493
Views
14
CrossRef citations to date
0
Altmetric
Extra View

A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics

&
Pages 30-37 | Received 04 Nov 2010, Accepted 09 Dec 2010, Published online: 01 Jan 2011

References

  • Henras AK, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, Mougin A, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 2008; 65:2334 - 2359; http://dx.doi.org/10.1007/s00018-008-8027-0
  • Staley JP, Woolford JL Jr. Assembly of ribosomes and spliceosomes: Complex ribonucleoprotein machines. Curr Opin Cell Biol 2009; 21:109 - 118; PMID: 2698946; http://dx.doi.org/10.1016/j.ceb.2009.01.003
  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007; 8:574 - 585; http://dx.doi.org/10.1038/nrm2184
  • Filipowicz W, Pogacic V. Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 2002; 14:319 - 327 DOI: S0955067402003344
  • Kiss T. Small nucleolar RNAs: An abundant group of noncoding RNAs with diverse cellular functions. Cell 2002; 109:145 - 148 DOI: S0092867402007183
  • Reichow SL, Hamma T, Ferre-D'Amare AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 2007; 35:1452 - 1464; http://dx.doi.org/10.1093/nar/gkl1172
  • Matera AG, Terns RM, Terns MP. Non-coding RNAs: Lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 2007; 8:209 - 220; http://dx.doi.org/10.1038/nrm2124
  • Westman BJ, Verheggen C, Hutten S, Lam YW, Bertrand E, Lamond AI. A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58. Mol Cell 2010; 39:618 - 631; PMID: 2938476; http://dx.doi.org/10.1016/j.molcel.2010.07.025
  • Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8:947 - 956; http://dx.doi.org/10.1038/nrm2293
  • Yeh ET. SUMOylation and De-SUMOylation: Wrestling with life's processes. J Biol Chem 2009; 284:8223 - 8227; http://dx.doi.org/10.1074/jbc.R800050200
  • Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G. The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 2006; 26:4489 - 4498; http://dx.doi.org/10.1128/MCB.02301-05
  • Gong L, Yeh ET. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 2006; 281:15869 - 15877; http://dx.doi.org/10.1074/jbc.M511658200
  • Nishida T, Tanaka H, Yasuda H. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem 2000; 267:6423 - 6427 DOI: ejb1729
  • Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI. NOPdb: Nucleolar Proteome Database—2008 update. Nucleic Acids Res 2009; 37:181 - 184; http://dx.doi.org/10.1093/nar/gkn804
  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1:376 - 386
  • Tatham MH, Rodriguez MS, Xirodimas DP, Hay RT. Detection of protein SUMOylation in vivo. Nat Protoc 2009; 4:1363 - 1371; http://dx.doi.org/10.1038/nprot.2009.128
  • Boulon S, Ahmad Y, Trinkle-Mulcahy L, Verheggen C, Cobley A, Gregor P, et al. Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners. Mol Cell Proteomics 2010; 9:861 - 879; PMID: 2871420; http://dx.doi.org/10.1074/mcp.M900517-MCP200
  • Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 2010; 189:739 - 754; PMID: 2872919; http://dx.doi.org/10.1083/jcb.200911091
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26:1367 - 1372; http://dx.doi.org/10.1038/nbt.1511
  • Schmid M, Jensen TH. The exosome: A multipurpose RNA-decay machine. Trends Biochem Sci 2008; 33:501 - 510; http://dx.doi.org/10.1016/j.tibs.2008.07.003
  • Fomproix N, Hernandez-Verdun D. Effects of anti-PM-Scl 100 (Rrp6p exonuclease) antibodies on prenucleolar body dynamics at the end of mitosis. Exp Cell Res 1999; 251:452 - 464; http://dx.doi.org/10.1006/excr.1999.4578
  • Schilders G, Raijmakers R, Raats JM, Pruijn GJ. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 2005; 33:6795 - 6804; PMID: 1310903; http://dx.doi.org/10.1093/nar/gki982
  • Schilders G, van Dijk E, Pruijn GJM. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res 2007; 35:2564 - 2572; http://dx.doi.org/10.1093/Nar/Gkm082
  • Lejeune F, Li X, Maquat LE. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating and exonucleolytic activities. Mol Cell 2003; 12:675 - 687 DOI: S1097276503003496
  • Mullen TE, Marzluff WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 2008; 22:50 - 65; PMID: 2151014; http://dx.doi.org/10.1101/gad.1622708
  • Brouwer R, Pruijn GJ, van Venrooij WJ. The human exosome: An autoantigenic complex of exoribonucleases in myositis and scleroderma. Arthritis Res 2001; 3:102 - 106; PMID: 128886
  • Reimer G. Autoantibodies against nuclear, nucleolar and mitochondrial antigens in systemic sclerosis (scleroderma). Rheum Dis Clin North Am 1990; 16:169 - 183
  • Pollard KM, Reimer G, Tan EM. Autoantibodies in scleroderma. Clin Exp Rheumatol 1989; 7:57 - 62
  • Shathasivam T, Kislinger T, Gramolini AO. Genes, proteins and complexes: The multifaceted nature of FHL family proteins in diverse tissues. J Cell Mol Med 2010; http://dx.doi.org/10.1111/j.1582-4934.2010.01181
  • Wang J, Qin H, Liang J, Zhu Y, Liang L, Zheng M, et al. The transcriptional repression activity of KyoT2 on the Notch/RBP-J pathway is regulated by PIAS1-catalyzed SUMOylation. J Mol Biol 2007; 370:27 - 38; http://dx.doi.org/10.1016/j.jmb.2007.04.010
  • Dominguez-Brauer C, Brauer PM, Chen YJ, Pimkina J, Raychaudhuri P. Tumor suppression by ARF: Gatekeeper and caretaker. Cell Cycle 2010; 9:86 - 89 DOI: 10350
  • Lindstrom MS, Klangby U, Inoue R, Pisa P, Wiman KG, Asker CE. Immunolocalization of human p14(ARF) to the granular component of the interphase nucleolus. Exp Cell Res 2000; 256:400 - 410; http://dx.doi.org/10.1006/excr.2000.4854
  • Verheggen C, Lafontaine DL, Samarsky D, Mouaikel J, Blanchard JM, Bordonne R, et al. Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J 2002; 21:2736 - 2745; http://dx.doi.org/10.1093/emboj/21.11.2736
  • Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 2001; 276:12654 - 12659; http://dx.doi.org/10.1074/jbc.M009476200
  • Azuma Y, Tan SH, Cavenagh MM, Ainsztein AM, Saitoh H, Dasso M. Expression and regulation of the mammalian SUMO-1 E1 enzyme. FASEB J 2001; 15:1825 - 1827
  • Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?. Genes Dev 2004; 18:2046 - 2059; http://dx.doi.org/10.1101/gad.1214604
  • Rockel TD, Stuhlmann D, von Mikecz A. Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 2005; 118:5231 - 5242; http://dx.doi.org/10.1242/jcs.02642
  • Watkins NJ, Lemm I, Ingelfinger D, Schneider C, Hossbach M, Urlaub H, et al. Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 2004; 16:789 - 798; http://dx.doi.org/10.1016/j.molcel.2004.11.012
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403 - 410; http://dx.doi.org/10.1006/jmbi.1990.9999
  • Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics 2009; 36:75 - 88; http://dx.doi.org/10.1016/S1673-8527(08)60094-6
  • Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, et al. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 2010; 39:641 - 652; http://dx.doi.org/10.1016/j.molcel.2010.07.026
  • Yan S, Sun X, Xiang B, Cang H, Kang X, Chen Y, et al. Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90. EMBO J 2010; http://dx.doi.org/10.1038/emboj.2010.245
  • Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 2008; 180:579 - 595; http://dx.doi.org/10.1083/jcb.200708110
  • Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, et al. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 2008; 180:563 - 578; http://dx.doi.org/10.1083/jcb.200709061
  • Hanif IM, Shazib MA, Ahmad KA, Pervaiz S. Casein Kinase II: an attractive target for anti-cancer drug design. Int J Biochem Cell Biol 2010; 42:1602 - 1605; http://dx.doi.org/10.1016/j.biocel.2010.06.010
  • Pelisch F, Gerez J, Druker J, Schor IE, Munoz MJ, Risso G, et al. The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proc Natl Acad Sci USA 2010; 107:16119 - 16124; PMID: 2941313; http://dx.doi.org/10.1073/pnas.1004653107
  • McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ. A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 2007; 6782 - 6793; PMID: 17636026