, Panoskaltsis-Mortari A, Hall WA. Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. J Neurooncol 2006; 77:257 - 266; PMID: 16314943; http://dx.doi.org/10.1007/s11060-005-9051-7
  • Oh S, Stish BH, Sachdev D, Chen H, Dudek AZ, Vallera DA. A novel “reduced immunogenicity” bispecific targeted toxin simultaneously recognizing human EGF and IL-4 receptors in a mouse model of metastatic breast carcinoma. Clin Cancer Res 2009; 15:6137 - 6147; PMID: 19789305; http://dx.doi.org/10.1158/1078-0432.CCR-09-0696
  • Stish BJ, Oh S, Chen H, Dudek AZ, Kratzke RA, Vallera DA. Design and modification of EGF4KDEL 7Mut, a novel bispecific ligand-directed toxin, with decreased immunogenicity and potent anti-mesothelioma activity. Br J Cancer 2009; 101:1114 - 1123; PMID: 19755995; http://dx.doi.org/10.1038/sj.bjc.6605297
  • Tsai AK, Oh S, Chen H, Shu Y, Ohlfest JR, Vallera DA. A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. J Neurooncol 2011; 103:255 - 266; PMID: 20830604; http://dx.doi.org/10.1007/s11060-010-0392-5
  • Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol 2009; 27:83 - 117; PMID: 19007331; http://dx.doi.org/10.1146/annurev.immunol.021908.132544
  • Ortiz-Sánchez E, Helguera G, Daniels TR, Penichet ML. Antibody-cytokine fusion proteins: applications in cancer therapy. Expert Opin Biol Ther 2008; 8:609 - 632; PMID: 18407765; http://dx.doi.org/10.1517/14712598.8.5.609
  • Rudman SM, Jameson MB, McKeage MJ, Savage P, Jodrell DI, Harries M, et al. A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res 2011; 17:1998 - 2005; PMID: 21447719; http://dx.doi.org/10.1158/1078-0432.CCR-10-2490
  • Rossi EA, Rossi DL, Stein R, Goldenberg DM, Chang CH. A bispecific antibody-IFNalpha2b immunocytokine targeting CD20 and HLA-DR is highly toxic to human lymphoma and multiple myeloma cells. Cancer Res 2010; 70:7600 - 7609; PMID: 20876805; http://dx.doi.org/10.1158/0008-5472.CAN-10-2126
  • Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14:1310 - 1316; PMID: 18316549; http://dx.doi.org/10.1158/1078-0432.CCR-07-1441
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30:592 - 599; PMID: 19837467; http://dx.doi.org/10.1016/j.tips.2009.08.004
  • Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv 2008; 5:25 - 44; PMID: 18095927; http://dx.doi.org/10.1517/17425247.5.1.25
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2:751 - 760; PMID: 18654426; http://dx.doi.org/10.1038/nnano.2007.387
  • Markman M. Pegylated liposomal doxorubicin: appraisal of its current role in the management of epithelial ovarian cancer. Cancer Manag Res 2011; 3:219 - 225; PMID: 21792330; http://dx.doi.org/10.2147/CMAR.S15558
  • Kontermann RE. Immunoliposomes for cancer therapy. Curr Opin Mol Ther 2006; 8:39 - 45; PMID: 16506524
  • Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 2008; 5:1003 - 1025; PMID: 18754750; http://dx.doi.org/10.1517/17425247.5.9.1003
  • Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006; 66:6732 - 6740; PMID: 16818648; http://dx.doi.org/10.1158/0008-5472.CAN-05-4199
  • Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol 2004; 31:196 - 205; PMID: 15717745; http://dx.doi.org/10.1053/j.seminoncol.2004.08.009
  • Karanth H, Murthy RS. pH-sensitive liposomes—principle and application in cancer therapy. J Pharm Pharmacol 2007; 59:469 - 483; PMID: 17430630; http://dx.doi.org/10.1211/jpp.59.4.0001
  • Koning GA, Morselt HW, Gorter A, Allen TM, Zalipsky S, Scherphof GL, et al. Interaction of differently designed immunoliposomes with colon cancer cells and Kupffer cells. An in vitro comparison. Pharm Res 2003; 20:1249 - 1257; PMID: 12948023; http://dx.doi.org/10.1023/A:1025009300562
  • Nellis DF, Ekstrom DL, Kirpotin DB, Zhu J, Andersson R, Broadt TL, et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol Prog 2005; 21:205 - 220; PMID: 15903260; http://dx.doi.org/10.1021/bp049840y
  • Mumbengegwi DL, Allen TM. Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity. Biochim Biophys Acta 2005; 1711:25 - 32; PMID: 15904660
  • Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 2006; 114:277 - 287; PMID: 16904220; http://dx.doi.org/10.1016/j.jconrel.2006.05.028
  • Quan CY, Chang C, Wei H, Chen CS, Xu XD, Cheng SX, et al. Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release. Nanotechnology 2009; 20:335101; PMID: 19636104; http://dx.doi.org/10.1088/0957-4484/20/33/335101
  • Meng S, Su B, Li W, Ding Y, Tang L, Zhou W, et al. Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes. Nanotechnology 2010; 21:415103; PMID: 20852356; http://dx.doi.org/10.1088/0957-4484/21/41/415103
  • Kluza E, van der Schaft DWJ, Hautvast PAI, Mulder WJM, Mayo KH, Griffioen AW, et al. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett 2010; 10:52 - 58; PMID: 19968235; http://dx.doi.org/10.1021/nl902659g
  • Murase Y, Asai T, Katanasaka Y, Sugiyama T, Shimizu K, Maeda N, et al. A novel DDS strategy, “dual-targeting”, and its application for antineovascular therapy. Cancer Lett 2010; 287:165 - 171; PMID: 19616372; http://dx.doi.org/10.1016/j.canlet.2009.06.008
  • Friedman M, Lindström S, Ekerljung L, Andersson-Svahn H, Carlsson J, Brismar H, et al. Engineering and characterization of a bispecific HER2 x EGFR-binding affibody molecule. Biotechnol Appl Biochem 2009; 54:121 - 131; PMID: 19492986; http://dx.doi.org/10.1042/BA20090096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.