3,227
Views
115
CrossRef citations to date
0
Altmetric
Review

Trial Watch

Toll-like receptor agonists for cancer therapy

, , , , , & show all
Article: e25238 | Received 31 May 2013, Accepted 31 May 2013, Published online: 10 Jun 2013

References

  • Anderson KV, Bokla L, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985; 42:791 - 8; http://dx.doi.org/10.1016/0092-8674(85)90275-2; PMID: 3931919
  • Anderson KV, Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 1985; 42:779 - 89; http://dx.doi.org/10.1016/0092-8674(85)90274-0; PMID: 3931918
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973 - 83; http://dx.doi.org/10.1016/S0092-8674(00)80172-5; PMID: 8808632
  • Nomura N, Miyajima N, Sazuka T, Tanaka A, Kawarabayasi Y, Sato S, et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res 1994; 1:27 - 35; http://dx.doi.org/10.1093/dnares/1.1.27; PMID: 7584026
  • Taguchi T, Mitcham JL, Dower SK, Sims JE, Testa JR. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 1996; 32:486 - 8; http://dx.doi.org/10.1006/geno.1996.0150; PMID: 8838819
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr.. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394 - 7; http://dx.doi.org/10.1038/41131; PMID: 9237759
  • Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 1998; 395:284 - 8; http://dx.doi.org/10.1038/26239; PMID: 9751057
  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085 - 8; http://dx.doi.org/10.1126/science.282.5396.2085; PMID: 9851930
  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995; 270:1804 - 6; http://dx.doi.org/10.1126/science.270.5243.1804; PMID: 8525370
  • Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003 - 11; http://dx.doi.org/10.1016/S1097-2765(00)80265-8; PMID: 10911994
  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, et al. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 2005; 102:9577 - 82; http://dx.doi.org/10.1073/pnas.0502272102; PMID: 15976025
  • Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000; 165:3541 - 4; PMID: 11034352
  • Schröder NW, Opitz B, Lamping N, Michelsen KS, Zähringer U, Göbel UB, et al. Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids. J Immunol 2000; 165:2683 - 93; PMID: 10946299
  • Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007; 316:1628 - 32; http://dx.doi.org/10.1126/science.1138963; PMID: 17569868
  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, et al. CD36 is a sensor of diacylglycerides. Nature 2005; 433:523 - 7; http://dx.doi.org/10.1038/nature03253; PMID: 15690042
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099 - 103; http://dx.doi.org/10.1038/35074106; PMID: 11323673
  • Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4:1247 - 53; http://dx.doi.org/10.1038/ni1011; PMID: 14625549
  • Lu J, Sun PD. The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Sci Signal 2012; 5:pe11; http://dx.doi.org/10.1126/scisignal.2002963
  • Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, et al. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335:859 - 64; http://dx.doi.org/10.1126/science.1215584; PMID: 22344444
  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740 - 5; http://dx.doi.org/10.1038/35047123; PMID: 11130078
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529 - 31; http://dx.doi.org/10.1126/science.1093616; PMID: 14976261
  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526 - 9; http://dx.doi.org/10.1126/science.1093620; PMID: 14976262
  • Hotz C, Bourquin C. Systemic cancer immunotherapy with Toll-like receptor 7 agonists: Timing is everything. Oncoimmunology 2012; 1:227 - 8; http://dx.doi.org/10.4161/onci.1.2.18169; PMID: 22720251
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732 - 8; http://dx.doi.org/10.1038/35099560; PMID: 11607032
  • Choe J, Kelker MS, Wilson IA. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 2005; 309:581 - 5; http://dx.doi.org/10.1126/science.1115253; PMID: 15961631
  • Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 2008; 320:379 - 81; http://dx.doi.org/10.1126/science.1155406; PMID: 18420935
  • Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics?. Nat Rev Drug Discov 2010; 9:293 - 307; http://dx.doi.org/10.1038/nrd3203; PMID: 20380038
  • Jinushi M. The role of innate immune signals in antitumor immunity. Oncoimmunology 2012; 1:189 - 94; http://dx.doi.org/10.4161/onci.1.2.18495; PMID: 22720240
  • Matzinger P. The danger model: a renewed sense of self. Science 2002; 296:301 - 5; http://dx.doi.org/10.1126/science.1071059; PMID: 11951032
  • Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10:826 - 37; http://dx.doi.org/10.1038/nri2873; PMID: 21088683
  • Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; In press http://dx.doi.org/10.1016/j.jhep.2013.03.033; PMID: 23567086
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780 - 8; http://dx.doi.org/10.1038/nrm3479; PMID: 23175281
  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277:15028 - 34; http://dx.doi.org/10.1074/jbc.M200497200; PMID: 11836257
  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000; 164:13 - 7; PMID: 10604986
  • Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol 2005; 174:5016 - 23; PMID: 15814732
  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 2002; 168:5989 - 92; PMID: 12055204
  • Loser K, Vogl T, Voskort M, Lueken A, Kupas V, Nacken W, et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 2010; 16:713 - 7; http://dx.doi.org/10.1038/nm.2150; PMID: 20473308
  • Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13:1042 - 9; http://dx.doi.org/10.1038/nm1638; PMID: 17767165
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51 - 72; http://dx.doi.org/10.1146/annurev-immunol-032712-100008; PMID: 23157435
  • Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30:61 - 9; http://dx.doi.org/10.1007/s10555-011-9273-4; PMID: 21249425
  • Heijmans J, Büller NV, Muncan V, van den Brink GR. Rage mediated DAMP signaling in intestinal tumorigenesis. Oncoimmunology 2012; 1:1165 - 6; http://dx.doi.org/10.4161/onci.20929; PMID: 23170266
  • Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer 2009; 9:57 - 63; http://dx.doi.org/10.1038/nrc2541; PMID: 19052556
  • Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 2012; 56:1971 - 82; http://dx.doi.org/10.1002/hep.25801; PMID: 22532075
  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464:104 - 7; http://dx.doi.org/10.1038/nature08780; PMID: 20203610
  • Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 2006; 7:49 - 56; http://dx.doi.org/10.1038/ni1280; PMID: 16341217
  • Krieg AM. CpG motifs: the active ingredient in bacterial extracts?. Nat Med 2003; 9:831 - 5; http://dx.doi.org/10.1038/nm0703-831; PMID: 12835699
  • Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 2012; 12:168 - 79; PMID: 22301850
  • Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9:535 - 42; http://dx.doi.org/10.1038/nri2587; PMID: 19556980
  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7:353 - 64; http://dx.doi.org/10.1038/nri2079; PMID: 17457343
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699 - 716; http://dx.doi.org/10.4161/onci.20696; PMID: 22934262
  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107 - 20; http://dx.doi.org/10.1038/cdd.2011.96; PMID: 21760595
  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860 - 75; http://dx.doi.org/10.1038/nrc3380; PMID: 23151605
  • Kono K, Mimura K. Immunogenic tumor cell death induced by chemoradiotherapy in a clinical setting. Oncoimmunology 2013; 2:e22197; http://dx.doi.org/10.4161/onci.22197; PMID: 23482346
  • Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220:47 - 59; http://dx.doi.org/10.1111/j.1600-065X.2007.00573.x; PMID: 17979839
  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13:1050 - 9; http://dx.doi.org/10.1038/nm1622; PMID: 17704786
  • Chen T, Guo J, Han C, Yang M, Cao X. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 2009; 182:1449 - 59; PMID: 19155492
  • Hoffman ES, Smith RE, Renaud RC Jr.. From the analyst’s couch: TLR-targeted therapeutics. Nat Rev Drug Discov 2005; 4:879 - 80; http://dx.doi.org/10.1038/nrd1880; PMID: 16299917
  • Standiford TJ, Keshamouni VG. Breaking the tolerance for tumor: Targeting negative regulators of TLR signaling. Oncoimmunology 2012; 1:340 - 5; http://dx.doi.org/10.4161/onci.18434; PMID: 22737610
  • Tahara T, Arisawa T, Wang F, Shibata T, Nakamura M, Sakata M, et al. Toll-like receptor 2 -196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci 2007; 98:1790 - 4; http://dx.doi.org/10.1111/j.1349-7006.2007.00590.x; PMID: 17711514
  • Mollaki V, Georgiadis T, Tassidou A, Ioannou M, Daniil Z, Koutsokera A, et al. Polymorphisms and haplotypes in TLR9 and MYD88 are associated with the development of Hodgkin’s lymphoma: a candidate-gene association study. J Hum Genet 2009; 54:655 - 9; http://dx.doi.org/10.1038/jhg.2009.90; PMID: 19745833
  • Gast A, Bermejo JL, Claus R, Brandt A, Weires M, Weber A, et al. Association of inherited variation in Toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS One 2011; 6:e24370; http://dx.doi.org/10.1371/journal.pone.0024370; PMID: 21931695
  • Guirado M, Gil H, Saenz-Lopez P, Reinboth J, Garrido F, Cozar JM, et al. Association between C13ORF31, NOD2, RIPK2 and TLR10 polymorphisms and urothelial bladder cancer. Hum Immunol 2012; 73:668 - 72; http://dx.doi.org/10.1016/j.humimm.2012.03.006; PMID: 22504414
  • Junjie X, Songyao J, Minmin S, Yanyan S, Baiyong S, Xiaxing D, et al. The association between Toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility. BMC Cancer 2012; 12:57; http://dx.doi.org/10.1186/1471-2407-12-57; PMID: 22309608
  • Carvalho A, Cunha C, Almeida AJ, Osório NS, Saraiva M, Teixeira-Coelho M, et al. The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes Immun 2012; 13:197 - 201; http://dx.doi.org/10.1038/gene.2011.59; PMID: 21866115
  • Kim MK, Park SW, Kim SK, Park HJ, Eun YG, Kwon KH, et al. Association of Toll-like receptor 2 polymorphisms with papillary thyroid cancer and clinicopathologic features in a Korean population. J Korean Med Sci 2012; 27:1333 - 8; http://dx.doi.org/10.3346/jkms.2012.27.11.1333; PMID: 23166414
  • Yang ZH, Dai Q, Gu YJ, Guo QX, Gong L. Cytokine and chemokine modification by Toll-like receptor polymorphisms is associated with nasopharyngeal carcinoma. Cancer Sci 2012; 103:653 - 8; http://dx.doi.org/10.1111/j.1349-7006.2012.02210.x; PMID: 22320262
  • Resler AJ, Malone KE, Johnson LG, Malkki M, Petersdorf EW, McKnight B, et al. Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: a case-control study. BMC Cancer 2013; 13:219; http://dx.doi.org/10.1186/1471-2407-13-219; PMID: 23634849
  • Roszak A, Lianeri M, Sowińska A, Jagodziński PP. Involvement of Toll-like Receptor 9 polymorphism in cervical cancer development. Mol Biol Rep 2012; 39:8425 - 30; http://dx.doi.org/10.1007/s11033-012-1695-8; PMID: 22714906
  • Agúndez JA, García-Martín E, Devesa MJ, Carballo M, Martínez C, Lee-Brunner A, et al. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology 2012; 82:35 - 40; http://dx.doi.org/10.1159/000335606; PMID: 22286521
  • Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM. The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: a case-control study and meta-analysis. PLoS One 2013; 8:e60327; http://dx.doi.org/10.1371/journal.pone.0060327; PMID: 23565226
  • Kim HJ, Bae JS, Chang IH, Kim KD, Lee J, Shin HD, et al. Sequence variants of Toll-like receptor 4 (TLR4) and the risk of prostate cancer in Korean men. World J Urol 2012; 30:225 - 32; http://dx.doi.org/10.1007/s00345-011-0690-3; PMID: 21553150
  • Zhang K, Zhou B, Wang Y, Rao L, Zhang L. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer 2013; 49:946 - 54; http://dx.doi.org/10.1016/j.ejca.2012.09.022; PMID: 23084080
  • Nischalke HD, Coenen M, Berger C, Aldenhoff K, Müller T, Berg T, et al. The toll-like receptor 2 (TLR2) -196 to -174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer 2012; 130:1470 - 5; http://dx.doi.org/10.1002/ijc.26143; PMID: 21500195
  • Wang X, Li J, Xie W, Zhang W, Chang Y. Toll-like receptor 2 gene polymorphisms and cancer susceptibility: A meta-analysis. Neoplasma 2013; 60:459 - 67; http://dx.doi.org/10.4149/neo_2013_060; PMID: 23581420
  • Theodoropoulos GE, Saridakis V, Karantanos T, Michalopoulos NV, Zagouri F, Kontogianni P, et al. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast 2012; 21:534 - 8; http://dx.doi.org/10.1016/j.breast.2012.04.001; PMID: 22560646
  • Zou TH, Wang ZH, Fang JY. Positive association between Toll-like receptor 4 gene +896A/G polymorphism and susceptibility to gastric carcinogenesis: a meta-analysis. Tumour Biol 2013; In press http://dx.doi.org/10.1007/s13277-013-0795-y; PMID: 23592020
  • Chew V, Tow C, Huang C, Bard-Chapeau E, Copeland NG, Jenkins NA, et al. Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J Natl Cancer Inst 2012; 104:1796 - 807; http://dx.doi.org/10.1093/jnci/djs436; PMID: 23197495
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215 - 33; http://dx.doi.org/10.1038/nrd3626; PMID: 22301798
  • Ahmed A, Redmond HP, Wang JH. Links between Toll-like receptor 4 and breast cancer. Oncoimmunology 2013; 2:e22945; http://dx.doi.org/10.4161/onci.22945; PMID: 23526132
  • Tittarelli A, González FE, Pereda C, Mora G, Muñoz L, Saffie C, et al. Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunol Immunother 2012; 61:2067 - 77; http://dx.doi.org/10.1007/s00262-012-1268-7; PMID: 22552381
  • Eiró N, González L, González LO, Andicoechea A, Fernández-Díaz M, Altadill A, et al. Study of the expression of toll-like receptors in different histological types of colorectal polyps and their relationship with colorectal cancer. J Clin Immunol 2012; 32:848 - 54; http://dx.doi.org/10.1007/s10875-012-9666-3; PMID: 22371291
  • Eiró N, Ovies C, Fernandez-Garcia B, Álvarez-Cuesta CC, González L, González LO, et al. Expression of TLR3, 4, 7 and 9 in cutaneous malignant melanoma: relationship with clinicopathological characteristics and prognosis. Arch Dermatol Res 2013; 305:59 - 67; http://dx.doi.org/10.1007/s00403-012-1300-y; PMID: 23179584
  • Femia AP, Swidsinski A, Dolara P, Salvadori M, Amedei A, Caderni G. Mucin depleted foci, colonic preneoplastic lesions lacking Muc2, show up-regulation of Tlr2 but not bacterial infiltration. PLoS One 2012; 7:e29918; http://dx.doi.org/10.1371/journal.pone.0029918; PMID: 22242189
  • Hagström J, Heikkilä A, Siironen P, Louhimo J, Heiskanen I, Mäenpää H, et al. TLR-4 expression and decrease in chronic inflammation: indicators of aggressive follicular thyroid carcinoma. J Clin Pathol 2012; 65:333 - 8; http://dx.doi.org/10.1136/jclinpath-2011-200402; PMID: 22267982
  • Huan P, Maosheng T, Zhiqian H, Long C, Xiaojun Y. TLR4 expression in normal gallbladder, chronic cholecystitis and gallbladder carcinoma. Hepatogastroenterology 2012; 59:42 - 6; PMID: 22251522
  • Leng L, Jiang T, Zhang Y. TLR9 expression is associated with prognosis in patients with glioblastoma multiforme. J Clin Neurosci 2012; 19:75 - 80; http://dx.doi.org/10.1016/j.jocn.2011.03.037; PMID: 22169598
  • Tuomela J, Sandholm J, Karihtala P, Ilvesaro J, Vuopala KS, Kauppila JH, et al. Low TLR9 expression defines an aggressive subtype of triple-negative breast cancer. Breast Cancer Res Treat 2012; 135:481 - 93; http://dx.doi.org/10.1007/s10549-012-2181-7; PMID: 22847512
  • Kauppila JH, Mattila AE, Karttunen TJ, Salo T. Toll-like receptor 5 (TLR5) expression is a novel predictive marker for recurrence and survival in squamous cell carcinoma of the tongue. Br J Cancer 2013; 108:638 - 43; http://dx.doi.org/10.1038/bjc.2012.589; PMID: 23287987
  • Ehsan N, Murad S, Ashiq T, Mansoor MU, Gul S, Khalid S, et al. Significant correlation of TLR4 expression with the clinicopathological features of invasive ductal carcinoma of the breast. Tumour Biol 2013; 34:1053 - 9; http://dx.doi.org/10.1007/s13277-013-0645-y; PMID: 23338716
  • Chuang HC, Huang CC, Chien CY, Chuang JH. Toll-like receptor 3-mediated tumor invasion in head and neck cancer. Oral Oncol 2012; 48:226 - 32; http://dx.doi.org/10.1016/j.oraloncology.2011.10.008; PMID: 22070917
  • Jinesh G G, Kamat AM. Redirecting neutrophils against bladder cancer cells by BCG and Smac mimetic combination. Oncoimmunology 2012; 1:1161 - 2; http://dx.doi.org/10.4161/onci.20928; PMID: 23170264
  • Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, et al, HPV PATRICIA Study Group. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 2009; 374:301 - 14; http://dx.doi.org/10.1016/S0140-6736(09)61248-4; PMID: 19586656
  • Lehtinen M, Paavonen J. Sound efficacy of prophylactic HPV vaccination: Basics and implications. Oncoimmunology 2012; 1:995 - 6; http://dx.doi.org/10.4161/onci.20011; PMID: 23162784
  • Heldwein KA, Liang MD, Andresen TK, Thomas KE, Marty AM, Cuesta N, et al. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J Leukoc Biol 2003; 74:277 - 86; http://dx.doi.org/10.1189/jlb.0103026; PMID: 12885945
  • Uehori J, Matsumoto M, Tsuji S, Akazawa T, Takeuchi O, Akira S, et al. Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guérin peptidoglycan. Infect Immun 2003; 71:4238 - 49; http://dx.doi.org/10.1128/IAI.71.8.4238-4249.2003; PMID: 12874299
  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196 - 200; http://dx.doi.org/10.1038/ni758; PMID: 11812998
  • Holcmann M, Drobits B, Sibilia M. How imiquimod licenses plasmacytoid dendritic cells to kill tumors. Oncoimmunology 2012; 1:1661 - 3; http://dx.doi.org/10.4161/onci.22033; PMID: 23264929
  • Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res 1946; 6:205 - 16; PMID: 21018724
  • Maletzki C, Klier U, Obst W, Kreikemeyer B, Linnebacher M. Reevaluating the concept of treating experimental tumors with a mixed bacterial vaccine: Coley’s Toxin. Clin Dev Immunol 2012; 2012:230625; http://dx.doi.org/10.1155/2012/230625; PMID: 23193416
  • Thotathil Z, Jameson MB. Early experience with novel immunomodulators for cancer treatment. Expert Opin Investig Drugs 2007; 16:1391 - 403; http://dx.doi.org/10.1517/13543784.16.9.1391; PMID: 17714025
  • Oblak A, Jerala R. Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011; 2011:609579; http://dx.doi.org/10.1155/2011/609579; PMID: 22110526
  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327:1345 - 50; http://dx.doi.org/10.1126/science.1177319; PMID: 20223979
  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894 - 907; http://dx.doi.org/10.4161/onci.20931; PMID: 23162757
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. OncoImmunology 2013; 2:e24238; http://dx.doi.org/10.4161/onci.24238
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306 - 15; http://dx.doi.org/10.4161/onci.19549; PMID: 22737606
  • Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, et al. Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology 2013; 2:e23082; http://dx.doi.org/10.4161/onci.23082; PMID: 23525565
  • Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179 - 88; http://dx.doi.org/10.4161/onci.1.2.19026; PMID: 22720239
  • Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; http://dx.doi.org/10.4161/onci.23510; PMID: 23687621
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111 - 34; http://dx.doi.org/10.4161/onci.21494; PMID: 23170259
  • Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, et al. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2013; 2:e23803; http://dx.doi.org/10.4161/onci.23803; PMID: 23734328
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, et al. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2013; 2; In press http://dx.doi.org/10.146/onci.24850; PMID: 22754768
  • Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2012; 1:493 - 506; http://dx.doi.org/10.4161/onci.20459; PMID: 22754768
  • Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2012; 1:28 - 37; http://dx.doi.org/10.4161/onci.1.1.17938; PMID: 22720209
  • Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, et al. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; http://dx.doi.org/10.4161/onci.22789; PMID: 23482847
  • Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, et al. Trial Watch: Oncolytic viruses for cancer therapy. OncoImmunology 2013; 2:e24612; http://dx.doi.org/10.4161/onci.24612
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557 - 76; http://dx.doi.org/10.4161/onci.22428; PMID: 23264902
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323 - 43; http://dx.doi.org/10.4161/onci.22009; PMID: 23243596
  • Gontero P, Oderda M, Mehnert A, Gurioli A, Marson F, Lucca I, et al. The impact of intravesical gemcitabine and 1/3 dose Bacillus Calmette-Guerin instillation therapy on the quality of life in patients with nonmuscle invasive bladder cancer: results of a prospective, randomized, phase II trial. J Urol 2013; In press http://dx.doi.org/10.1016/j.juro.2013.03.097; PMID: 23545101
  • Gülpinar O, Halilioglu AH, Gökçe MI, Göğüş C, Baltaci S. The value of perioperative mitomycin C instillation in improving subsequent bacillus calmette-guerin instillation efficacy in intermediate and high-risk patients with non-muscle invasive bladder cancer: a prospective randomized study. Int Braz J Urol 2012; 38:474 - 9; PMID: 22951160
  • Kanagawa Urological Research Group (KURG). A 2-week maintenance regimen of intravesical instillation of bacillus Calmette-Guerin is safe, adherent and effective in patients with non-muscle-invasive bladder cancer: a prospective, multicenter phase II clinical trial. Jpn J Clin Oncol 2012; 42:813 - 9; http://dx.doi.org/10.1093/jjco/hys097; PMID: 22761255
  • Oddens J, Brausi M, Sylvester R, Bono A, van de Beek C, van Andel G, et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guérin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. Eur Urol 2013; 63:462 - 72; http://dx.doi.org/10.1016/j.eururo.2012.10.039; PMID: 23141049
  • Kamat AM, Dickstein RJ, Messetti F, Anderson R, Pretzsch SM, Gonzalez GN, et al. Use of fluorescence in situ hybridization to predict response to bacillus Calmette-Guérin therapy for bladder cancer: results of a prospective trial. J Urol 2012; 187:862 - 7; http://dx.doi.org/10.1016/j.juro.2011.10.144; PMID: 22245325
  • Pedersen C, Breindahl M, Aggarwal N, Berglund J, Oroszlán G, Silfverdal SA, et al. Randomized trial: immunogenicity and safety of coadministered human papillomavirus-16/18 AS04-adjuvanted vaccine and combined hepatitis A and B vaccine in girls. J Adolesc Health 2012; 50:38 - 46; http://dx.doi.org/10.1016/j.jadohealth.2011.10.009; PMID: 22188832
  • Kensil CR, Kammer R. QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 1998; 7:1475 - 82; http://dx.doi.org/10.1517/13543784.7.9.1475; PMID: 15992044
  • Hamilton E, Blackwell K, Hobeika AC, Clay TM, Broadwater G, Ren XR, et al. Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition [corrected]. [corrected] J Transl Med 2012; 10:28; http://dx.doi.org/10.1186/1479-5876-10-28; PMID: 22325452
  • Moy B, Kirkpatrick P, Kar S, Goss P. Lapatinib. Nat Rev Drug Discov 2007; 6:431 - 2; http://dx.doi.org/10.1038/nrd2332; PMID: 17633789
  • Osiecka B, Jurczyszyn K, Ziółkowski P. The application of Levulan-based photodynamic therapy with imiquimod in the treatment of recurrent basal cell carcinoma. Med Sci Monit 2012; 18:PI5 - 9; http://dx.doi.org/10.12659/MSM.882449; PMID: 22293891
  • Serra-Guillén C, Nagore E, Hueso L, Traves V, Messeguer F, Sanmartín O, et al. A randomized pilot comparative study of topical methyl aminolevulinate photodynamic therapy versus imiquimod 5% versus sequential application of both therapies in immunocompetent patients with actinic keratosis: clinical and histologic outcomes. J Am Acad Dermatol 2012; 66:e131 - 7; http://dx.doi.org/10.1016/j.jaad.2011.11.933; PMID: 22226430
  • van der Geer S, Martens J, van Roij J, Brand E, Ostertag JU, Verhaegh ME, et al. Imiquimod 5% cream as pretreatment of Mohs micrographic surgery for nodular basal cell carcinoma in the face: a prospective randomized controlled study. Br J Dermatol 2012; 167:110 - 5; http://dx.doi.org/10.1111/j.1365-2133.2012.10924.x; PMID: 22385074
  • Narayan R, Nguyen H, Bentow JJ, Moy L, Lee DK, Greger S, et al. Immunomodulation by imiquimod in patients with high-risk primary melanoma. J Invest Dermatol 2012; 132:163 - 9; http://dx.doi.org/10.1038/jid.2011.247; PMID: 21850019
  • Goldinger SM, Dummer R, Baumgaertner P, Mihic-Probst D, Schwarz K, Hammann-Haenni A, et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8⁺ T-cell responses in melanoma patients. Eur J Immunol 2012; 42:3049 - 61; http://dx.doi.org/10.1002/eji.201142361; PMID: 22806397
  • Adams S, Kozhaya L, Martiniuk F, Meng TC, Chiriboga L, Liebes L, et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res 2012; 18:6748 - 57; http://dx.doi.org/10.1158/1078-0432.CCR-12-1149; PMID: 22767669
  • Florin V, Desmedt E, Vercambre-Darras S, Mortier L. Topical treatment of cutaneous metastases of malignant melanoma using combined imiquimod and 5-fluorouracil. Invest New Drugs 2012; 30:1641 - 5; http://dx.doi.org/10.1007/s10637-011-9717-2; PMID: 21748297
  • Fenoglio D, Traverso P, Parodi A, Tomasello L, Negrini S, Kalli F, et al. A multi-peptide, dual-adjuvant telomerase vaccine (GX301) is highly immunogenic in patients with prostate and renal cancer. Cancer Immunol Immunother 2013; 62:1041 - 52; http://dx.doi.org/10.1007/s00262-013-1415-9; PMID: 23591981
  • Grimm C, Polterauer S, Natter C, Rahhal J, Hefler L, Tempfer CB, et al. Treatment of cervical intraepithelial neoplasia with topical imiquimod: a randomized controlled trial. Obstet Gynecol 2012; 120:152 - 9; http://dx.doi.org/10.1097/AOG.0b013e31825bc6e8; PMID: 22914404
  • Richel O, de Vries HJ, van Noesel CJ, Dijkgraaf MG, Prins JM. Comparison of imiquimod, topical fluorouracil, and electrocautery for the treatment of anal intraepithelial neoplasia in HIV-positive men who have sex with men: an open-label, randomised controlled trial. Lancet Oncol 2013; 14:346 - 53; http://dx.doi.org/10.1016/S1470-2045(13)70067-6; PMID: 23499546
  • Falke J, Lammers RJ, Arentsen HC, Ravic M, Pozzi R, Cornel EB, et al. Results of a Phase 1 Dose Escalation Study of Intravesical TMX-101 in Patients with Nonmuscle Invasive Bladder Cancer. J Urol 2013; 189:2077 - 82; http://dx.doi.org/10.1016/j.juro.2012.11.150; PMID: 23206424
  • Okamoto H, Shoin S, Koshimura S, Shimizu R. Studies on the anticancer and streptolysin S-forming abilities of hemolytic streptococci. Jpn J Microbiol 1967; 11:323 - 6; PMID: 4875331
  • Endo H, Saito T, Kenjo A, Hoshino M, Terashima M, Sato T, et al. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK-432 for resectable pancreatic cancer patients. J Hepatobiliary Pancreat Sci 2012; 19:465 - 75; http://dx.doi.org/10.1007/s00534-011-0457-7; PMID: 21983893
  • Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869 - 83; http://dx.doi.org/10.1038/onc.2011.384; PMID: 21892204
  • Chen WJ, Yuan SF, Yan QY, Xiong JP, Wang SM, Zheng WE, et al. Intrapleural chemo- and hyperthermotherapies for malignant pleural effusion: a randomized prospective study. Cancer Invest 2012; 30:126 - 30; http://dx.doi.org/10.3109/07357907.2011.633292; PMID: 22148972
  • Kakimi K, Isobe M, Uenaka A, Wada H, Sato E, Doki Y, et al. A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer 2011; 129:2836 - 46; http://dx.doi.org/10.1002/ijc.25955; PMID: 21448901
  • Eikawa S, Kakimi K, Isobe M, Kuzushima K, Luescher I, Ohue Y, et al. Induction of CD8 T-cell responses restricted to multiple HLA class I alleles in a cancer patient by immunization with a 20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide. Int J Cancer 2013; 132:345 - 54; http://dx.doi.org/10.1002/ijc.27682; PMID: 22729530
  • Brandenburg K, Lindner B, Schromm A, Koch MH, Bauer J, Merkli A, et al. Physicochemical characteristics of triacyl lipid A partial structure OM-174 in relation to biological activity. Eur J Biochem 2000; 267:3370 - 7; http://dx.doi.org/10.1046/j.1432-1327.2000.01370.x; PMID: 10824125
  • Isambert N, Fumoleau P, Paul C, Ferrand C, Zanetta S, Bauer J, et al. Phase I study of OM-174, a lipid A analogue, with assessment of immunological response, in patients with refractory solid tumors. BMC Cancer 2013; 13:172; http://dx.doi.org/10.1186/1471-2407-13-172; PMID: 23547558
  • Yuksel ZS, Buber E, Kocagoz T, Alp A, Saribas Z, Acan NL. Mycobacterial strains that stimulate the immune system most efficiently as candidates for the treatment of bladder cancer. J Mol Microbiol Biotechnol 2011; 20:24 - 8; http://dx.doi.org/10.1159/000324331; PMID: 21335976
  • Stebbing J, Dalgleish A, Gifford-Moore A, Martin A, Gleeson C, Wilson G, et al. An intra-patient placebo-controlled phase I trial to evaluate the safety and tolerability of intradermal IMM-101 in melanoma. Ann Oncol 2012; 23:1314 - 9; http://dx.doi.org/10.1093/annonc/mdr363; PMID: 21930686
  • Levy HB, Baer G, Baron S, Buckler CE, Gibbs CJ, Iadarola MJ, et al. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis 1975; 132:434 - 9; http://dx.doi.org/10.1093/infdis/132.4.434; PMID: 810520
  • Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res 2012; 18:6497 - 508; http://dx.doi.org/10.1158/1078-0432.CCR-12-2189; PMID: 23032745
  • Weigel BJ, Cooley S, DeFor T, Weisdorf DJ, Panoskaltsis-Mortari A, Chen W, et al. Prolonged subcutaneous administration of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced hematologic malignancies. Am J Hematol 2012; 87:953 - 6; http://dx.doi.org/10.1002/ajh.23280; PMID: 22718533
  • Agrawal S, Kandimalla ER. Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem Soc Trans 2007; 35:1461 - 7; http://dx.doi.org/10.1042/BST0351461; PMID: 18031246
  • Kandimalla ER, Bhagat L, Li Y, Yu D, Wang D, Cong YP, et al. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2′-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc Natl Acad Sci U S A 2005; 102:6925 - 30; http://dx.doi.org/10.1073/pnas.0501729102; PMID: 15860583
  • Graham J, Muhsin M, Kirkpatrick P. Cetuximab. Nat Rev Drug Discov 2004; 3:549 - 50; http://dx.doi.org/10.1038/nrd1445; PMID: 15272498
  • Machiels JP, Kaminsky MC, Keller U, Brümmendorf TH, Goddemeier T, Forssmann U, et al. Phase Ib trial of the Toll-like receptor 9 agonist IMO-2055 in combination with 5-fluorouracil, cisplatin, and cetuximab as first-line palliative treatment in patients with recurrent/metastatic squamous cell carcinoma of the head and neck. Invest New Drugs 2013; http://dx.doi.org/10.1007/s10637-013-9933-z; PMID: 23397499
  • Murad YM, Clay TM, Lyerly HK, Morse MA. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy. Expert Opin Biol Ther 2007; 7:1257 - 66; http://dx.doi.org/10.1517/14712598.7.8.1257; PMID: 17696823
  • Ribas A. Clinical development of the anti-CTLA-4 antibody tremelimumab. Semin Oncol 2010; 37:450 - 4; http://dx.doi.org/10.1053/j.seminoncol.2010.09.010; PMID: 21074059
  • Waitz R, Fassò M, Allison JP. CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection. Oncoimmunology 2012; 1:544 - 6; http://dx.doi.org/10.4161/onci.19442; PMID: 22754781
  • Millward M, Underhill C, Lobb S, McBurnie J, Meech SJ, Gomez-Navarro J, et al. Phase I study of tremelimumab (CP-675 206) plus PF-3512676 (CPG 7909) in patients with melanoma or advanced solid tumours. Br J Cancer 2013; 108:1998 - 2004; http://dx.doi.org/10.1038/bjc.2013.227; PMID: 23652314
  • Kim YH, Gratzinger D, Harrison C, Brody JD, Czerwinski DK, Ai WZ, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 2012; 119:355 - 63; http://dx.doi.org/10.1182/blood-2011-05-355222; PMID: 22045986
  • Dovedi SJ, Melis MH, Wilkinson RW, Adlard AL, Stratford IJ, Honeychurch J, et al. Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood 2013; 121:251 - 9; http://dx.doi.org/10.1182/blood-2012-05-432393; PMID: 23086756
  • Betting DJ, Hurvitz SA, Steward KK, Yamada RE, Kafi K, van Rooijen N, et al. Combination of cyclophosphamide, rituximab, and intratumoral CpG oligodeoxynucleotide successfully eradicates established B cell lymphoma. J Immunother 2012; 35:534 - 43; http://dx.doi.org/10.1097/CJI.0b013e318261e679; PMID: 22892450
  • Ding X, Bian G, Leigh ND, Qiu J, McCarthy PL, Liu H, et al. A TLR5 agonist enhances CD8(+) T cell-mediated graft-versus-tumor effect without exacerbating graft-versus-host disease. J Immunol 2012; 189:4719 - 27; http://dx.doi.org/10.4049/jimmunol.1201206; PMID: 23045613
  • Li X, Liu D, Liu X, Jiang W, Zhou W, Yan W, et al. CpG ODN107 potentiates radiosensitivity of human glioma cells via TLR9-mediated NF-κB activation and NO production. Tumour Biol 2012; 33:1607 - 18; http://dx.doi.org/10.1007/s13277-012-0416-1; PMID: 22739939
  • Dewan MZ, Vanpouille-Box C, Kawashima N, DiNapoli S, Babb JS, Formenti SC, et al. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 2012; 18:6668 - 78; http://dx.doi.org/10.1158/1078-0432.CCR-12-0984; PMID: 23048078
  • Naseemuddin M, Iqbal A, Nasti TH, Ghandhi JL, Kapadia AD, Yusuf N. Cell mediated immune responses through TLR4 prevents DMBA-induced mammary carcinogenesis in mice. Int J Cancer 2012; 130:765 - 74; http://dx.doi.org/10.1002/ijc.26100; PMID: 21455984
  • Garaude J, Kent A, van Rooijen N, Blander JM. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med 2012; 4:20ra16; http://dx.doi.org/10.1126/scitranslmed.3002868; PMID: 22323829
  • Peng J, Tsang JY, Li D, Niu N, Ho DH, Lau KF, et al. Inhibition of TGF-β signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett 2013; 331:239 - 49; http://dx.doi.org/10.1016/j.canlet.2013.01.001; PMID: 23318200
  • Lu H, Dietsch GN, Matthews MA, Yang Y, Ghanekar S, Inokuma M, et al. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 2012; 18:499 - 509; http://dx.doi.org/10.1158/1078-0432.CCR-11-1625; PMID: 22128302
  • Stephenson RM, Lim CM, Matthews M, Dietsch G, Hershberg R, Ferris RL. TLR8 stimulation enhances cetuximab-mediated natural killer cell lysis of head and neck cancer cells and dendritic cell cross-priming of EGFR-specific CD8(+) T cells. Cancer Immunol Immunother 2013; In press http://dx.doi.org/10.1007/s00262-013-1437-3; PMID: 23685782
  • Núñez NG, Andreani V, Crespo MI, Nocera DA, Breser ML, Morón G, et al. IFNβ produced by TLR4-activated tumor cells is involved in improving the antitumoral immune response. Cancer Res 2012; 72:592 - 603; http://dx.doi.org/10.1158/0008-5472.CAN-11-0534; PMID: 22139376
  • Van De Voort TJ, Felder MA, Yang RK, Sondel PM, Rakhmilevich AL. Intratumoral delivery of low doses of anti-CD40 mAb combined with monophosphoryl lipid a induces local and systemic antitumor effects in immunocompetent and T cell-deficient mice. J Immunother 2013; 36:29 - 40; http://dx.doi.org/10.1097/CJI.0b013e3182780f61; PMID: 23211623
  • Xiao H, Peng Y, Hong Y, Huang L, Guo ZS, Bartlett DL, et al. Local Administration of TLR Ligands Rescues the Function of Tumor-Infiltrating CD8 T Cells and Enhances the Antitumor Effect of Lentivector Immunization. J Immunol 2013; 190:5866 - 73; http://dx.doi.org/10.4049/jimmunol.1203470; PMID: 23610140
  • Roy A, Singh MS, Upadhyay P, Bhaskar S. Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int J Pharm 2013; 445:171 - 80; http://dx.doi.org/10.1016/j.ijpharm.2013.01.045; PMID: 23376226
  • Marshall NA, Galvin KC, Corcoran AM, Boon L, Higgs R, Mills KH. Immunotherapy with PI3K inhibitor and Toll-like receptor agonist induces IFN-γ+IL-17+ polyfunctional T cells that mediate rejection of murine tumors. Cancer Res 2012; 72:581 - 91; http://dx.doi.org/10.1158/0008-5472.CAN-11-0307; PMID: 22158905
  • Cerullo V, Diaconu I, Romano V, Hirvinen M, Ugolini M, Escutenaire S, et al. An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol Ther 2012; 20:2076 - 86; http://dx.doi.org/10.1038/mt.2012.137; PMID: 22828500
  • Zhang H, Liu L, Yu D, Kandimalla ER, Sun HB, Agrawal S, et al. An in situ autologous tumor vaccination with combined radiation therapy and TLR9 agonist therapy. PLoS One 2012; 7:e38111; http://dx.doi.org/10.1371/journal.pone.0038111; PMID: 22666458
  • Koga-Yamakawa E, Dovedi SJ, Murata M, Matsui H, Leishman AJ, Bell J, et al. Intratracheal and oral administration of SM-276001: a selective TLR7 agonist, leads to antitumor efficacy in primary and metastatic models of cancer. Int J Cancer 2013; 132:580 - 90; http://dx.doi.org/10.1002/ijc.27691; PMID: 22733292
  • Hong X, Dong T, Hu J, Yi T, Li W, Zhang Z, et al. Synergistical toll-like receptors activated dendritic cells induce antitumor effects against carcinoembryonic antigen-expressing colon cancer. Int J Colorectal Dis 2013; 28:25 - 33; http://dx.doi.org/10.1007/s00384-012-1530-7; PMID: 22777000
  • Shirota Y, Shirota H, Klinman DM. Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 2012; 188:1592 - 9; http://dx.doi.org/10.4049/jimmunol.1101304; PMID: 22231700
  • Kauffman EC, Liu H, Schwartz MJ, Scherr DS. Toll-like receptor 7 agonist therapy with imidazoquinoline enhances cancer cell death and increases lymphocytic infiltration and proinflammatory cytokine production in established tumors of a renal cell carcinoma mouse model. J Oncol 2012; 2012:103298; http://dx.doi.org/10.1155/2012/103298; PMID: 22481916
  • Sommariva M, de Cesare M, Meini A, Cataldo A, Zaffaroni N, Tagliabue E, et al. High efficacy of CpG-ODN, Cetuximab and Cisplatin combination for very advanced ovarian xenograft tumors. J Transl Med 2013; 11:25; http://dx.doi.org/10.1186/1479-5876-11-25; PMID: 23360557
  • Sommariva M, De Cecco L, Tagliabue E, Balsari A. Modulation of DNA repair genes induced by TLR9 agonists: A strategy to eliminate “altered” cells?. Oncoimmunology 2012; 1:258 - 9; http://dx.doi.org/10.4161/onci.1.2.18343; PMID: 22720263
  • Estornes Y, Toscano F, Virard F, Jacquemin G, Pierrot A, Vanbervliet B, et al. dsRNA induces apoptosis through an atypical death complex associating TLR3 to caspase-8. Cell Death Differ 2012; 19:1482 - 94; http://dx.doi.org/10.1038/cdd.2012.22; PMID: 22421964
  • Weiss R, Sachet M, Zinngrebe J, Aschacher T, Krainer M, Hegedus B, et al. IL-24 sensitizes tumor cells to TLR3-mediated apoptosis. Cell Death Differ 2013; 20:823 - 33; http://dx.doi.org/10.1038/cdd.2013.15; PMID: 23449395
  • Chen L, Xu YY, Zhou JM, Wu YY, e Q, Zhu YY. TLR3 dsRNA agonist inhibits growth and invasion of HepG2.2.15 HCC cells. Oncol Rep 2012; 28:200 - 6; PMID: 22552584
  • Guo Z, Chen L, Zhu Y, Zhang Y, He S, Qin J, et al. Double-stranded RNA-induced TLR3 activation inhibits angiogenesis and triggers apoptosis of human hepatocellular carcinoma cells. Oncol Rep 2012; 27:396 - 402; PMID: 22075935
  • Hsiao CC, Kao YH, Huang SC, Chuang JH. Toll-like receptor-4 agonist inhibits motility and invasion of hepatoblastoma HepG2 cells in vitro. Pediatr Blood Cancer 2013; 60:248 - 53; http://dx.doi.org/10.1002/pbc.24211; PMID: 22648929
  • Tano T, Okamoto M, Kan S, Nakashiro K, Shimodaira S, Yamashita N, et al. Growth inhibition and apoptosis by an active component of OK-432, a streptococcal agent, via Toll-like receptor 4 in human head and neck cancer cell lines. Oral Oncol 2012; 48:678 - 85; http://dx.doi.org/10.1016/j.oraloncology.2012.02.005; PMID: 22387210
  • Ahn MY, Kwon SM, Cheong HH, Park JH, Lee J, Min SK, et al. Toll-like receptor 7 agonist, imiquimod, inhibits oral squamous carcinoma cells through apoptosis and necrosis. J Oral Pathol Med 2012; 41:540 - 6; PMID: 22577802
  • Min R, Siyi L, Wenjun Y, Shengwen L, Ow A, Lizheng W, et al. Toll-like receptor-9 agonists increase cyclin D1 expression partly through activation of activator protein-1 in human oral squamous cell carcinoma cells. Cancer Sci 2012; 103:1938 - 45; http://dx.doi.org/10.1111/j.1349-7006.2012.02394.x; PMID: 22853846
  • Hattar K, Savai R, Subtil FS, Wilhelm J, Schmall A, Lang DS, et al. Endotoxin induces proliferation of NSCLC in vitro and in vivo: role of COX-2 and EGFR activation. Cancer Immunol Immunother 2013; 62:309 - 20; http://dx.doi.org/10.1007/s00262-012-1341-2; PMID: 22923191
  • Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21:504 - 16; http://dx.doi.org/10.1016/j.ccr.2012.02.007; PMID: 22516259
  • Egunsola AT, Zawislak CL, Akuffo AA, Chalmers SA, Ewer JC, Vail CM, et al. Growth, metastasis, and expression of CCL2 and CCL5 by murine mammary carcinomas are dependent upon Myd88. Cell Immunol 2012; 272:220 - 9; http://dx.doi.org/10.1016/j.cellimm.2011.10.008; PMID: 22088941
  • Wang C, Fei G, Liu Z, Li Q, Xu Z, Ren T. HMGB1 was a pivotal synergistic effecor for CpG oligonucleotide to enhance the progression of human lung cancer cells. Cancer Biol Ther 2012; 13:727 - 36; http://dx.doi.org/10.4161/cbt.20555; PMID: 22617774
  • Wu FH, Yuan Y, Li D, Liao SJ, Yan B, Wei JJ, et al. Extracellular HSPA1A promotes the growth of hepatocarcinoma by augmenting tumor cell proliferation and apoptosis-resistance. Cancer Lett 2012; 317:157 - 64; http://dx.doi.org/10.1016/j.canlet.2011.11.020; PMID: 22115967
  • Liang B, Chen R, Wang T, Cao L, Liu Y, Yin F, et al. Myeloid differentiation factor 88 promotes growth and metastasis of human hepatocellular carcinoma. Clin Cancer Res 2013; 19:2905 - 16; http://dx.doi.org/10.1158/1078-0432.CCR-12-1245; PMID: 23549880
  • Luo Y, Chihara Y, Fujimoto K, Sasahira T, Kuwada M, Fujiwara R, et al. High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer 2013; 49:741 - 51; http://dx.doi.org/10.1016/j.ejca.2012.09.016; PMID: 23040637
  • Mardente S, Mari E, Consorti F, Di Gioia C, Negri R, Etna M, et al. HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol Rep 2012; 28:2285 - 9; PMID: 23023232
  • Tye H, Kennedy CL, Najdovska M, McLeod L, McCormack W, Hughes N, et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 2012; 22:466 - 78; http://dx.doi.org/10.1016/j.ccr.2012.08.010; PMID: 23079657
  • Rakhesh M, Cate M, Vijay R, Shrikant A, Shanjana AA. A TLR4-interacting peptide inhibits lipopolysaccharide-stimulated inflammatory responses, migration and invasion of colon cancer SW480 cells. Oncoimmunology 2012; 1:1495 - 506; http://dx.doi.org/10.4161/onci.22089; PMID: 23264896
  • Huang Y, Cai B, Xu M, Qiu Z, Tao Y, Zhang Y, et al. Gene silencing of Toll-like receptor 2 inhibits proliferation of human liver cancer cells and secretion of inflammatory cytokines. PLoS One 2012; 7:e38890; http://dx.doi.org/10.1371/journal.pone.0038890; PMID: 22815694
  • Liao SJ, Zhou YH, Yuan Y, Li D, Wu FH, Wang Q, et al. Triggering of Toll-like receptor 4 on metastatic breast cancer cells promotes αvβ3-mediated adhesion and invasive migration. Breast Cancer Res Treat 2012; 133:853 - 63; http://dx.doi.org/10.1007/s10549-011-1844-0; PMID: 22042369
  • Jing YY, Han ZP, Sun K, Zhang SS, Hou J, Liu Y, et al. Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Med 2012; 10:98; http://dx.doi.org/10.1186/1741-7015-10-98; PMID: 22938142
  • Källberg E, Vogl T, Liberg D, Olsson A, Björk P, Wikström P, et al. S100A9 interaction with TLR4 promotes tumor growth. PLoS One 2012; 7:e34207; http://dx.doi.org/10.1371/journal.pone.0034207; PMID: 22470535
  • Leanderson T, Ivars F. S100A9 and tumor growth. Oncoimmunology 2012; 1:1404 - 5; http://dx.doi.org/10.4161/onci.21027; PMID: 23243608
  • Kauppila JH, Karttunen TJ, Saarnio J, Nyberg P, Salo T, Graves DE, et al. Short DNA sequences and bacterial DNA induce esophageal, gastric, and colorectal cancer cell invasion. APMIS 2012; 121:511 - 22; PMID: 23082743
  • O’Leary DP, Bhatt L, Woolley JF, Gough DR, Wang JH, Cotter TG, et al. TLR-4 signalling accelerates colon cancer cell adhesion via NF-κB mediated transcriptional up-regulation of Nox-1. PLoS One 2012; 7:e44176; http://dx.doi.org/10.1371/journal.pone.0044176; PMID: 23071493
  • Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 2012; 55:1863 - 75; http://dx.doi.org/10.1002/hep.25572; PMID: 22234969
  • Zhang Y, Wang Y, Yuan J, Qin W, Liu F, Wang F, et al. Toll-like receptor 4 ligation confers chemoresistance to docetaxel on PC-3 human prostate cancer cells. Cell Biol Toxicol 2012; 28:269 - 77; http://dx.doi.org/10.1007/s10565-012-9221-2; PMID: 22648782
  • Sun Z, Luo Q, Ye D, Chen W, Chen F. Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Mol Cancer 2012; 11:33; http://dx.doi.org/10.1186/1476-4598-11-33; PMID: 22583829
  • Tang X, Zhu Y. TLR4 signaling promotes immune escape of human colon cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Oncol Res 2012; 20:15 - 24; http://dx.doi.org/10.3727/096504012X13425470196092; PMID: 23035361
  • Davoodi H, Hashemi SR, Seow HF. Increased NFk-B activity in HCT116 colorectal cancer cell line harboring TLR4 Asp299Gly variant. Iran J Allergy Asthma Immunol 2012; 11:121 - 32; PMID: 22761186
  • Cheng YX, Qi XY, Huang JL, Hu M, Zhou LM, Li BS, et al. Toll-like receptor 4 signaling promotes the immunosuppressive cytokine production of human cervical cancer. Eur J Gynaecol Oncol 2012; 33:291 - 4; PMID: 22873102
  • Riddell JR, Maier P, Sass SN, Moser MT, Foster BA, Gollnick SO. Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1α. PLoS One 2012; 7:e50394; http://dx.doi.org/10.1371/journal.pone.0050394; PMID: 23185615
  • Hansen J, Lindenstrøm T, Lindberg-Levin J, Aagaard C, Andersen P, Agger EM. CAF05: cationic liposomes that incorporate synthetic cord factor and poly(I:C) induce CTL immunity and reduce tumor burden in mice. Cancer Immunol Immunother 2012; 61:893 - 903; http://dx.doi.org/10.1007/s00262-011-1156-6; PMID: 22095092
  • Huang Z, Yang Y, Jiang Y, Shao J, Sun X, Chen J, et al. Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials 2013; 34:746 - 55; http://dx.doi.org/10.1016/j.biomaterials.2012.09.062; PMID: 23107297
  • Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N, Li P, et al. Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. Vaccine 2012; 30:4790 - 9; http://dx.doi.org/10.1016/j.vaccine.2012.05.027; PMID: 22634298
  • Brennan TV, Lin L, Huang X, Cardona DM, Li Z, Dredge K, et al. Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation. Blood 2012; 120:2899 - 908; http://dx.doi.org/10.1182/blood-2011-07-368720; PMID: 22760779
  • He S, Chu J, Wu LC, Mao H, Peng Y, Alvarez-Breckenridge CA, et al. MicroRNAs activate natural killer cells through toll-like receptor signaling. Blood 2013; In press http://dx.doi.org/10.1182/blood-2012-07-441360; PMID: 23580661
  • Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 2012; 109:E2110 - 6; http://dx.doi.org/10.1073/pnas.1209414109; PMID: 22753494
  • Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Prada N, et al. Defective immunogenic cell death of HMGB1-deficient cancers: compensatory therapy with synthetic TLR4 agonists. Cell Death Differ 2013; In press
  • Koizumi S, Masuko K, Wakita D, Tanaka S, Mitamura R, Kato Y, et al. Extracts of Larix Leptolepis effectively augments the generation of tumor antigen-specific cytotoxic T lymphocytes via activation of dendritic cells in TLR-2 and TLR-4-dependent manner. Cell Immunol 2012; 276:153 - 61; http://dx.doi.org/10.1016/j.cellimm.2012.05.002; PMID: 22677561
  • Zhu J, Ghosh A, Coyle EM, Lee J, Hahm ER, Singh SV, et al. Differential effects of phenethyl isothiocyanate and D,L-sulforaphane on TLR3 signaling. J Immunol 2013; 190:4400 - 7; http://dx.doi.org/10.4049/jimmunol.1202093; PMID: 23509350
  • Shi Z, Cai Z, Yu J, Zhang T, Zhao S, Smeds E, et al. Toll-like receptor 11 (TLR11) prevents Salmonella penetration into the murine Peyer patches. J Biol Chem 2012; 287:43417 - 23; http://dx.doi.org/10.1074/jbc.M112.411009; PMID: 23135279
  • Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 2012; 337:1111 - 5; http://dx.doi.org/10.1126/science.1220363; PMID: 22821982
  • Bomben R, Gobessi S, Dal Bo M, Volinia S, Marconi D, Tissino E, et al. The miR-17∼92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia 2012; 26:1584 - 93; http://dx.doi.org/10.1038/leu.2012.44; PMID: 22343732
  • Li Q, Li X, Guo Z, Xu F, Xia J, Liu Z, et al. MicroRNA-574-5p was pivotal for TLR9 signaling enhanced tumor progression via down-regulating checkpoint suppressor 1 in human lung cancer. PLoS One 2012; 7:e48278; http://dx.doi.org/10.1371/journal.pone.0048278; PMID: 23133627
  • Li D, Jia H, Zhang H, Lv M, Liu J, Zhang Y, et al. TLR4 signaling induces the release of microparticles by tumor cells that regulate inflammatory cytokine IL-6 of macrophages via microRNA let-7b. Oncoimmunology 2012; 1:687 - 93; http://dx.doi.org/10.4161/onci.19854; PMID: 22934260
  • Dibra D, Cutrera JJ, Li S. Coordination between TLR9 signaling in macrophages and CD3 signaling in T cells induces robust expression of IL-30. J Immunol 2012; 188:3709 - 15; http://dx.doi.org/10.4049/jimmunol.1100883; PMID: 22407920
  • Balamurugan K, Sharan S, Klarmann KD, Zhang Y, Coppola V, Summers GH, et al. FBXW7α attenuates inflammatory signalling by downregulating C/EBPδ and its target gene Tlr4. Nat Commun 2013; 4:1662; http://dx.doi.org/10.1038/ncomms2677; PMID: 23575666
  • Aksoy E, Taboubi S, Torres D, Delbauve S, Hachani A, Whitehead MA, et al. The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol 2012; 13:1045 - 54; http://dx.doi.org/10.1038/ni.2426; PMID: 23023391
  • Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009; 9:550 - 62; http://dx.doi.org/10.1038/nrc2664; PMID: 19629070
  • Ahmed A, Wang JH, Redmond HP. Silencing of TLR4 increases tumor progression and lung metastasis in a murine model of breast cancer. Ann Surg Oncol 2012; In press http://dx.doi.org/10.1245/s10434-012-2595-9; PMID: 22890596
  • Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A, et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 2012; 491:769 - 73; PMID: 23103873
  • Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW, et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med 2012; In press http://dx.doi.org/10.1038/nm.2861; PMID: 22772463
  • Luger R, Valookaran S, Knapp N, Vizzardelli C, Dohnal AM, Felzmann T. Toll-like receptor 4 engagement drives differentiation of human and murine dendritic cells from a pro- into an anti-inflammatory mode. PLoS One 2013; 8:e54879; http://dx.doi.org/10.1371/journal.pone.0054879; PMID: 23408948
  • Fujimura T, Kambayashi Y, Aiba S. Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Oncoimmunology 2012; 1:1433 - 4; http://dx.doi.org/10.4161/onci.21176; PMID: 23243619
  • Schreiber TH, Wolf D, Bodero M, Podack E. Tumor antigen specific iTreg accumulate in the tumor microenvironment and suppress therapeutic vaccination. Oncoimmunology 2012; 1:642 - 8; http://dx.doi.org/10.4161/onci.20298; PMID: 22934256
  • Weiss VL, Lee TH, Jaffee EM, Armstrong TD. Targeting the right regulatory T-cell population for tumor immunotherapy. Oncoimmunology 2012; 1:1191 - 3; http://dx.doi.org/10.4161/onci.20664; PMID: 23170276
  • Karbach J, Neumann A, Wahle C, Brand K, Gnjatic S, Jäger E. Therapeutic administration of a synthetic CpG oligodeoxynucleotide triggers formation of anti-CpG antibodies. Cancer Res 2012; 72:4304 - 10; http://dx.doi.org/10.1158/0008-5472.CAN-12-0257; PMID: 22738916
  • Lin H, Yan J, Wang Z, Hua F, Yu J, Sun W, et al. Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice. Hepatology 2013; 57:171 - 82; http://dx.doi.org/10.1002/hep.25991; PMID: 22859216
  • Yevsa T, Kang TW, Zender L. Immune surveillance of pre-cancerous senescent hepatocytes limits hepatocellular carcinoma development. Oncoimmunology 2012; 1:398 - 9; http://dx.doi.org/10.4161/onci.19128; PMID: 22737629
  • Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N, et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest 2012; 122:4118 - 29; http://dx.doi.org/10.1172/JCI63606; PMID: 23023703
  • Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 2012; 209:1671 - 87; http://dx.doi.org/10.1084/jem.20111706; PMID: 22908323
  • Zambirinis CP, Miller G. Signaling via MYD88 in the pancreatic tumor microenvironment: A double-edged sword. Oncoimmunology 2013; 2:e22567; http://dx.doi.org/10.4161/onci.22567; PMID: 23483804
  • Hovden AO, Karlsen M, Jonsson R, Appel S. The bacterial preparation OK432 induces IL-12p70 secretion in human dendritic cells in a TLR3 dependent manner. PLoS One 2012; 7:e31217; http://dx.doi.org/10.1371/journal.pone.0031217; PMID: 22363584
  • Walter A, Schäfer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, et al. Aldara activates TLR7-independent immune defence. Nat Commun 2013; 4:1560; http://dx.doi.org/10.1038/ncomms2566; PMID: 23463003
  • Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 2012; 13:343 - 51; http://dx.doi.org/10.1038/ni.2224; PMID: 22430787
  • Margolin K. Ipilimumab in a Phase II trial of melanoma patients with brain metastases. Oncoimmunology 2012; 1:1197 - 9; http://dx.doi.org/10.4161/onci.20687; PMID: 23170278
  • Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 2012; 1:1223 - 5; http://dx.doi.org/10.4161/onci.21335; PMID: 23243584
  • Madan RA, Heery CR, Gulley JL. Combination of vaccine and immune checkpoint inhibitor is safe with encouraging clinical activity. Oncoimmunology 2012; 1:1167 - 8; http://dx.doi.org/10.4161/onci.20591; PMID: 23170267
  • Srivastava MK, Dubinett S, Sharma S. Targeting MDSCs enhance therapeutic vaccination responses against lung cancer. Oncoimmunology 2012; 1:1650 - 1; http://dx.doi.org/10.4161/onci.21970; PMID: 23264925
  • Djeu J, Wei S. Chemoimmunomodulation of MDSCs as a novel strategy for cancer therapy. Oncoimmunology 2012; 1:121 - 2; http://dx.doi.org/10.4161/onci.1.1.18074; PMID: 22720231
  • Abrams SI, Waight JD. Identification of a G-CSF-Granulocytic MDSC axis that promotes tumor progression. Oncoimmunology 2012; 1:550 - 1; http://dx.doi.org/10.4161/onci.19334; PMID: 22754783
  • Ghansah T. A novel strategy for modulation of MDSC to enhance cancer immunotherapy. Oncoimmunology 2012; 1:984 - 5; http://dx.doi.org/10.4161/onci.20201; PMID: 23162780
  • Stathopoulos A, Pretto C, Devillers L, Pierre D, Hofman FM, Kruse C, et al. Development of immune memory to glial brain tumors after tumor regression induced by immunotherapeutic Toll-like receptor 7/8 activation. Oncoimmunology 2012; 1:298 - 305; http://dx.doi.org/10.4161/onci.19068; PMID: 22737605
  • Lainey E, Wolfromm A, Marie N, Enot D, Scoazec M, Bouteloup C, et al. Azacytidine and erlotinib exert synergistic effects against acute myeloid leukemia. Oncogene 2012; In press http://dx.doi.org/10.1038/onc.2012.469; PMID: 23085751
  • Pinto A, Rega A, Crother TR, Sorrentino R. Plasmacytoid dendritic cells and their therapeutic activity in cancer. Oncoimmunology 2012; 1:726 - 34; http://dx.doi.org/10.4161/onci.20171; PMID: 22934264
  • Garaude J, Blander JM. “Flagellated” cancer cells propel anti-tumor immunity. Oncoimmunology 2012; 1:940 - 2; http://dx.doi.org/10.4161/onci.20305; PMID: 23162764
  • Burdelya LG, Brackett CM, Kojouharov B, Gitlin II, Leonova KI, Gleiberman AS, et al. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Sci U S A 2013; 110:E1857 - 66; http://dx.doi.org/10.1073/pnas.1222805110; PMID: 23630282
  • Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, Manderscheid-Kern P, et al. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 2012; 83:228 - 34; http://dx.doi.org/10.1016/j.ijrobp.2011.05.055; PMID: 22000579
  • Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008; 320:226 - 30; http://dx.doi.org/10.1126/science.1154986; PMID: 18403709
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006; 5:471 - 84; http://dx.doi.org/10.1038/nrd2059; PMID: 16763660
  • Shirota H, Klinman DM. Effect of CpG ODN on monocytic myeloid derived suppressor cells. Oncoimmunology 2012; 1:780 - 2; http://dx.doi.org/10.4161/onci.19731; PMID: 22934281
  • Hyde MA, Hadley ML, Tristani-Firouzi P, Goldgar D, Bowen GM. A randomized trial of the off-label use of imiquimod, 5%, cream with vs without tazarotene, 0.1%, gel for the treatment of lentigo maligna, followed by conservative staged excisions. Arch Dermatol 2012; 148:592 - 6; http://dx.doi.org/10.1001/archdermatol.2012.270; PMID: 22431716
  • Spencer DM. Activation of antigen-exposed iMC-DCs at the “right place” and “right time” promotes potent anti-tumor immunity. Oncoimmunology 2012; 1:362 - 3; http://dx.doi.org/10.4161/onci.18482; PMID: 22737615
  • de Vries IJ, Tel J, Benitez-Ribas D, Torensma R, Figdor CG. Prophylactic vaccines mimic synthetic CpG oligonucleotides in their ability to modulate immune responses. Mol Immunol 2011; 48:810 - 7; http://dx.doi.org/10.1016/j.molimm.2010.12.022; PMID: 21257206
  • Schreibelt G, Benitez-Ribas D, Schuurhuis D, Lambeck AJ, van Hout-Kuijer M, Schaft N, et al. Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells. Blood 2010; 116:564 - 74; http://dx.doi.org/10.1182/blood-2009-11-251884; PMID: 20424184