1,301
Views
8
CrossRef citations to date
0
Altmetric
Extra View

Microtubules move the nucleus to quiescence

&
Pages 113-118 | Received 20 Feb 2014, Accepted 14 Mar 2014, Published online: 14 Mar 2014

References

  • Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 2013; 14:329 - 40; http://dx.doi.org/10.1038/nrm3591; PMID: 23698583
  • O’Farrell PH. Quiescence: early evolutionary origins and universality do not imply uniformity. Philos Trans R Soc Lond B Biol Sci 2011; 366:3498 - 507; http://dx.doi.org/10.1098/rstb.2011.0079; PMID: 22084377
  • Valcourt JR, Lemons JM, Haley EM, Kojima M, Demuren OO, Coller HA. Staying alive: metabolic adaptations to quiescence. Cell Cycle 2012; 11:1680 - 96; http://dx.doi.org/10.4161/cc.19879; PMID: 22510571
  • De Virgilio C. The essence of yeast quiescence. FEMS Microbiol Rev 2012; 36:306 - 39; http://dx.doi.org/10.1111/j.1574-6976.2011.00287.x; PMID: 21658086
  • Wells A, Griffith L, Wells JZ, Taylor DP. The dormancy dilemma: quiescence versus balanced proliferation. Cancer Res 2013; 73:3811 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-13-0356; PMID: 23794703
  • Ro SH, Liu D, Yeo H, Paik JH. FoxOs in neural stem cell fate decision. Arch Biochem Biophys 2013; 534:55 - 63; http://dx.doi.org/10.1016/j.abb.2012.07.017; PMID: 22902436
  • Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001; 1:222 - 31; http://dx.doi.org/10.1038/35106065; PMID: 11902577
  • Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol 2006; 4:e83; http://dx.doi.org/10.1371/journal.pbio.0040083; PMID: 16509772
  • Klosinska MM, Crutchfield CA, Bradley PH, Rabinowitz JD, Broach JR. Yeast cells can access distinct quiescent states. Genes Dev 2011; 25:336 - 49; http://dx.doi.org/10.1101/gad.2011311; PMID: 21289062
  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae.. Microbiol Mol Biol Rev 2004; 68:187 - 206; http://dx.doi.org/10.1128/MMBR.68.2.187-206.2004; PMID: 15187181
  • Wei W, Nurse P, Broek D. Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle. Cancer Res 1993; 53:1867 - 70; PMID: 8467507
  • Laporte D, Lebaudy A, Sahin A, Pinson B, Ceschin J, Daignan-Fornier B, Sagot I. Metabolic status rather than cell cycle signals control quiescence entry and exit. J Cell Biol 2011; 192:949 - 57; http://dx.doi.org/10.1083/jcb.201009028; PMID: 21402786
  • Daignan-Fornier B, Sagot I. Proliferation/Quiescence: When to start? Where to stop? What to stock?. Cell Div 2011; 6:20; http://dx.doi.org/10.1186/1747-1028-6-20; PMID: 22152110
  • Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 1974; 71:1286 - 90; http://dx.doi.org/10.1073/pnas.71.4.1286; PMID: 4524638
  • Cooper S. Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J 2003; 17:333 - 40; http://dx.doi.org/10.1096/fj.02-0352rev; PMID: 12631573
  • Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Anna-Arriola SS, Rodriguez AL, Aragon AD, Quiñones GA, Allen C, Werner-Washburne M. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 2004; 15:5295 - 305; http://dx.doi.org/10.1091/mbc.E03-11-0856; PMID: 15456898
  • Radonjic M, Andrau JC, Lijnzaad P, Kemmeren P, Kockelkorn TT, van Leenen D, van Berkum NL, Holstege FC. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol Cell 2005; 18:171 - 83; http://dx.doi.org/10.1016/j.molcel.2005.03.010; PMID: 15837421
  • Yotsuyanagi Y. [Study of yeast mitochondria. I. Variations in mitochondrial ultrastructure during the aerobic growth cycle]. J Ultrastruct Res 1962; 7:121 - 40; http://dx.doi.org/10.1016/S0022-5320(62)80031-8; PMID: 14002756
  • Laporte D, Salin B, Daignan-Fornier B, Sagot I. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 2008; 181:737 - 45; http://dx.doi.org/10.1083/jcb.200711154; PMID: 18504300
  • Sagot I, Pinson B, Salin B, Daignan-Fornier B. Actin bodies in yeast quiescent cells: an immediately available actin reserve?. Mol Biol Cell 2006; 17:4645 - 55; http://dx.doi.org/10.1091/mbc.E06-04-0282; PMID: 16914523
  • Liu IC, Chiu SW, Lee HY, Leu JY. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol Biol Cell 2012; 23:1231 - 42; http://dx.doi.org/10.1091/mbc.E11-09-0752; PMID: 22337769
  • Tapia H, Morano KA. Hsp90 nuclear accumulation in quiescence is linked to chaperone function and spore development in yeast. Mol Biol Cell 2010; 21:63 - 72; http://dx.doi.org/10.1091/mbc.E09-05-0376; PMID: 19889838
  • Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O’Connell JD, Mirrielees J, Ellington AD, Marcotte EM. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci U S A 2009; 106:10147 - 52; http://dx.doi.org/10.1073/pnas.0812771106; PMID: 19502427
  • Noree C, Sato BK, Broyer RM, Wilhelm JE. Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster.. J Cell Biol 2010; 190:541 - 51; http://dx.doi.org/10.1083/jcb.201003001; PMID: 20713603
  • Jensen PV, Larsson LI. Actin microdomains on endothelial cells: association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing. Histochem Cell Biol 2004; 121:361 - 9; http://dx.doi.org/10.1007/s00418-004-0648-2; PMID: 15103468
  • Rabl C. Uber zellteilung. Morphol Jahrbuch. 1885; 10:214 - 330
  • Winey M, Mamay CL, O’Toole ET, Mastronarde DN, Giddings TH Jr., McDonald KL, McIntosh JR. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 1995; 129:1601 - 15; http://dx.doi.org/10.1083/jcb.129.6.1601; PMID: 7790357
  • Jin Q, Trelles-Sticken E, Scherthan H, Loidl J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 1998; 141:21 - 9; http://dx.doi.org/10.1083/jcb.141.1.21; PMID: 9531545
  • O’Toole ET, Winey M, McIntosh JR. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae.. Mol Biol Cell 1999; 10:2017 - 31; http://dx.doi.org/10.1091/mbc.10.6.2017; PMID: 10359612
  • Taddei A, Gasser SM. Structure and function in the budding yeast nucleus. Genetics 2012; 192:107 - 29; http://dx.doi.org/10.1534/genetics.112.140608; PMID: 22964839
  • Zimmer C, Fabre E. Principles of chromosomal organization: lessons from yeast. J Cell Biol 2011; 192:723 - 33; http://dx.doi.org/10.1083/jcb.201010058; PMID: 21383075
  • Jin QW, Fuchs J, Loidl J. Centromere clustering is a major determinant of yeast interphase nuclear organization. J Cell Sci 2000; 113:1903 - 12; PMID: 10806101
  • Wong H, Marie-Nelly H, Herbert S, Carrivain P, Blanc H, Koszul R, Fabre E, Zimmer C. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr Biol 2012; 22:1881 - 90; http://dx.doi.org/10.1016/j.cub.2012.07.069; PMID: 22940469
  • Laporte D, Courtout F, Salin B, Ceschin J, Sagot I. An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence. J Cell Biol 2013; 203:585 - 94; http://dx.doi.org/10.1083/jcb.201306075; PMID: 24247429
  • Trelles-Sticken E, Loidl J, Scherthan H. Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 1999; 112:651 - 8; PMID: 9973600
  • Dresser ME, Giroux CN. Meiotic chromosome behavior in spread preparations of yeast. J Cell Biol 1988; 106:567 - 73; http://dx.doi.org/10.1083/jcb.106.3.567; PMID: 2450094
  • Hayashi A, Ogawa H, Kohno K, Gasser SM, Hiraoka Y. Meiotic behaviours of chromosomes and microtubules in budding yeast: relocalization of centromeres and telomeres during meiotic prophase. Genes Cells 1998; 3:587 - 601; http://dx.doi.org/10.1046/j.1365-2443.1998.00215.x; PMID: 9813109
  • Howard J, Hyman AA. Microtubule polymerases and depolymerases. Curr Opin Cell Biol 2007; 19:31 - 5; http://dx.doi.org/10.1016/j.ceb.2006.12.009; PMID: 17184986
  • Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984; 312:237 - 42; http://dx.doi.org/10.1038/312237a0; PMID: 6504138
  • Winey M, Bloom K. Mitotic spindle form and function. Genetics 2012; 190:1197 - 224; http://dx.doi.org/10.1534/genetics.111.128710; PMID: 22491889
  • van der Vaart B, Akhmanova A, Straube A. Regulation of microtubule dynamic instability. Biochem Soc Trans 2009; 37:1007 - 13; http://dx.doi.org/10.1042/BST0371007; PMID: 19754441
  • Blake-Hodek KA, Cassimeris L, Huffaker TC. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol Biol Cell 2010; 21:2013 - 23; http://dx.doi.org/10.1091/mbc.E10-02-0083; PMID: 20392838
  • Miki F, Okazaki K, Shimanuki M, Yamamoto A, Hiraoka Y, Niwa O. The 14-kDa dynein light chain-family protein Dlc1 is required for regular oscillatory nuclear movement and efficient recombination during meiotic prophase in fission yeast. Mol Biol Cell 2002; 13:930 - 46; http://dx.doi.org/10.1091/mbc.01-11-0543; PMID: 11907273
  • Courtheoux T, Gay G, Reyes C, Goldstone S, Gachet Y, Tournier S. Dynein participates in chromosome segregation in fission yeast. Biol Cell 2007; 99:627 - 37; http://dx.doi.org/10.1042/BC20070047; PMID: 17561805
  • Hunt AJ, McIntosh JR. The dynamic behavior of individual microtubules associated with chromosomes in vitro. Mol Biol Cell 1998; 9:2857 - 71; http://dx.doi.org/10.1091/mbc.9.10.2857; PMID: 9763448
  • Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 1995; 131:721 - 34; http://dx.doi.org/10.1083/jcb.131.3.721; PMID: 7593192
  • Mitchison TJ. The role of microtubule polarity in the movement of kinesin and kinetochores. J Cell Sci Suppl 1986; 5:Suppl 5 121 - 8; http://dx.doi.org/10.1242/jcs.1986.Supplement_5.7; PMID: 3115997
  • Miranda JJ, De Wulf P, Sorger PK, Harrison SC. The yeast DASH complex forms closed rings on microtubules. Nat Struct Mol Biol 2005; 12:138 - 43; http://dx.doi.org/10.1038/nsmb896; PMID: 15640796
  • Joglekar AP, Bloom KS, Salmon ED. Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr Opin Cell Biol 2010; 22:57 - 67; http://dx.doi.org/10.1016/j.ceb.2009.12.010; PMID: 20061128
  • Westermann S, Wang HW, Avila-Sakar A, Drubin DG, Nogales E, Barnes G. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 2006; 440:565 - 9; http://dx.doi.org/10.1038/nature04409; PMID: 16415853
  • Ramey VH, Wang HW, Nakajima Y, Wong A, Liu J, Drubin D, Barnes G, Nogales E. The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule. Mol Biol Cell 2011; 22:457 - 66; http://dx.doi.org/10.1091/mbc.E10-10-0841; PMID: 21169562
  • Chuang CH, Belmont AS. Moving chromatin within the interphase nucleus-controlled transitions?. Semin Cell Dev Biol 2007; 18:698 - 706; http://dx.doi.org/10.1016/j.semcdb.2007.08.012; PMID: 17905613
  • Mehta IS, Amira M, Harvey AJ, Bridger JM. Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 2010; 11:R5; http://dx.doi.org/10.1186/gb-2010-11-1-r5; PMID: 20070886
  • Hübner MR, Eckersley-Maslin MA, Spector DL. Chromatin organization and transcriptional regulation. Curr Opin Genet Dev 2013; 23:89 - 95; http://dx.doi.org/10.1016/j.gde.2012.11.006; PMID: 23270812
  • Tanaka K, Kitamura E, Tanaka TU. Live-cell analysis of kinetochore-microtubule interaction in budding yeast. Methods 2010; 51:206 - 13; http://dx.doi.org/10.1016/j.ymeth.2010.01.017; PMID: 20117214
  • Winey M, O’Toole ET. The spindle cycle in budding yeast. Nat Cell Biol 2001; 3:E23 - 7; http://dx.doi.org/10.1038/35050663; PMID: 11146646
  • Kitamura E, Tanaka K, Kitamura Y, Tanaka TU. Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae.. Genes Dev 2007; 21:3319 - 30; http://dx.doi.org/10.1101/gad.449407; PMID: 18079178
  • Rieder CL, Cole RW, Khodjakov A, Sluder G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 1995; 130:941 - 8; http://dx.doi.org/10.1083/jcb.130.4.941; PMID: 7642709
  • Foley EA, Kapoor TM. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 2013; 14:25 - 37; http://dx.doi.org/10.1038/nrm3494; PMID: 23258294
  • Tucker RW, Pardee AB, Fujiwara K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 1979; 17:527 - 35; http://dx.doi.org/10.1016/0092-8674(79)90261-7; PMID: 476831
  • Kim S, Tsiokas L. Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle 2011; 10:2683 - 90; http://dx.doi.org/10.4161/cc.10.16.17009; PMID: 21814045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.