882
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Autoantibodies targeting tumor-associated antigens in metastatic cancer

Sialylated IgGs as candidate anti-inflammatory antibodies

, &
Article: e24841 | Received 07 Mar 2013, Accepted 27 Apr 2013, Published online: 07 May 2013

References

  • Sahin U, Türeci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A 1995; 92:11810 - 3; http://dx.doi.org/10.1073/pnas.92.25.11810; PMID: 8524854
  • Reuschenbach M, von Knebel Doeberitz M, Wentzensen N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 2009; 58:1535 - 44; http://dx.doi.org/10.1007/s00262-009-0733-4; PMID: 19562338
  • Kobold S, Lütkens T, Cao Y, Bokemeyer C, Atanackovic D. Autoantibodies against tumor-related antigens: incidence and biologic significance. Hum Immunol 2010; 71:643 - 51; http://dx.doi.org/10.1016/j.humimm.2010.03.015; PMID: 20433885
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331:1565 - 70; http://dx.doi.org/10.1126/science.1203486; PMID: 21436444
  • Radoja S, Rao TD, Hillman D, Frey AB. Mice bearing late-stage tumors have normal functional systemic T cell responses in vitro and in vivo. J Immunol 2000; 164:2619 - 28; PMID: 10679101
  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29:235 - 71; http://dx.doi.org/10.1146/annurev-immunol-031210-101324; PMID: 21219185
  • Wei S, Curiel T, Coukos G, Liu R, Zou W. Inhibitory B7 family members in human ovarian carcinoma. Adv Exp Med Biol 2008; 622:261 - 71; http://dx.doi.org/10.1007/978-0-387-68969-2_21; PMID: 18546634
  • Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8:467 - 77; http://dx.doi.org/10.1038/nri2326; PMID: 18500231
  • Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 2010; 116:1757 - 66; http://dx.doi.org/10.1002/cncr.24899; PMID: 20143437
  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 2007; 25:21 - 50; http://dx.doi.org/10.1146/annurev.immunol.25.022106.141702; PMID: 17029568
  • Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 2005; 21:1644 - 52; http://dx.doi.org/10.1021/bp050228w; PMID: 16321047
  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 2002; 277:26733 - 40; http://dx.doi.org/10.1074/jbc.M202069200; PMID: 11986321
  • Satoh M, Iida S, Shitara K. Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 2006; 6:1161 - 73; http://dx.doi.org/10.1517/14712598.6.11.1161; PMID: 17049014
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313:670 - 3; http://dx.doi.org/10.1126/science.1129594; PMID: 16888140
  • Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 2007; 44:1524 - 34; http://dx.doi.org/10.1016/j.molimm.2006.09.005; PMID: 17045339
  • Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 2011; 475:110 - 3; http://dx.doi.org/10.1038/nature10134; PMID: 21685887
  • Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 2008; 105:19571 - 8; http://dx.doi.org/10.1073/pnas.0810163105; PMID: 19036920
  • Nimmerjahn F, Ravetch JV. The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med 2007; 204:11 - 5; http://dx.doi.org/10.1084/jem.20061788; PMID: 17227911
  • Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol 2010; 30:Suppl 1 S9 - 14; http://dx.doi.org/10.1007/s10875-010-9405-6; PMID: 20480216
  • Anthony RM, Wermeling F, Ravetch JV. Novel roles for the IgG Fc glycan. Ann N Y Acad Sci 2012; 1253:170 - 80; http://dx.doi.org/10.1111/j.1749-6632.2011.06305.x; PMID: 22288459
  • Raju TS, Scallon BJ. Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun 2006; 341:797 - 803; http://dx.doi.org/10.1016/j.bbrc.2006.01.030; PMID: 16442075
  • Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 2008; 8:2858 - 71; http://dx.doi.org/10.1002/pmic.200700968; PMID: 18655055
  • Stadlmann J, Weber A, Pabst M, Anderle H, Kunert R, Ehrlich HJ, et al. A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 2009; 9:4143 - 53; http://dx.doi.org/10.1002/pmic.200800931; PMID: 19688751
  • Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 1997; 15:3363 - 7; PMID: 9363867
  • Goodell V, Waisman J, Salazar LG, de la Rosa C, Link J, Coveler AL, et al. Level of HER-2/neu protein expression in breast cancer may affect the development of endogenous HER-2/neu-specific immunity. Mol Cancer Ther 2008; 7:449 - 54; http://dx.doi.org/10.1158/1535-7163.MCT-07-0386; PMID: 18319334
  • Chapman CJ, Murray A, McElveen JE, Sahin U, Luxemburger U, Türeci O, et al. Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax 2008; 63:228 - 33; http://dx.doi.org/10.1136/thx.2007.083592; PMID: 17932110
  • Stockert E, Jäger E, Chen YT, Scanlan MJ, Gout I, Karbach J, et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 1998; 187:1349 - 54; http://dx.doi.org/10.1084/jem.187.8.1349; PMID: 9547346
  • Ward RL, Hawkins NJ, Coomber D, Disis ML. Antibody immunity to the HER-2/neu oncogenic protein in patients with colorectal cancer. Hum Immunol 1999; 60:510 - 5; http://dx.doi.org/10.1016/S0198-8859(99)00003-8; PMID: 10408800
  • Montgomery RB, Makary E, Schiffman K, Goodell V, Disis ML. Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res 2005; 65:650 - 6; PMID: 15695410
  • van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P, et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005; 105:3939 - 44; http://dx.doi.org/10.1182/blood-2004-09-3707; PMID: 15671442
  • Zeng G, Aldridge ME, Wang Y, Pantuck AJ, Wang AY, Liu YX, et al. Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker. Int J Cancer 2005; 114:268 - 73; http://dx.doi.org/10.1002/ijc.20716; PMID: 15540228
  • Akcakanat A, Kanda T, Koyama Y, Watanabe M, Kimura E, Yoshida Y, et al. NY-ESO-1 expression and its serum immunoreactivity in esophageal cancer. Cancer Chemother Pharmacol 2004; 54:95 - 100; http://dx.doi.org/10.1007/s00280-004-0768-3; PMID: 15118836
  • Akcakanat A, Kanda T, Tanabe T, Komukai S, Yajima K, Nakagawa S, et al. Heterogeneous expression of GAGE, NY-ESO-1, MAGE-A and SSX proteins in esophageal cancer: Implications for immunotherapy. Int J Cancer 2006; 118:123 - 8; http://dx.doi.org/10.1002/ijc.21219; PMID: 16003736
  • Türeci O, Mack U, Luxemburger U, Heinen H, Krummenauer F, Sester M, et al. Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1. Cancer Lett 2006; 236:64 - 71; http://dx.doi.org/10.1016/j.canlet.2005.05.008; PMID: 15992994
  • Korangy F, Ormandy LA, Bleck JS, Klempnauer J, Wilkens L, Manns MP, et al. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res 2004; 10:4332 - 41; http://dx.doi.org/10.1158/1078-0432.CCR-04-0181; PMID: 15240519
  • Nakamura S, Nouso K, Noguchi Y, Higashi T, Ono T, Jungbluth A, et al. Expression and immunogenicity of NY-ESO-1 in hepatocellular carcinoma. J Gastroenterol Hepatol 2006; 21:1281 - 5; http://dx.doi.org/10.1111/j.1440-1746.2006.04271.x; PMID: 16872310
  • Fosså A, Berner A, Fosså SD, Hernes E, Gaudernack G, Smeland EB. NY-ESO-1 protein expression and humoral immune responses in prostate cancer. Prostate 2004; 59:440 - 7; http://dx.doi.org/10.1002/pros.20025; PMID: 15065093
  • Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res 2003; 63:6076 - 83; PMID: 14522938
  • Huhn C, Selman MH, Ruhaak LR, Deelder AM, Wuhrer M. IgG glycosylation analysis. Proteomics 2009; 9:882 - 913; http://dx.doi.org/10.1002/pmic.200800715; PMID: 19212958
  • Kim YJ, Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj J 1997; 14:569 - 76; http://dx.doi.org/10.1023/A:1018580324971; PMID: 9298689
  • Varki A, Kannagi R, Toole BP. Glycosylation Changes in Cancer. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Betozzi CR, et al. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2009:617-32.
  • Kaplan HA, Woloski BM, Hellman M, Jamieson JC. Studies on the effect of inflammation on rat liver and serum sialyltransferase. Evidence that inflammation causes release of Gal beta 1 leads to 4GlcNAc alpha 2 leads to 6 sialyltransferase from liver. J Biol Chem 1983; 258:11505 - 9; PMID: 6413502
  • Käsermann F, Boerema DJ, Rüegsegger M, Hofmann A, Wymann S, Zuercher AW, et al. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS One 2012; 7:e37243; http://dx.doi.org/10.1371/journal.pone.0037243; PMID: 22675478
  • Dalziel M, McFarlane I, Axford JS. Lectin analysis of human immunoglobulin G N-glycan sialylation. Glycoconj J 1999; 16:801 - 7; http://dx.doi.org/10.1023/A:1007183915921; PMID: 11133020
  • Stadlmann J, Pabst M, Altmann F. Analytical and Functional Aspects of Antibody Sialylation. J Clin Immunol 2010; In press http://dx.doi.org/10.1007/s10875-010-9409-2; PMID: 20390325
  • Guhr T, Bloem J, Derksen NI, Wuhrer M, Koenderman AH, Aalberse RC, et al. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS One 2011; 6:e21246; http://dx.doi.org/10.1371/journal.pone.0021246; PMID: 21731683
  • Jefferis R. Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther 2007; 7:1401 - 13; http://dx.doi.org/10.1517/14712598.7.9.1401; PMID: 17727329
  • Holland M, Yagi H, Takahashi N, Kato K, Savage CO, Goodall DM, et al. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 2006; 1760:669 - 77; http://dx.doi.org/10.1016/j.bbagen.2005.11.021; PMID: 16413679
  • Lastra GC, Thompson SJ, Lemonidis AS, Elson CJ. Changes in the galactose content of IgG during humoral immune responses. Autoimmunity 1998; 28:25 - 30; http://dx.doi.org/10.3109/08916939808993842; PMID: 9754811
  • van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man YA, Deelder AM, et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther 2009; 11:R193; http://dx.doi.org/10.1186/ar2892; PMID: 20015375
  • Espy C, Morelle W, Kavian N, Grange P, Goulvestre C, Viallon V, et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum 2011; 63:2105 - 15; http://dx.doi.org/10.1002/art.30362; PMID: 21437874
  • Scherer HU, van der Woude D, Ioan-Facsinay A, el Bannoudi H, Trouw LA, Wang J, et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 2010; 62:1620 - 9; http://dx.doi.org/10.1002/art.27414; PMID: 20178128
  • Saldova R, Royle L, Radcliffe CM, Abd Hamid UM, Evans R, Arnold JN, et al. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 2007; 17:1344 - 56; http://dx.doi.org/10.1093/glycob/cwm100; PMID: 17884841
  • Wuhrer M, Porcelijn L, Kapur R, Koeleman CA, Deelder A, de Haas M, et al. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J Proteome Res 2009; 8:450 - 6; http://dx.doi.org/10.1021/pr800651j; PMID: 18942870
  • Lux A, Aschermann S, Biburger M, Nimmerjahn F. The pro and anti-inflammatory activities of immunoglobulin G. Ann Rheum Dis 2010; 69:Suppl 1 i92 - 6; http://dx.doi.org/10.1136/ard.2009.117101; PMID: 19995755
  • Katz U, Shoenfeld Y, Zandman-Goddard G. Update on intravenous immunoglobulins (IVIg) mechanisms of action and off- label use in autoimmune diseases. Curr Pharm Des 2011; 17:3166 - 75; http://dx.doi.org/10.2174/138161211798157540; PMID: 21864262
  • Katz U, Achiron A, Sherer Y, Shoenfeld Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6:257 - 9; http://dx.doi.org/10.1016/j.autrev.2006.08.011; PMID: 17317619
  • Jordan SC, Vo AA, Tyan D, Nast CC, Toyoda M. Current approaches to treatment of antibody-mediated rejection. Pediatr Transplant 2005; 9:408 - 15; http://dx.doi.org/10.1111/j.1399-3046.2005.00363.x; PMID: 15910400
  • Jordan SC, Vo AA, Toyoda M, Tyan D, Nast CC. Post-transplant therapy with high-dose intravenous gammaglobulin: Applications to treatment of antibody-mediated rejection. Pediatr Transplant 2005; 9:155 - 61; http://dx.doi.org/10.1111/j.1399-3046.2005.00256.x; PMID: 15787786
  • Jordan SC, Toyoda M, Vo AA. Intravenous immunoglobulin a natural regulator of immunity and inflammation. Transplantation 2009; 88:1 - 6; http://dx.doi.org/10.1097/TP.0b013e3181a9e89a; PMID: 19584672
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313:670 - 3; http://dx.doi.org/10.1126/science.1129594; PMID: 16888140
  • Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 2008; 320:373 - 6; http://dx.doi.org/10.1126/science.1154315; PMID: 18420934
  • Su SV, Hong P, Baik S, Negrete OA, Gurney KB, Lee B. DC-SIGN binds to HIV-1 glycoprotein 120 in a distinct but overlapping fashion compared with ICAM-2 and ICAM-3. J Biol Chem 2004; 279:19122 - 32; http://dx.doi.org/10.1074/jbc.M400184200; PMID: 14970226