9,520
Views
97
CrossRef citations to date
0
Altmetric
Review

Implications of polyadenylation in health and disease

, , , &
Pages 508-519 | Received 06 Jun 2014, Accepted 04 Sep 2014, Published online: 31 Oct 2014

References

  • Lutz CS, Moreira A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip Rev RNA 2011; 2:22-31; PMID:21956967; http://dx.doi.org/10.1002/wrna.47
  • Tian B, Manley JL. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 2013; 38:312-20; PMID:23632313; http://dx.doi.org/10.1016/j.tibs.2013.03.005
  • Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011; 43:853-66; PMID:21925375; http://dx.doi.org/10.1016/j.molcel.2011.08.017
  • Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 2013; 14:496-506; PMID:23774734; http://dx.doi.org/10.1038/nrg3482
  • Shi Y. Alternative polyadenylation: new insights from global analyses. RNA 2012; 18:2105-17; PMID:23097429; http://dx.doi.org/10.1261/rna.035899.112
  • Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 2014; 53:1044-52; PMID:24582499; http://dx.doi.org/10.1016/j.molcel.2014.02.007
  • Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014; 508:66-71; PMID:24476825; http://dx.doi.org/10.1038/nature13007
  • Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size - Does this protein make my tail look big? Semin Cell Dev Biol 2014; PMID:24910447; http://dx.doi.org/10.1016/j.semcdb.2014.05.018
  • Scorilas A. Polyadenylate polymerase (PAP) and 3′ end pre-mRNA processing: function, assays, and association with disease. Crit Rev Clin Lab Sci 2002; 39:193-224; PMID:12120781; http://dx.doi.org/10.1080/10408360290795510
  • Kondrashov A, Meijer HA, Barthet-Barateig A, Parker HN, Khurshid A, Tessier S, Sicard M, Knox AJ, Pang L, De Moor CH. Inhibition of polyadenylation reduces inflammatory gene induction. RNA 2012; 18:2236-50; PMID:23118416; http://dx.doi.org/10.1261/rna.032391.112
  • Lee C-Y, Chen L. Alternative polyadenylation sites reveal distinct chromatin accessibility and histone modification in human cell lines. Bioinformatics 2013; 29:1713-7; PMID:23740743; http://dx.doi.org/10.1093/bioinformatics/btt288
  • Pinto PAB, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska PS, Coelho PA, Carmo AM, Sunkel CE, Proudfoot NJ, et al. RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J 2011; 30:2431-44; PMID:21602789; http://dx.doi.org/10.1038/emboj.2011.156
  • Nagaike T, Manley JL. Transcriptional activators enhance polyadenylation of mRNA precursors. RNA Biol 2011; 8:964-7; PMID:21941122; http://dx.doi.org/10.4161/rna.8.6.17210
  • Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat Immunol 2009; 10:1102-9; PMID:19749764; http://dx.doi.org/10.1038/ni.1786
  • Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009; 138:673-84; PMID:19703394; http://dx.doi.org/10.1016/j.cell.2009.06.016
  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 2008; 320:1643-7; PMID:18566288; http://dx.doi.org/10.1126/science.1155390
  • Orkin SH, Cheng TC, Antonarakis SE, Kazazian HH Jr. Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J 1985; 4:453-6; PMID:4018033
  • Rund D, Dowling C, Najjar K, Rachmilewitz EA, Kazazian HH Jr., Oppenheim A. Two mutations in the beta-globin polyadenylylation signal reveal extended transcripts and new RNA polyadenylylation sites. Proc Natl Acad Sci U S A 1992; 89:4324-8; PMID:1374896; http://dx.doi.org/10.1073/pnas.89.10.4324
  • Higgs DR, Goodbourn SEY, Lamb J, Clegg JB, Weatherall DJ, Proudfoot NJ. Alpha-thalassemia caused by a polyadenylation signal mutation. Nature 1983; 306:398-400; PMID:6646217; http://dx.doi.org/10.1038/306398a0
  • Harteveld CL, Losekoot M, Haak H, Heister GA, Giordano PC, Bernini LF. A novel polyadenylation signal mutation in the alpha 2-globin gene causing alpha thalassaemia. Br J Haematol 1994; 87:139-43; PMID:7947237; http://dx.doi.org/10.1111/j.1365-2141.1994.tb04883.x
  • Ferraresi P, Marchetti G, Legnani C, Cavallari E, Castoldi E, Mascoli F, Ardissino D, Palareti G, Bernardi F. The heterozygous 20210 G/A prothrombin genotype is associated with early venous thrombosis in inherited thrombophilias and is not increased in frequency in artery disease. Arterioscler Thromb Vasc Biol 1997; 17:2418-22; PMID:9409210; http://dx.doi.org/10.1161/01.ATV.17.11.2418
  • Makris M, Preston FE, Beauchamp NJ, Cooper PC, Daly ME, Hampton KK, Bayliss P, Peake IR, Miller GJ. Co-inheritance of the 20210A allele of the prothrombin gene increases the risk of thrombosis in subjects with familial thrombophilia. Thromb Haemost 1997; 78:1426-9; PMID:9423788
  • Kyrle PA, Mannhalter C, Béguin S, Stümpflen A, Hirschl M, Weltermann A, Stain M, Brenner B, Speiser W, Pabinger I, et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler Thromb Vasc Biol 1998; 18:1287-91; PMID:9714136; http://dx.doi.org/10.1161/01.ATV.18.8.1287
  • Gehring NH, Frede U, Neu-Yilik G, Hundsdoerfer P, Vetter B, Hentze MW, Kulozik AE. Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat Genet 2001; 28:389-92; PMID:11443298; http://dx.doi.org/10.1038/ng578
  • Carter AM, Sachchithananthan M, Stasinopoulos S, Maurer F, Medcalf RL. Prothrombin G20210A is a bifunctional gene polymorphism. Thromb Haemost 2002; 87:846-53; PMID:12038788
  • Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL. G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3′-end formation. J Thromb Haemost 2004; 2:119-27; PMID:14717975; http://dx.doi.org/10.1111/j.1538-7836.2003.00493.x
  • Leroyer C, Mercier B, Oger E, Chenu E, Abgrall JF, Férec C, Mottier D. Prevalence of 20210 A allele of the prothrombin gene in venous thromboembolism patients. Thromb Haemost 1998; 80:49-51; PMID:9684784
  • Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 2009; 106:7028-33; PMID:19372383; http://dx.doi.org/10.1073/pnas.0900028106
  • Elkon R, Drost J, van Haaften G, Jenal M, Schrier M, Oude Vrielink JA, Agami R. E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biol 2012; 13:R59; PMID:22747694; http://dx.doi.org/10.1186/gb-2012-13-7-r59
  • Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 2009; 33:365-76; PMID:19217410; http://dx.doi.org/10.1016/j.molcel.2008.12.028
  • Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A. Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 2011; 21:741-7; PMID:21474764; http://dx.doi.org/10.1101/gr.115-295.110
  • Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev 2013; 27:2380-96; PMID:24145798; http://dx.doi.org/10.1101/gad.229328.113
  • Liaw H-H, Lin C-C, Juan H-F, Huang H-C. Differential microRNA regulation correlates with alternative polyadenylation pattern between breast cancer and normal cells. PLoS One 2013; 8:e56958; PMID:23437281; http://dx.doi.org/10.1371/journal.pone.0056958
  • Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, Park JY, Yehia G, Tian B. Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 2013; 10:133-9; PMID:23241633; http://dx.doi.org/10.1038/nmeth.2288
  • Morris AR, Bos A, Diosdado B, Rooijers K, Elkon R, Bolijn AS, Carvalho B, Meijer GA, Agami R. Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res 2012; 18:5256-66; PMID:22874640; http://dx.doi.org/10.1158/1078-0432.CCR-12-0543
  • Masamha CPXZ, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, Li W, Wagner EJ. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 2014; 510:412-6; PMID:24814343
  • Peterson ML. Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition. Wiley Interdiscip Rev RNA 2011; 2:92-105; PMID:21956971; http://dx.doi.org/10.1002/wrna.36
  • Santos P, Arumemi F, Park KS, Borghesi L, Milcarek C. Transcriptional and epigenetic regulation of B cell development. Immunol Res 2011; 50:105-12; PMID:21717070; http://dx.doi.org/10.1007/s12026-011-8225-y
  • Early P, Rogers J, Davis M, Calame K, Bond M, Wall R, Hood L. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell 1980; 20:313-9; PMID:6771020; http://dx.doi.org/10.1016/0092-8674(80)90617-0
  • Rogers J, Early P, Carter C, Calame K, Bond M, Hood L, Wall R. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell 1980; 20:303-12; PMID:6771019; http://dx.doi.org/10.1016/0092-8674(80)90616-9
  • Takagaki Y, Seipelt RL, Peterson ML, Manley JL. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 1996; 87:941-52; PMID:8945520; http://dx.doi.org/10.1016/S0092-8674(00)82000-0
  • Phillips C, Jung S, Gunderson SI. Regulation of nuclear poly(A) addition controls the expression of immunoglobulin M secretory mRNA. EMBO J 2001; 20:6443-52; PMID:11707415; http://dx.doi.org/10.1093/emboj/20.22.6443
  • Phillips C, Pachikara N, Gunderson SI. U1A inhibits cleavage at the immunoglobulin M heavy-chain secretory poly(A) site by binding between the two downstream GU-rich regions. Mol Cell Biol 2004; 24:6162-71; PMID:15226420; http://dx.doi.org/10.1128/MCB.24.14.6162-6171.2004
  • Milcarek C, Albring M, Langer C, Park KS. The eleven-nineteen lysine-rich leukemia gene (ELL2) influences the histone H3 protein modifications accompanying the shift to secretory immunoglobulin heavy chain mRNA production. J Biol Chem 2011; 286:33795-803; PMID:21832080; http://dx.doi.org/10.1074/jbc.M111.272096
  • Chuvpilo S, Zimmer M, Kerstan A, Glöckner J, Avots A, Escher C, Fischer C, Inashkina I, Jankevics E, Berberich-Siebelt F, et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 1999; 10:261-9; PMID:10072078; http://dx.doi.org/10.1016/S1074-7613(00)80026-6
  • Shell SA, Hesse C, Morris SM Jr., Milcarek C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J Biol Chem 2005; 280:39950-61; PMID:16207706; http://dx.doi.org/10.1074/jbc.M508848200
  • Beutler B. TNF, immunity and inflammatory disease: lessons of the past decade. J Investig Med 1995; 43:227-35; PMID:7614068
  • Han J, Brown T, Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med 1990; 171:465-75; PMID:2303781; http://dx.doi.org/10.1084/jem.171.2.465
  • Beisang D, Bohjanen PR. Perspectives on the ARE as it turns 25 years old. Wiley Interdiscip Rev RNA 2012; 3:719-31; PMID:22733578; http://dx.doi.org/10.1002/wrna.1125
  • Ivanov P, Anderson P. Post-transcriptional regulatory networks in immunity. Immunol Rev 2013; 253:253-72; PMID:23550651; http://dx.doi.org/10.1111/imr.12051
  • Ulich TR, Watson LR, Yin SM, Guo KZ, Wang P, Thang H, del Castillo J. The intratracheal administration of endotoxin and cytokines. I. Characterization of LPS-induced IL-1 and TNF mRNA expression and the LPS-, IL-1-, and TNF-induced inflammatory infiltrate. Am J Pathol 1991; 138:1485-96; PMID:2053596
  • Crawford EK, Ensor JE, Kalvakolanu I, Hasday JD. The role of 3′ poly(A) tail metabolism in tumor necrosis factor-alpha regulation. J Biol Chem 1997; 272:21120-7; PMID:9261116; http://dx.doi.org/10.1074/jbc.272.34.21120
  • Shigeoka AO, Chance PF, Fain P, Barker DA, Book LS, Rallison ML. An X-linked T-cell activation syndrome maps near the Wiskott-Aldrich locus Xp11.2 - diarrhea, respiratory-infections, autoimmune-disease and endocrinopathies in the absence of platelet defects. Clinical Research 1993; 41:A41-A.
  • Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27:20-1; PMID:11137993; http://dx.doi.org/10.1038/83713
  • Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000; 106:R75-81; PMID:11120765; http://dx.doi.org/10.1172/JCI11679
  • Bennett CL, Brunkow ME, Ramsdell F, O’Briant KC, Zhu Q, Fuleihan RL, Shigeoka AO, Ochs HD, Chance PF. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA–>AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001; 53:435-9; PMID:11685453; http://dx.doi.org/10.1007/s002510100358
  • Familiärer AW. angeborener Morbus Werlhofii? [Familial, congenital Werlhof's disease?]. Monatsschr Kinderheilkd 1937; 68:212-6.
  • Jin Y, Mazza C, Christie JR, Giliani S, Fiorini M, Mella P, Gandellini F, Stewart DM, Zhu Q, Nelson DL, et al. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood 2004; 104:4010-9; PMID:15284122; http://dx.doi.org/10.1182/blood-2003-05-1592
  • Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol 1999; 17:905-29; PMID:10358777; http://dx.doi.org/10.1146/annurev.immunol.17.1.905
  • Andreu N, García-Rodríguez M, Volpini V, Frecha C, Molina IJ, Fontan G, Fillat C. A novel Wiskott-Aldrich syndrome protein (WASP) complex mutation identified in a WAS patient results in an aberrant product at the C-terminus from two transcripts with unusual polyA signals. J Hum Genet 2006; 51:92-7; PMID:16372137; http://dx.doi.org/10.1007/s10038-005-0328-7
  • Persikov AV, Brodsky B. Unstable molecules form stable tissues. Proc Natl Acad Sci U S A 2002; 99:1101-3; PMID:11830649; http://dx.doi.org/10.1073/pnas.042707899
  • Määttä A, Bornstein P, Penttinen RPK. Highly conserved sequences in the 3′-untranslated region of the COL1A1 gene bind cell-specific nuclear proteins. FEBS Lett 1991; 279:9-13; PMID:1995349; http://dx.doi.org/10.1016/0014-5793(91)80237-W
  • Natalizio BJ, Muniz LC, Arhin GK, Wilusz J, Lutz CS. Upstream elements present in the 3′-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J Biol Chem 2002; 277:42733-40; PMID:12200454; http://dx.doi.org/10.1074/jbc.M208070200
  • Jimenez SA, Hitraya E, Varga J. Pathogenesis of scleroderma. Collagen. Rheum Dis Clin North Am 1996; 22:647-74; PMID:8923589; http://dx.doi.org/10.1016/S0889-857X(05)70294-5
  • Le Graverand MPH, Eggerer J, Vignon E, Otterness IG, Barclay L, Hart DA. Assessment of specific mRNA levels in cartilage regions in a lapine model of osteoarthritis. J Orthop Res 2002; 20:535-44; PMID:12038628; http://dx.doi.org/10.1016/S0736-0266(01)00126-7
  • Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004; 23:616-26; PMID:14749727; http://dx.doi.org/10.1038/sj.emboj.7600070
  • Lackford B, Yao C, Charles GM, Weng L, Zheng X, Choi E-A, Xie X, Wan J, Xing Y, Freudenberg JM, et al. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J 2014; 33:878-89; PMID:24596251; http://dx.doi.org/10.1002/embj.201386537
  • Nath SK, Kelly JA, Harley JB, Scofield RH. Mapping the systematic lupus erythematosus susceptibility genes. Methods Mol Med 2004; 102:11-29; PMID:15286378
  • Marleau AM, Sarvetnick N. T cell homeostasis in tolerance and immunity. J Leukoc Biol 2005; 78:575-84; PMID:15894586; http://dx.doi.org/10.1189/jlb.0105050
  • Stamm O, Krücken J, Schmitt-Wrede HP, Benten WPM, Wunderlich F. Human ortholog to mouse gene imap38 encoding an ER-localizable G-protein belongs to a gene family clustered on chromosome 7q32-36. Gene 2002; 282:159-67; PMID:11814688; http://dx.doi.org/10.1016/S0378-1119(01)00837-X
  • MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, Gohlke P, Speros SJ, Snyder B, Schaefer J, Bieg S, et al. Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res 2002; 12:1029-39; PMID:12097339; http://dx.doi.org/10.1101/gr.412702
  • Hellquist A, Zucchelli M, Kivinen K, Saarialho-Kere U, Koskenmies S, Widen E, Julkunen H, Wong A, Karjalainen-Lindsberg ML, Skoog T, et al. The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus. J Med Genet 2007; 44:314-21; PMID:17220214; http://dx.doi.org/10.1136/jmg.2006.046185
  • Shepard PJ, Choi E-A, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 2011; 17:761-72; PMID:21343387; http://dx.doi.org/10.1261/rna.2581711
  • Hilgers V, Perry MW, Hendrix D, Stark A, Levine M, Haley B. Neural-specific elongation of 3′ UTRs during Drosophila development. Proc Natl Acad Sci U S A 2011; 108:15864-9; PMID:21896737; http://dx.doi.org/10.1073/pnas.1112672108
  • Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, Zhang D, Eads BD, Carlson J, Brown JB, et al. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 2012; 1:277-89; PMID:22685694; http://dx.doi.org/10.1016/j.celrep.2012.01.001
  • Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460:479-86; PMID:19536157
  • Simon LS. Role and regulation of cyclooxygenase-2 during inflammation. Am J Med 1999; 106(5B):37S-42S; PMID:10390126; http://dx.doi.org/10.1016/S0002-9343(99)00115-1
  • Hall-Pogar T, Zhang H, Tian B, Lutz CS. Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res 2005; 33:2565-79; PMID:15872218; http://dx.doi.org/10.1093/nar/gki544
  • Hall-Pogar T, Liang S, Hague LK, Lutz CS. Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3′-UTR. RNA 2007; 13:1103-15; PMID:17507659; http://dx.doi.org/10.1261/rna.577707
  • Ristimäki A, Narko K, Hla T. Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J 1996; 318:325-31; PMID:8761489
  • Ristimäki A, Garfinkel S, Wessendorf J, Maciag T, Hla T. Induction of cyclooxygenase-2 by interleukin-1 alpha. Evidence for post-transcriptional regulation. J Biol Chem 1994; 269:11769-75; PMID:8163473
  • Shaw G, Kamen R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46:659-67; PMID:3488815; http://dx.doi.org/10.1016/0092-8674(86)90341-7
  • Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A 1992; 89:7384-8; PMID:1380156; http://dx.doi.org/10.1073/pnas.89.16.7384
  • Lukiw WJ, Bazan NG. Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. J Neurosci Res 1997; 50:937-45; PMID:9452008; http://dx.doi.org/10.1002/(SICI)1097-4547(19971215)50:6≤937::AID-JNR4≥3.0.CO;2-E
  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388:839-40; PMID:9278044; http://dx.doi.org/10.1038/42166
  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science 2003; 302:841; PMID:14593171; http://dx.doi.org/10.1126/science.1090278
  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997; 276:2045-7; PMID:9197268; http://dx.doi.org/10.1126/science.276.5321.2045
  • Rhinn H, Qiang L, Yamashita T, Rhee D, Zolin A, Vanti W, Abeliovich A. Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology. Nat Commun 2012; 3:1084; PMID:23011138; http://dx.doi.org/10.1038/ncom-ms2032
  • Tomé FMS, Fardeau M. Nuclear inclusions in oculopharyngeal dystrophy. Acta Neuropathol 1980; 49:85-7; PMID:6243839; http://dx.doi.org/10.1007/BF00692226
  • Tomé FMS, Chateau D, Helbling-Leclerc A, Fardeau M. Morphological changes in muscle fibers in oculopharyngeal muscular dystrophy. Neuromuscul Disord 1997; 7(Suppl 1):S63-9; PMID:9392019; http://dx.doi.org/10.1016/S0960-8966(97)00085-0
  • Brais B, Bouchard JP, Xie YG, Rochefort DL, Chrétien N, Tomé FMS, Lafrenière RG, Rommens JM, Uyama E, Nohira O, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998; 18:164-7; PMID:9462747; http://dx.doi.org/10.1038/ng0298-164
  • Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013; 280:4230-50; PMID:23601051; http://dx.doi.org/10.1111/febs.12294
  • Apponi LH, Leung SW, Williams KR, Valentini SR, Corbett AH, Pavlath GK. Loss of nuclear poly(A)-binding protein 1 causes defects in myogenesis and mRNA biogenesis. Hum Mol Genet 2010; 19:1058-65; PMID:20035013; http://dx.doi.org/10.1093/hmg/ddp569
  • Calado A, Tomé FMS, Brais B, Rouleau GA, Kühn U, Wahle E, Carmo-Fonseca M. Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000; 9:2321-8; PMID:11001936; http://dx.doi.org/10.1093/oxfordjournals.hmg.a018924
  • Simonelig M. PABPN1 shuts down alternative poly(A) sites. Cell Res 2012; 22:1419-21; PMID:22641371; http://dx.doi.org/10.1038/cr.2012.86
  • Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kühn U, Menzies FM, Oude Vrielink JA, Bos AJ, Drost J, Rooijers K, et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 2012; 149:538-53; PMID:22502866; http://dx.doi.org/10.1016/j.cell.2012.03.022
  • Beelman CA, Parker R. Degradation of mRNA in eukaryotes. Cell 1995; 81:179-83; PMID:7736570; http://dx.doi.org/10.1016/0092-8674(95)90326-7
  • Sachs AB, Sarnow P, Hentze MW. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 1997; 89:831-8; PMID:9200601; http://dx.doi.org/10.1016/S0092-8674(00)80268-8
  • Wahle E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 1991; 66:759-68; PMID:1878970; http://dx.doi.org/10.1016/0092-8674(91)90119-J
  • Bienroth S, Keller W, Wahle E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J 1993; 12:585-94; PMID:8440247
  • Wahle E. Poly(A) tail length control is caused by termination of processive synthesis. J Biol Chem 1995; 270:2800-8; PMID:7852352
  • Desnick RJ, Allen KY, Desnick SJ, Raman MK, Bernlohr RW, Krivit W. Fabry's disease: enzymatic diagnosis of hemizygotes and heterozygotes. Alpha-galactosidase activities in plasma, serum, urine, and leukocytes. J Lab Clin Med 1973; 81:157-71; PMID:4683418
  • Bishop DF, Kornreich R, Desnick RJ. Structural organization of the human alpha-galactosidase A gene: further evidence for the absence of a 3′ untranslated region. Proc Natl Acad Sci U S A 1988; 85:3903-7; PMID:2836863; http://dx.doi.org/10.1073/pnas.85.11.3903
  • Yasuda M, Shabbeer J, Osawa M, Desnick RJ. Fabry disease: novel alpha-galactosidase A 3′-terminal mutations result in multiple transcripts due to aberrant 3′-end formation. Am J Hum Genet 2003; 73:162-73; PMID:12796853; http://dx.doi.org/10.1086/376608
  • Toniolo D, Rizzolio F. X chromosome and ovarian failure. Semin Reprod Med 2007; 25:264-71; PMID:17594607; http://dx.doi.org/10.1055/s-2007-980220
  • Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D, Holden JJ, Yang KT, Lee C, Hudson R, Gorwill H, Nolin SL, Glicksman A, et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study–preliminary data. Am J Med Genet 1999; 83:322-5; PMID:10208170; http://dx.doi.org/10.1002/(SICI)1096-8628(19990402)83:4≤322::AID-AJMG17≥3.0.CO;2-B
  • Hagerman PJ, Hagerman RJ. The fragile-X premutation: a maturing perspective. Am J Hum Genet 2004; 74:805-16; PMID:15052536; http://dx.doi.org/10.1086/386296
  • Bourgeois JA, Coffey SM, Rivera SM, Hessl D, Gane LW, Tassone F, Greco C, Finucane B, Nelson L, Berry-Kravis E, et al. A review of fragile X premutation disorders: expanding the psychiatric perspective. J Clin Psychiatry 2009; 70:852-62; PMID:19422761; http://dx.doi.org/10.4088/JCP.08r04476
  • Tassone F, De Rubeis S, Carosi C, La Fata G, Serpa G, Raske C, Willemsen R, Hagerman PJ, Bagni C. Differential usage of transcriptional start sites and polyadenylation sites in FMR1 premutation alleles. Nucleic Acids Res 2011; 39:6172-85; PMID:21478165; http://dx.doi.org/10.1093/nar/gkr100
  • Gunderson SI, Polycarpou-Schwarz M, Mattaj IW. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell 1998; 1:255-64; PMID:9659922; http://dx.doi.org/10.1016/S1097-2765(00)80026-X
  • Workman E, Veith A, Battle DJ. U1A regulates 3′ processing of the survival motor neuron mRNA. J Biol Chem 2014; 289:3703-12; PMID:24362020; http://dx.doi.org/10.1074/jbc.M113.538264
  • Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80:155-65; PMID:7813012; http://dx.doi.org/10.1016/0092-8674(95)90460-3
  • Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 2010; 468:664-8; PMID:20881964; http://dx.doi.org/10.1038/nature09479
  • Berg MG, Singh LN, Younis I, Liu Q, Pinto AM, Kaida D, Zhang Z, Cho S, Sherrill-Mix S, Wan L, et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell 2012; 150:53-64; PMID:22770214; http://dx.doi.org/10.1016/j.cell.2012.05.029
  • Bai B, Hales CM, Chen P-C, Gozal Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proc Natl Acad Sci U S A 2013; 110:16562-7; PMID:24023061; http://dx.doi.org/10.1073/pnas.1310249110
  • Krueger RJ, Orme-Johnson NR. Acute adrenocorticotropic hormone stimulation of adrenal corticosteroidogenesis. Discovery of a rapidly induced protein. J Biol Chem 1983; 258:10159-67; PMID:6309771
  • Epstein LF, Orme-Johnson NR. Regulation of steroid hormone biosynthesis. Identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem 1991; 266:19739-45; PMID:1655794
  • Sugawara T, Holt JA, Driscoll D, Strauss JF 3rd, Lin D, Miller WL, Patterson D, Clancy KP, Hart IM, Clark BJ, et al. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc Natl Acad Sci U S A 1995; 92:4778-82; PMID:7761400; http://dx.doi.org/10.1073/pnas.92.11.4778
  • Duan H, Cherradi N, Feige J-J, Jefcoate C. cAMP-dependent posttranscriptional regulation of steroidogenic acute regulatory (STAR) protein by the zinc finger protein ZFP36L1/TIS11b. Mol Endocrinol 2009; 23:497-509; PMID:19179481; http://dx.doi.org/10.1210/me.2008-0296
  • Zhao D, Duan H, Kim YC, Jefcoate CR. Rodent StAR mRNA is substantially regulated by control of mRNA stability through sites in the 3′-untranslated region and through coupling to ongoing transcription. J Steroid Biochem Mol Biol 2005; 96:155-73; PMID:16039847; http://dx.doi.org/10.1016/j.jsbmb.2005.02.011
  • Lin D, Gitelman SE, Saenger P, Miller WL. Normal genes for the cholesterol side chain cleavage enzyme, P450scc, in congenital lipoid adrenal hyperplasia. J Clin Invest 1991; 88:1955-62; PMID:1661294; http://dx.doi.org/10.1172/JCI115520
  • Tee MK, Lin D, Sugawara T, Holt JA, Guiguen Y, Buckingham B, Strauss JF 3rd, Miller WL. T–>A transversion 11 bp from a splice acceptor site in the human gene for steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. Hum Mol Genet 1995; 4:2299-305; PMID:8634702; http://dx.doi.org/10.1093/hmg/4.12.2299
  • Mauer SM, Steffes MW, Ellis EN, Sutherland DER, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984; 74:1143-55; PMID:6480821; http://dx.doi.org/10.1172/JCI111523
  • Abdel Wahab N, Gibbs J, Mason RM. Regulation of gene expression by alternative polyadenylation and mRNA instability in hyperglycemic mesangial cells. Biochem J 1998; 336:405-11; PMID:9820818
  • Wennborg A, Sohlberg B, Angerer D, Klein G, von Gabain A. A human RNase E-like activity that cleaves RNA sequences involved in mRNA stability control. Proc Natl Acad Sci U S A 1995; 92:7322-6; PMID:7638189; http://dx.doi.org/10.1073/pnas.92.16.7322
  • Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, Nejjari C, Patsch W, Chikri M, Meyre D, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med (Berl) 2007; 85:777-82; PMID:17476472; http://dx.doi.org/10.1007/s00109-007-0203-4
  • Prokunina-Olsson L, Welch C, Hansson O, Adhikari N, Scott LJ, Usher N, Tong M, Sprau A, Swift A, Bonnycastle LL, et al. Tissue-specific alternative splicing of TCF7L2. Hum Mol Genet 2009; 18:3795-804; PMID:19602480; http://dx.doi.org/10.1093/hmg/ddp321
  • da Silva Xavier G, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, Barg S, Rutter GA. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 2009; 58:894-905; PMID:19168596; http://dx.doi.org/10.2337/db08-1187
  • Shu L, Matveyenko AV, Kerr-Conte J, Cho J-H, McIntosh CHS, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 2009; 18:2388-99; PMID:19386626; http://dx.doi.org/10.1093/hmg/ddp178
  • Locke JM, Da Silva Xavier G, Rutter GA, Harries LW. An alternative polyadenylation signal in TCF7L2 generates isoforms that inhibit T cell factor/lymphoid-enhancer factor (TCF/LEF)-dependent target genes. Diabetologia 2011; 54:3078-82; PMID:21913056; http://dx.doi.org/10.1007/s00125-011-2290-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.