1,808
Views
71
CrossRef citations to date
0
Altmetric
Review

Trial Watch

Anticancer radioimmunotherapy

, , , , , , , & show all
Article: e25595 | Received 28 Jun 2013, Accepted 28 Jun 2013, Published online: 03 Jul 2013

References

  • Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004; 4:737 - 47; http://dx.doi.org/10.1038/nrc1451; PMID: 15343280
  • Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gérard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 2013; 10:52 - 60; http://dx.doi.org/10.1038/nrclinonc.2012.203; PMID: 23183635
  • Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005; 104:1129 - 37; http://dx.doi.org/10.1002/cncr.21324; PMID: 16080176
  • Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62:220 - 41; http://dx.doi.org/10.3322/caac.21149; PMID: 22700443
  • Bartelink H, Horiot JC, Poortmans P, Struikmans H, Van den Bogaert W, Barillot I, et al, European Organization for Research and Treatment of Cancer Radiotherapy and Breast Cancer Groups. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med 2001; 345:1378 - 87; http://dx.doi.org/10.1056/NEJMoa010874; PMID: 11794170
  • Romestaing P, Lehingue Y, Carrie C, Coquard R, Montbarbon X, Ardiet JM, et al. Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol 1997; 15:963 - 8; PMID: 9060534
  • Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ 2012; 345:e7765; http://dx.doi.org/10.1136/bmj.e7765; PMID: 23212681
  • DeVita VT, Hellman S, Rosenberg SA, eds. Cancer: Principles & Practice of Oncology. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins, 2008.
  • Bellmann C, Lumbroso-Le Rouic L, Levy C, Plancher C, Dendale R, Sastre-Garau X, et al. Uveal melanoma: management and outcome of patients with extraocular spread. Br J Ophthalmol 2010; 94:569 - 74; http://dx.doi.org/10.1136/bjo.2009.165423; PMID: 19965816
  • Lumbroso-Le Rouic L, Charif Chefchaouni M, Levy C, Plancher C, Dendale R, Asselain B, et al. 125I plaque brachytherapy for anterior uveal melanomas. Eye (Lond) 2004; 18:911 - 6; http://dx.doi.org/10.1038/sj.eye.6701361; PMID: 15002010
  • Al Mahmoud T, Mansour M, Deschênes J, Edelstein C, Burnier M, Marcil M, et al. Iodine-125 radiotherapy for choroidal melanoma. Ann N Y Acad Sci 2008; 1138:15 - 8; http://dx.doi.org/10.1196/annals.1414.003; PMID: 18837877
  • Bucci MK, Bevan A, Roach M 3rd. Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin 2005; 55:117 - 34; http://dx.doi.org/10.3322/canjclin.55.2.117; PMID: 15761080
  • Mohan R. Field Shaping for Three-Dimensional Conformal Radiation Therapy and Multileaf Collimation. Semin Radiat Oncol 1995; 5:86 - 99; http://dx.doi.org/10.1016/S1053-4296(95)80003-4; PMID: 10717132
  • Group IMRTCW, Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 2001; 51:880 - 914; http://dx.doi.org/10.1016/S0360-3016(01)01749-7; PMID: 11704310
  • Blockhuys S, Vanhoecke B, De Wagter C, Bracke M, De Neve W. From clinical observations of intensity-modulated radiotherapy to dedicated in vitro designs. Mutat Res 2010; 704:200 - 5; http://dx.doi.org/10.1016/j.mrrev.2010.02.003; PMID: 20178859
  • Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 2012; 9:688 - 99; http://dx.doi.org/10.1038/nrclinonc.2012.194; PMID: 23165124
  • Heron DE, Smith RP, Andrade RS. Advances in image-guided radiation therapy--the role of PET-CT. Med Dosim 2006; 31:3 - 11; http://dx.doi.org/10.1016/j.meddos.2005.12.006; PMID: 16551524
  • Ling CC, Yorke E, Fuks Z. From IMRT to IGRT: frontierland or neverland?. Radiother Oncol 2006; 78:119 - 22; http://dx.doi.org/10.1016/j.radonc.2005.12.005; PMID: 16413622
  • Fenwick JD, Tomé WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006; 16:199 - 208; http://dx.doi.org/10.1016/j.semradonc.2006.04.002; PMID: 17010902
  • Whyte RI. Stereotactic radiosurgery for lung tumors. Semin Thorac Cardiovasc Surg 2010; 22:59 - 66; http://dx.doi.org/10.1053/j.semtcvs.2010.04.001; PMID: 20813318
  • Calcerrada Díaz-Santos N, Blasco Amaro JA, Cardiel GA, Andradas Aragonés E. The safety and efficacy of robotic image-guided radiosurgery system treatment for intra- and extracranial lesions: a systematic review of the literature. Radiother Oncol 2008; 89:245 - 53; http://dx.doi.org/10.1016/j.radonc.2008.07.022; PMID: 18760852
  • Christie NA, Pennathur A, Burton SA, Luketich JD. Stereotactic radiosurgery for early stage non-small cell lung cancer: rationale, patient selection, results, and complications. Semin Thorac Cardiovasc Surg 2008; 20:290 - 7; http://dx.doi.org/10.1053/j.semtcvs.2008.12.001; PMID: 19251167
  • Salama JK, Kirkpatrick JP, Yin FF. Stereotactic body radiotherapy treatment of extracranial metastases. Nat Rev Clin Oncol 2012; 9:654 - 65; http://dx.doi.org/10.1038/nrclinonc.2012.166; PMID: 23007273
  • Grimm J, LaCouture T, Croce R, Yeo I, Zhu Y, Xue J. Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 2011; 12:3368; PMID: 21587185
  • Behre G, Christopeit M, Weber T. Involved field radiation therapy and donor lymphocyte infusion for relapsed or refractory non-Hodgkin lymphoma after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2008; 88:463 - 4; http://dx.doi.org/10.1007/s12185-008-0174-4; PMID: 18836792
  • Wendland MM, Smith DC, Boucher KM, Asch JD, Pulsipher MA, Thomson JW, et al. The impact of involved field radiation therapy in the treatment of relapsed or refractory non-Hodgkin lymphoma with high-dose chemotherapy followed by hematopoietic progenitor cell transplant. Am J Clin Oncol 2007; 30:156 - 62; http://dx.doi.org/10.1097/01.coc.0000251242.32763.35; PMID: 17414465
  • De Ruysscher D, Mark Lodge M, Jones B, Brada M, Munro A, Jefferson T, et al. Charged particles in radiotherapy: a 5-year update of a systematic review. Radiother Oncol 2012; 103:5 - 7; http://dx.doi.org/10.1016/j.radonc.2012.01.003; PMID: 22326572
  • Durante M, Loeffler JS. Charged particles in radiation oncology. Nat Rev Clin Oncol 2010; 7:37 - 43; http://dx.doi.org/10.1038/nrclinonc.2009.183; PMID: 19949433
  • Dickler A, Kirk MC, Chu J, Nguyen C. The MammoSite breast brachytherapy applicator: a review of technique and outcomes. Brachytherapy 2005; 4:130 - 6; http://dx.doi.org/10.1016/j.brachy.2004.12.003; PMID: 15893266
  • Divgi C. Targeted systemic radiotherapy of pheochromocytoma and medullary thyroid cancer. Semin Nucl Med 2011; 41:369 - 73; http://dx.doi.org/10.1053/j.semnuclmed.2011.05.004; PMID: 21803187
  • Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 2002; 20:2453 - 63; http://dx.doi.org/10.1200/JCO.2002.11.076; PMID: 12011122
  • Kaminski MS, Estes J, Zasadny KR, Francis IR, Ross CW, Tuck M, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000; 96:1259 - 66; PMID: 10942366
  • Milano MT, Constine LS, Okunieff P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 2007; 17:131 - 40; http://dx.doi.org/10.1016/j.semradonc.2006.11.009; PMID: 17395043
  • Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 2003; 4:529 - 36; http://dx.doi.org/10.1016/S1470-2045(03)01191-4; PMID: 12965273
  • Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 2003; 13:176 - 81; http://dx.doi.org/10.1016/S1053-4296(03)00031-6; PMID: 12903007
  • Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21:109 - 22; http://dx.doi.org/10.1016/0360-3016(91)90171-Y; PMID: 2032882
  • Jereczek-Fossa BA, Marsiglia HR, Orecchia R. Radiotherapy-related fatigue. Crit Rev Oncol Hematol 2002; 41:317 - 25; http://dx.doi.org/10.1016/S1040-8428(01)00143-3; PMID: 11880207
  • Travis LB, Ng AK, Allan JM, Pui CH, Kennedy AR, Xu XG, et al. Second malignant neoplasms and cardiovascular disease following radiotherapy. J Natl Cancer Inst 2012; 104:357 - 70; http://dx.doi.org/10.1093/jnci/djr533; PMID: 22312134
  • Berrington de Gonzalez A, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD, et al. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 2011; 12:353 - 60; http://dx.doi.org/10.1016/S1470-2045(11)70061-4; PMID: 21454129
  • Tubiana M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol 2009; 91:4 - 15, discussion 1-3; http://dx.doi.org/10.1016/j.radonc.2008.12.016; PMID: 19201045
  • Friedman DL, Whitton J, Leisenring W, Mertens AC, Hammond S, Stovall M, et al. Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst 2010; 102:1083 - 95; http://dx.doi.org/10.1093/jnci/djq238; PMID: 20634481
  • Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M, et al. Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. J Clin Oncol 2009; 27:2356 - 62; http://dx.doi.org/10.1200/JCO.2008.21.1920; PMID: 19255307
  • Hall EJ. Radiobiology for the Radiologist. Philadelphia, PA: Lippincott Williams & Wilkins, 2006.
  • Movsas B, Vikram B, Hauer-Jensen M, Moulder JE, Basch E, Brown SL, et al. Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clin Cancer Res 2011; 17:222 - 8; http://dx.doi.org/10.1158/1078-0432.CCR-10-1402; PMID: 21047979
  • Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010; 76:Suppl S10 - 9; http://dx.doi.org/10.1016/j.ijrobp.2009.07.1754; PMID: 20171502
  • Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9:134 - 42; http://dx.doi.org/10.1038/nrc2587; PMID: 19148183
  • Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 2011; 11:239 - 53; http://dx.doi.org/10.1038/nrc3007; PMID: 21430696
  • Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury by genistein and EUK-207. Int J Radiat Biol 2011; 87:889 - 901; http://dx.doi.org/10.3109/09553002.2011.583315; PMID: 21675818
  • Jiang J, Stoyanovsky DA, Belikova NA, Tyurina YY, Zhao Q, Tungekar MA, et al. A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res 2009; 172:706 - 17; http://dx.doi.org/10.1667/RR1729.1; PMID: 19929417
  • Andreassen CN, Grau C, Lindegaard JC. Chemical radioprotection: a critical review of amifostine as a cytoprotector in radiotherapy. Semin Radiat Oncol 2003; 13:62 - 72; http://dx.doi.org/10.1053/srao.2003.50006; PMID: 12520465
  • Xavier S, Yamada K, Samuni AM, Samuni A, DeGraff W, Krishna MC, et al. Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim Biophys Acta 2002; 1573:109 - 20; http://dx.doi.org/10.1016/S0304-4165(02)00339-2; PMID: 12399020
  • Atkinson J, Kapralov AA, Yanamala N, Tyurina YY, Amoscato AA, Pearce L, et al. A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nat Commun 2011; 2:497; http://dx.doi.org/10.1038/ncomms1499; PMID: 21988913
  • Meyn RE, Milas L, Ang KK. The role of apoptosis in radiation oncology. Int J Radiat Biol 2009; 85:107 - 15; http://dx.doi.org/10.1080/09553000802662595; PMID: 19280463
  • Belka C, Budach W. Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 2002; 78:643 - 58; http://dx.doi.org/10.1080/09553000210137680; PMID: 12194748
  • Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, et al. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 1998; 58:933 - 9; PMID: 9500453
  • Le QT, Kim HE, Schneider CJ, Muraközy G, Skladowski K, Reinisch S, et al. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J Clin Oncol 2011; 29:2808 - 14; http://dx.doi.org/10.1200/JCO.2010.32.4095; PMID: 21670453
  • Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T, et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 2004; 351:2590 - 8; http://dx.doi.org/10.1056/NEJMoa040125; PMID: 15602019
  • Zheng H, Wang J, Koteliansky VE, Gotwals PJ, Hauer-Jensen M. Recombinant soluble transforming growth factor beta type II receptor ameliorates radiation enteropathy in mice. Gastroenterology 2000; 119:1286 - 96; http://dx.doi.org/10.1053/gast.2000.19282; PMID: 11054386
  • Wang ZD, Qiao YL, Tian XF, Zhang XQ, Zhou SX, Liu HX, et al. Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis. Asian Pac J Cancer Prev 2012; 13:4763 - 7; http://dx.doi.org/10.7314/APJCP.2012.13.9.4763; PMID: 23167416
  • Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, Manderscheid-Kern P, et al. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 2012; 83:228 - 34; http://dx.doi.org/10.1016/j.ijrobp.2011.05.055; PMID: 22000579
  • Vijay-Kumar M, Aitken JD, Sanders CJ, Frias A, Sloane VM, Xu J, et al. Flagellin treatment protects against chemicals, bacteria, viruses, and radiation. J Immunol 2008; 180:8280 - 5; PMID: 18523294
  • Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008; 320:226 - 30; http://dx.doi.org/10.1126/science.1154986; PMID: 18403709
  • Haabeth OA, Bogen B, Corthay A. A model for cancer-suppressive inflammation. Oncoimmunology 2012; 1:1146 - 55; http://dx.doi.org/10.4161/onci.21542; PMID: 23170261
  • Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 2009; 27:127 - 45; http://dx.doi.org/10.1200/JCO.2008.17.2627; PMID: 19018081
  • Schuchter LM, Hensley ML, Meropol NJ, Winer EP, American Society of Clinical Oncology Chemotherapy and Radiotherapy Expert Panel. 2002 update of recommendations for the use of chemotherapy and radiotherapy protectants: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2002; 20:2895 - 903; http://dx.doi.org/10.1200/JCO.2002.04.178; PMID: 12065567
  • Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A, et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 2000; 18:3339 - 45; PMID: 11013273
  • Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 2009; 9:351 - 60; http://dx.doi.org/10.1038/nrc2603; PMID: 19377507
  • Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer 2008; 8:967 - 75; http://dx.doi.org/10.1038/nrc2540; PMID: 18987634
  • Barilla J, Lokajícek M. The role of oxygen in DNA damage by ionizing particles. J Theor Biol 2000; 207:405 - 14; http://dx.doi.org/10.1006/jtbi.2000.2188; PMID: 11082309
  • Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007; 26:225 - 39; http://dx.doi.org/10.1007/s10555-007-9055-1; PMID: 17440684
  • Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007; 25:4066 - 74; http://dx.doi.org/10.1200/JCO.2007.12.7878; PMID: 17827455
  • Menegakis A, Eicheler W, Yaromina A, Thames HD, Krause M, Baumann M. Residual DNA double strand breaks in perfused but not in unperfused areas determine different radiosensitivity of tumours. Radiother Oncol 2011; 100:137 - 44; http://dx.doi.org/10.1016/j.radonc.2011.07.001; PMID: 21821302
  • Wouters BG, Brown JM. Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat Res 1997; 147:541 - 50; http://dx.doi.org/10.2307/3579620; PMID: 9146699
  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953; 26:638 - 48; http://dx.doi.org/10.1259/0007-1285-26-312-638; PMID: 13106296
  • Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996; 41:31 - 9; PMID: 8961365
  • Wouters BG, Skarsgard LD. Low-dose radiation sensitivity and induced radioresistance to cell killing in HT-29 cells is distinct from the “adaptive response” and cannot be explained by a subpopulation of sensitive cells. Radiat Res 1997; 148:435 - 42; http://dx.doi.org/10.2307/3579320; PMID: 9355868
  • Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99:1441 - 54; http://dx.doi.org/10.1093/jnci/djm135; PMID: 17895480
  • Ogawa K, Kohshi K, Ishiuchi S, Matsushita M, Yoshimi N, Murayama S. Old but new methods in radiation oncology: hyperbaric oxygen therapy. Int J Clin Oncol 2013; 18:364 - 70; http://dx.doi.org/10.1007/s10147-013-0537-6; PMID: 23463521
  • Bennett MH, Feldmeier J, Smee R, Milross C. Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev 2012; 4:CD005007; PMID: 22513926
  • Suh JH, Stea B, Nabid A, Kresl JJ, Fortin A, Mercier JP, et al. Phase III study of efaproxiral as an adjunct to whole-brain radiation therapy for brain metastases. J Clin Oncol 2006; 24:106 - 14; http://dx.doi.org/10.1200/JCO.2004.00.1768; PMID: 16314619
  • Viani GA, Manta GB, Fonseca EC, De Fendi LI, Afonso SL, Stefano EJ. Whole brain radiotherapy with radiosensitizer for brain metastases. J Exp Clin Cancer Res 2009; 28:1; http://dx.doi.org/10.1186/1756-9966-28-1; PMID: 19126230
  • Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 1998; 46:135 - 46; http://dx.doi.org/10.1016/S0167-8140(97)00220-X; PMID: 9510041
  • Rischin D, Peters LJ, O’Sullivan B, Giralt J, Fisher R, Yuen K, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol 2010; 28:2989 - 95; http://dx.doi.org/10.1200/JCO.2009.27.4449; PMID: 20479425
  • Le QT, Moon J, Redman M, Williamson SK, Lara PN Jr., Goldberg Z, et al. Phase II study of tirapazamine, cisplatin, and etoposide and concurrent thoracic radiotherapy for limited-stage small-cell lung cancer: SWOG 0222. J Clin Oncol 2009; 27:3014 - 9; http://dx.doi.org/10.1200/JCO.2008.21.3868; PMID: 19364954
  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107 - 20; http://dx.doi.org/10.1038/cdd.2011.96; PMID: 21760595
  • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87:99 - 163; http://dx.doi.org/10.1152/physrev.00013.2006; PMID: 17237344
  • Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729 - 40; http://dx.doi.org/10.1038/nrm2233; PMID: 17667954
  • Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123:966 - 72; http://dx.doi.org/10.1172/JCI64098; PMID: 23454759
  • Verheij M. Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev 2008; 27:471 - 80; http://dx.doi.org/10.1007/s10555-008-9131-1; PMID: 18470482
  • Vigneron A, Vousden KH. p53, ROS and senescence in the control of aging. Aging (Albany NY) 2010; 2:471 - 4; PMID: 20729567
  • Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8:275 - 83; http://dx.doi.org/10.1038/nrm2147; PMID: 17380161
  • Galluzzi L, Kepp O, Kroemer G. TP53 and MTOR crosstalk to regulate cellular senescence. Aging (Albany NY) 2010; 2:535 - 7; PMID: 20876940
  • Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011; 12:385 - 92; http://dx.doi.org/10.1038/nrm3115; PMID: 21527953
  • Vitale I, Galluzzi L, Senovilla L, Criollo A, Jemaà M, Castedo M, et al. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ 2011; 18:1403 - 13; http://dx.doi.org/10.1038/cdd.2010.145; PMID: 21072053
  • Baritaud M, Cabon L, Delavallée L, Galán-Malo P, Gilles ME, Brunelle-Navas MN, et al. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death Dis 2012; 3:e390; http://dx.doi.org/10.1038/cddis.2012.120; PMID: 22972376
  • Cabon L, Galán-Malo P, Bouharrour A, Delavallée L, Brunelle-Navas MN, Lorenzo HK, et al. BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 2012; 19:245 - 56; http://dx.doi.org/10.1038/cdd.2011.91; PMID: 21738214
  • Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 2011; 4:ra20; http://dx.doi.org/10.1126/scisignal.2000902; PMID: 21467298
  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11:700 - 14; http://dx.doi.org/10.1038/nrm2970; PMID: 20823910
  • Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell 2008; 135:1161 - 3; http://dx.doi.org/10.1016/j.cell.2008.12.004; PMID: 19109884
  • Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P, et al. Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol 2011; 289:1 - 35; http://dx.doi.org/10.1016/B978-0-12-386039-2.00001-8; PMID: 21749897
  • Mothersill C, Seymour CB. Radiation-induced bystander effects--implications for cancer. Nat Rev Cancer 2004; 4:158 - 64; http://dx.doi.org/10.1038/nrc1277; PMID: 14964312
  • Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A 2001; 98:473 - 8; PMID: 11149936
  • Hervé JC, Bourmeyster N, Sarrouilhe D, Duffy HS. Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 2007; 94:29 - 65; http://dx.doi.org/10.1016/j.pbiomolbio.2007.03.010; PMID: 17507078
  • Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 2003; 4:285 - 94; http://dx.doi.org/10.1038/nrm1072; PMID: 12671651
  • Lehnert BE, Goodwin EH, Deshpande A. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res 1997; 57:2164 - 71; PMID: 9187116
  • Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int J Radiat Biol 2002; 78:837 - 44; http://dx.doi.org/10.1080/09553000210149786; PMID: 12428924
  • Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 2003; 63:8437 - 42; PMID: 14679007
  • Chou CH, Chen PJ, Lee PH, Cheng AL, Hsu HC, Cheng JC. Radiation-induced hepatitis B virus reactivation in liver mediated by the bystander effect from irradiated endothelial cells. Clin Cancer Res 2007; 13:851 - 7; http://dx.doi.org/10.1158/1078-0432.CCR-06-2459; PMID: 17289877
  • Narayanan PK, LaRue KE, Goodwin EH, Lehnert BE. Alpha particles induce the production of interleukin-8 by human cells. Radiat Res 1999; 152:57 - 63; http://dx.doi.org/10.2307/3580049; PMID: 10381841
  • Iyer R, Lehnert BE, Svensson R. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res 2000; 60:1290 - 8; PMID: 10728689
  • Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, et al. Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci U S A 2005; 102:14641 - 6; http://dx.doi.org/10.1073/pnas.0505473102; PMID: 16203985
  • Kroemer G, Zitvogel L. Abscopal but desirable: The contribution of immune responses to the efficacy of radiotherapy. Oncoimmunology 2012; 1:407 - 8; http://dx.doi.org/10.4161/onci.20074; PMID: 22754758
  • Gupta A, Sharma A, von Boehmer L, Surace L, Knuth A, van den Broek M. Radiotherapy supports protective tumor-specific immunity. Oncoimmunology 2012; 1:1610 - 1; http://dx.doi.org/10.4161/onci.21478; PMID: 23264910
  • Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013; In press http://dx.doi.org/10.1016/j.cytogfr.2013.01.005; PMID: 23391812
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51 - 72; http://dx.doi.org/10.1146/annurev-immunol-032712-100008; PMID: 23157435
  • Kono K, Mimura K. Immunogenic tumor cell death induced by chemoradiotherapy in a clinical setting. Oncoimmunology 2013; 2:e22197; http://dx.doi.org/10.4161/onci.22197; PMID: 23482346
  • Garg AD, Krysko DV, Vandenabeele P, Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis. Oncoimmunology 2012; 1:786 - 8; http://dx.doi.org/10.4161/onci.19750; PMID: 22934283
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780 - 8; http://dx.doi.org/10.1038/nrm3479; PMID: 23175281
  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860 - 75; http://dx.doi.org/10.1038/nrc3380; PMID: 23151605
  • Ganss R, Ryschich E, Klar E, Arnold B, Hämmerling GJ. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 2002; 62:1462 - 70; PMID: 11888921
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307:58 - 62; http://dx.doi.org/10.1126/science.1104819; PMID: 15637262
  • Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 2011; 30:83 - 95; http://dx.doi.org/10.1007/s10555-011-9281-4; PMID: 21249423
  • Heckmann M, Douwes K, Peter R, Degitz K. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation. Exp Cell Res 1998; 238:148 - 54; http://dx.doi.org/10.1006/excr.1997.3826; PMID: 9457067
  • Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2012; 1:28 - 37; http://dx.doi.org/10.4161/onci.1.1.17938; PMID: 22720209
  • Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179 - 88; http://dx.doi.org/10.4161/onci.1.2.19026; PMID: 22720239
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306 - 15; http://dx.doi.org/10.4161/onci.19549; PMID: 22737606
  • Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2012; 1:493 - 506; http://dx.doi.org/10.4161/onci.20459; PMID: 22754768
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699 - 716; http://dx.doi.org/10.4161/onci.20696; PMID: 22934262
  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894 - 907; http://dx.doi.org/10.4161/onci.20931; PMID: 23162757
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111 - 34; http://dx.doi.org/10.4161/onci.21494; PMID: 23170259
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323 - 43; http://dx.doi.org/10.4161/onci.22009; PMID: 23243596
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557 - 76; http://dx.doi.org/10.4161/onci.22428; PMID: 23264902
  • Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, et al. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; http://dx.doi.org/10.4161/onci.22789; PMID: 23482847
  • Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, et al. Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology 2013; 2:e23082; http://dx.doi.org/10.4161/onci.23082; PMID: 23525565
  • Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; http://dx.doi.org/10.4161/onci.23510; PMID: 23687621
  • Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, et al. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2013; 2:e23803; http://dx.doi.org/10.4161/onci.23803; PMID: 23734328
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; http://dx.doi.org/10.4161/onci.24238; PMID: 23762803
  • Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, et al. Trial Watch: Oncolytic viruses for cancer therapy. OncoImmunology 2013; 2:e24612; http://dx.doi.org/10.4161/onci.24612
  • Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Immunostimulatory cytokines. OncoImmunology 2012; 1:493 - 506; PMID: 22754768
  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, et al. Trial Watch: Toll-like receptor agonists for cancer therapy. OncoImmunology 2013; 2; In press PMID: 23162757
  • Gough MJ, Crittenden MR. Combination approaches to immunotherapy: the radiotherapy example. Immunotherapy 2009; 1:1025 - 37; http://dx.doi.org/10.2217/imt.09.64; PMID: 20635917
  • Hill-Kayser CE, Plastaras JP, Tochner Z, Glatstein E. TBI during BM and SCT: review of the past, discussion of the present and consideration of future directions. Bone Marrow Transplant 2011; 46:475 - 84; http://dx.doi.org/10.1038/bmt.2010.280; PMID: 21113184
  • Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013; 105:256 - 65; http://dx.doi.org/10.1093/jnci/djs629; PMID: 23291374
  • Munro AJ. Bystander effects and their implications for clinical radiotherapy. J Radiol Prot 2009; 29:2A A133 - 42; http://dx.doi.org/10.1088/0952-4746/29/2A/S09; PMID: 19454811
  • Mancuso M, Pasquali E, Giardullo P, Leonardi S, Tanori M, Di Majo V, et al. The radiation bystander effect and its potential implications for human health. Curr Mol Med 2012; 12:613 - 24; http://dx.doi.org/10.2174/156652412800620011; PMID: 22452594
  • Rees GJ. Abscopal regression in lymphoma: a mechanism in common with total body irradiation?. Clin Radiol 1981; 32:475 - 80; http://dx.doi.org/10.1016/S0009-9260(81)80310-8; PMID: 7249526
  • Nobler MP. The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation. Radiology 1969; 93:410 - 2; PMID: 5822721
  • Antoniades J, Brady LW, Lightfoot DA. Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int J Radiat Oncol Biol Phys 1977; 2:141 - 7; http://dx.doi.org/10.1016/0360-3016(77)90020-7; PMID: 403163
  • Robin HI, AuBuchon J, Varanasi VR, Weinstein AB. The abscopal effect: demonstration in lymphomatous involvement of kidneys. Med Pediatr Oncol 1981; 9:473 - 6; http://dx.doi.org/10.1002/mpo.2950090510; PMID: 7029238
  • Horiuhi T, Nomura J, Okuda M, Ichinohasama R. [Abscopal effect of small intestinal NK/T-cell lymphoma]. Rinsho Ketsueki 2003; 44:940 - 5; PMID: 14577314
  • Hiniker SM, Chen DS, Knox SJ. Abscopal effect in a patient with melanoma. N Engl J Med 2012; 366:2035 - , author reply 2035-6; http://dx.doi.org/10.1056/NEJMc1203984; PMID: 22621637
  • Kingsley DP. An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol 1975; 48:863 - 6; http://dx.doi.org/10.1259/0007-1285-48-574-863; PMID: 811297
  • Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 2012; 366:925 - 31; http://dx.doi.org/10.1056/NEJMoa1112824; PMID: 22397654
  • Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I. The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 2013; 85:293 - 5; http://dx.doi.org/10.1016/j.ijrobp.2012.03.017; PMID: 22560555
  • Mikuriya S, Saito T, Konoeda K, Matsuba T, Torii A, Sato O, et al. [Evaluation of abscopal effect observed in advanced cancer of breast treated with preoperative radiotherapy (author’s transl)]. Nihon Gan Chiryo Gakkai Shi 1979; 14:997 - 1008; PMID: 120402
  • Mikuriya S, Saito T, Matsuba T, Torii A, Sato O, Adachi H, et al. [Pathologic and immunologic analysis for a case with carcinoma of aberrant breast of the axilla showed “abscopal effect” after the radiotherapy (author’s transl)]. Nihon Gan Chiryo Gakkai Shi 1978; 13:406 - 13; PMID: 712167
  • Okino T, Kan N, Nakanishi M, Satoh K, Mise K, Yamasaki S, et al. [The therapeutic effects of OK-432 combined adoptive immunotherapy (AIT) against liver metastases of breast cancer]. Gan To Kagaku Ryoho 1989; 16:1913 - 9; PMID: 2730083
  • Konoeda K. [Therapeutic efficacy of pre-operative radiotherapy on breast carcinoma: in special reference to its abscopal effect on metastatic lymph-nodes]. Nihon Gan Chiryo Gakkai Shi 1990; 25:1204 - 14; PMID: 2398302
  • Rees GJ, Ross CM. Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol 1983; 56:63 - 6; http://dx.doi.org/10.1259/0007-1285-56-661-63; PMID: 6185172
  • Ehlers G, Fridman M. Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol 1973; 46:220 - 2; http://dx.doi.org/10.1259/0007-1285-46-543-220; PMID: 4706791
  • Matsubara S, Horiuchi J, Okuyama T, Suzuki S, Miyazaki K. [A case of reticulum cell sarcoma of the skin showing abscopal effect during radiotherapy (author’s transl)]. Nihon Igaku Hoshasen Gakkai Zasshi 1975; 35:860 - 7; PMID: 765959
  • Nakanishi M, Chuma M, Hige S, Asaka M. Abscopal effect on hepatocellular carcinoma. Am J Gastroenterol 2008; 103:1320 - 1; http://dx.doi.org/10.1111/j.1572-0241.2007.01782_13.x; PMID: 18477367
  • Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 1998; 43:575 - 7; http://dx.doi.org/10.1136/gut.43.4.575; PMID: 9824589
  • Cotter SE, Dunn GP, Collins KM, Sahni D, Zukotynski KA, Hansen JL, et al. Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: potential role of induced antitumor immunity. Arch Dermatol 2011; 147:870 - 2; http://dx.doi.org/10.1001/archdermatol.2011.176; PMID: 21768497
  • Ishiyama H, Teh BS, Ren H, Chiang S, Tann A, Blanco AI, et al. Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier?. Clin Genitourin Cancer 2012; 10:196 - 8; http://dx.doi.org/10.1016/j.clgc.2012.01.004; PMID: 22409865
  • Takaya M, Niibe Y, Tsunoda S, Jobo T, Imai M, Kotani S, et al. Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma--a case report. Anticancer Res 2007; 27:1B 499 - 503; PMID: 17348433
  • Demaria S, Formenti SC. Role of T lymphocytes in tumor response to radiotherapy. Front Oncol 2012; 2:95; http://dx.doi.org/10.3389/fonc.2012.00095; PMID: 22937524
  • Frey B, Rubner Y, Wunderlich R, Weiss EM, Pockley AG, Fietkau R, et al. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation - implications for cancer therapies. Curr Med Chem 2012; 19:1751 - 64; http://dx.doi.org/10.2174/092986712800099811; PMID: 22414083
  • Kwilas AR, Donahue RN, Bernstein MB, Hodge JW. In the field: exploiting the untapped potential of immunogenic modulation by radiation in combination with immunotherapy for the treatment of cancer. Front Oncol 2012; 2:104; http://dx.doi.org/10.3389/fonc.2012.00104; PMID: 22973551
  • Rubner Y, Wunderlich R, Rühle PF, Kulzer L, Werthmöller N, Frey B, et al. How does ionizing irradiation contribute to the induction of anti-tumor immunity?. Front Oncol 2012; 2:75; http://dx.doi.org/10.3389/fonc.2012.00075; PMID: 22848871
  • Clement JM, McDermott DF. The high-dose aldesleukin (IL-2) “select” trial: a trial designed to prospectively validate predictive models of response to high-dose IL-2 treatment in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer 2009; 7:E7 - 9; http://dx.doi.org/10.3816/CGC.2009.n.014; PMID: 19692326
  • Halama N, Zoernig I, Jaeger D. Advanced malignant melanoma: immunologic and multimodal therapeutic strategies. J Oncol 2010; 2010:689893; http://dx.doi.org/10.1155/2010/689893; PMID: 20224761
  • Ngiow SF, von Scheidt B, Möller A, Smyth MJ, Teng MW. The interaction between murine melanoma and the immune system reveals that prolonged responses predispose for autoimmunity. Oncoimmunology 2013; 2:e23036; http://dx.doi.org/10.4161/onci.23036; PMID: 23524369
  • Akutsu Y, Matsubara H, Urashima T, Komatsu A, Sakata H, Nishimori T, et al. Combination of direct intratumoral administration of dendritic cells and irradiation induces strong systemic antitumor effect mediated by GRP94/gp96 against squamous cell carcinoma in mice. Int J Oncol 2007; 31:509 - 15; PMID: 17671676
  • Yasuda K, Nirei T, Tsuno NH, Nagawa H, Kitayama J. Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci 2011; 102:1257 - 63; http://dx.doi.org/10.1111/j.1349-7006.2011.01940.x; PMID: 21443690
  • Seung SK, Curti B, Crittenden M, Urba W. Radiation and immunotherapy: Renewed allies in the war on cancer. Oncoimmunology 2012; 1:1645 - 7; http://dx.doi.org/10.4161/onci.21746; PMID: 23264923
  • Shiraishi K, Ishiwata Y, Nakagawa K, Yokochi S, Taruki C, Akuta T, et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin Cancer Res 2008; 14:1159 - 66; http://dx.doi.org/10.1158/1078-0432.CCR-07-4485; PMID: 18281550
  • Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 2010; 28:4324 - 32; http://dx.doi.org/10.1200/JCO.2010.28.9793; PMID: 20697067
  • Hotz C, Bourquin C. Systemic cancer immunotherapy with Toll-like receptor 7 agonists: Timing is everything. Oncoimmunology 2012; 1:227 - 8; http://dx.doi.org/10.4161/onci.1.2.18169; PMID: 22720251
  • Zhang M, Lahn M, Huber PE. Translating the combination of TGFβ blockade and radiotherapy into clinical development in glioblastoma. Oncoimmunology 2012; 1:943 - 5; http://dx.doi.org/10.4161/onci.19789; PMID: 23162765
  • Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 2009; 15:5379 - 88; http://dx.doi.org/10.1158/1078-0432.CCR-09-0265; PMID: 19706802
  • Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 2012; 1:1223 - 5; http://dx.doi.org/10.4161/onci.21335; PMID: 23243584
  • Waitz R, Fassò M, Allison JP. CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection. Oncoimmunology 2012; 1:544 - 6; http://dx.doi.org/10.4161/onci.19442; PMID: 22754781
  • Verbrugge I, Galli M, Smyth MJ, Johnstone RW, Haynes NM. Enhancing the antitumor effects of radiotherapy with combinations of immunostimulatory antibodies. Oncoimmunology 2012; 1:1629 - 31; http://dx.doi.org/10.4161/onci.21652; PMID: 23264917
  • Hodge JW, Sharp HJ, Gameiro SR. Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother Radiopharm 2012; 27:12 - 22; http://dx.doi.org/10.1089/cbr.2012.1202; PMID: 22283603
  • Krysko DV, D’Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 2006; 11:1709 - 26; http://dx.doi.org/10.1007/s10495-006-9527-8; PMID: 16951923
  • Krysko DV, Vanden Berghe T, D’Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 2008; 44:205 - 21; http://dx.doi.org/10.1016/j.ymeth.2007.12.001; PMID: 18314051
  • Martins I, Kepp O, Galluzzi L, Senovilla L, Schlemmer F, Adjemian S, et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann N Y Acad Sci 2010; 1209:77 - 82; http://dx.doi.org/10.1111/j.1749-6632.2010.05740.x; PMID: 20958319
  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13:54 - 61; http://dx.doi.org/10.1038/nm1523; PMID: 17187072
  • Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31:1062 - 79; http://dx.doi.org/10.1038/emboj.2011.497; PMID: 22252128
  • Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007; 14:1848 - 50; http://dx.doi.org/10.1038/sj.cdd.4402201; PMID: 17657249
  • Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 2009; 28:578 - 90; http://dx.doi.org/10.1038/emboj.2009.1; PMID: 19165151
  • Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 2008; 15:1499 - 509; http://dx.doi.org/10.1038/cdd.2008.67; PMID: 18464797
  • Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C, Durchschlag M, et al. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 2013; In press http://dx.doi.org/10.1038/cdd.2013.73; PMID: 23787997
  • Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 2010; 70:855 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-09-3566; PMID: 20086177
  • Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, et al. Chemotherapy induces ATP release from tumor cells. Cell Cycle 2009; 8:3723 - 8; http://dx.doi.org/10.4161/cc.8.22.10026; PMID: 19855167
  • Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573 - 7; http://dx.doi.org/10.1126/science.1208347; PMID: 22174255
  • Michaud M, Sukkurwala AQ, Martins I, Shen S, Zitvogel L, Kroemer G. Subversion of the chemotherapy-induced anticancer immune response by the ecto-ATPase CD39. Oncoimmunology 2012; 1:393 - 5; http://dx.doi.org/10.4161/onci.19070; PMID: 22737627
  • Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2013; In press
  • Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 2010; 467:863 - 7; http://dx.doi.org/10.1038/nature09413; PMID: 20944749
  • Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461:282 - 6; http://dx.doi.org/10.1038/nature08296; PMID: 19741708
  • Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15:1170 - 8; http://dx.doi.org/10.1038/nm.2028; PMID: 19767732
  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13:1050 - 9; http://dx.doi.org/10.1038/nm1622; PMID: 17704786
  • Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2013; In press http://dx.doi.org/10.1038/cdd.2013.72; PMID: 23811849
  • Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418:191 - 5; http://dx.doi.org/10.1038/nature00858; PMID: 12110890
  • Tang D, Loze MT, Zeh HJ, Kang R. The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy 2010; 6:1181 - 3; http://dx.doi.org/10.4161/auto.6.8.13367; PMID: 20861675
  • Vacchelli E, Galluzzi L, Rousseau V, Rigoni A, Tesniere A, Delahaye N, et al. Loss-of-function alleles of P2RX7 and TLR4 fail to affect the response to chemotherapy in non-small cell lung cancer. Oncoimmunology 2012; 1:271 - 8; http://dx.doi.org/10.4161/onci.18684; PMID: 22737602
  • Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med 2010; 40:122 - 35; http://dx.doi.org/10.1053/j.semnuclmed.2009.11.002; PMID: 20113680
  • Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005; 352:441 - 9; http://dx.doi.org/10.1056/NEJMoa041511; PMID: 15689582
  • Leahy MF, Turner JH. Radioimmunotherapy of relapsed indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10-year single-institution experience of 142 consecutive patients. Blood 2011; 117:45 - 52; http://dx.doi.org/10.1182/blood-2010-02-269753; PMID: 20864582
  • Mäkelä S, Poutanen M, Lehtimäki J, Kostian ML, Santti R, Vihko R. Estrogen-specific 17 beta-hydroxysteroid oxidoreductase type 1 (E.C. 1.1.1.62) as a possible target for the action of phytoestrogens. Proc Soc Exp Biol Med 1995; 208:51 - 9; http://dx.doi.org/10.3181/00379727-208-43831; PMID: 7892295
  • Pouget JP, Navarro-Teulon I, Bardiès M, Chouin N, Cartron G, Pèlegrin A, et al. Clinical radioimmunotherapy--the role of radiobiology. Nat Rev Clin Oncol 2011; 8:720 - 34; http://dx.doi.org/10.1038/nrclinonc.2011.160; PMID: 22064461
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215 - 33; http://dx.doi.org/10.1038/nrd3626; PMID: 22301798
  • Goldberg RM. Cetuximab. Nat Rev Drug Discov 2005; Suppl S10 - 1; http://dx.doi.org/10.1038/nrd1728; PMID: 15962524
  • Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 2012; 13:459 - 65; http://dx.doi.org/10.1016/S1470-2045(12)70090-6; PMID: 22456429
  • Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 2012; 30:2046 - 54; http://dx.doi.org/10.1200/JCO.2011.38.4032; PMID: 22547592
  • Madan RA, Heery CR, Gulley JL. Combination of vaccine and immune checkpoint inhibitor is safe with encouraging clinical activity. Oncoimmunology 2012; 1:1167 - 8; http://dx.doi.org/10.4161/onci.20591; PMID: 23170267
  • Higano CS, Small EJ, Schellhammer P, Yasothan U, Gubernick S, Kirkpatrick P, et al. Sipuleucel-T. Nat Rev Drug Discov 2010; 9:513 - 4; http://dx.doi.org/10.1038/nrd3220; PMID: 20592741
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al, IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:411 - 22; http://dx.doi.org/10.1056/NEJMoa1001294; PMID: 20818862
  • Tanimoto T, Hori A, Kami M. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:1966 - , author reply 1967-8; http://dx.doi.org/10.1056/NEJMc1009982; PMID: 21067392
  • Holcmann M, Drobits B, Sibilia M. How imiquimod licenses plasmacytoid dendritic cells to kill tumors. Oncoimmunology 2012; 1:1661 - 3; http://dx.doi.org/10.4161/onci.22033; PMID: 23264929
  • Walter S, Weinschenk T, Reinhardt C, Singh-Jasuja H. Single-dose cyclophosphamide synergizes with immune responses to the renal cell cancer vaccine IMA901. Oncoimmunology 2013; 2:e22246; http://dx.doi.org/10.4161/onci.22246; PMID: 23482454
  • Johnson LE, Frye TP, McNeel DG. Immunization with a prostate cancer xenoantigen elicits a xenoantigen epitope-specific T-cell response. Oncoimmunology 2012; 1:1546 - 56; http://dx.doi.org/10.4161/onci.22564; PMID: 23264901
  • Sawada Y, Sakai M, Yoshikawa T, Ofuji K, Nakatsura T. A glypican-3-derived peptide vaccine against hepatocellular carcinoma. Oncoimmunology 2012; 1:1448 - 50; http://dx.doi.org/10.4161/onci.21351; PMID: 23243625
  • Grekova SP, Rommelaere J, Raykov Z. Parvoviruses-tools to fine-tune anticancer immune responses. Oncoimmunology 2012; 1:1417 - 9; http://dx.doi.org/10.4161/onci.21097; PMID: 23243613
  • Cerullo V, Vähä-Koskela M, Hemminki A. Oncolytic adenoviruses: A potent form of tumor immunovirotherapy. Oncoimmunology 2012; 1:979 - 81; http://dx.doi.org/10.4161/onci.20172; PMID: 23162778
  • Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet 2008; 371:1695 - 709; http://dx.doi.org/10.1016/S0140-6736(08)60728-X; PMID: 18486742
  • Brizel DM, Esclamado R. Concurrent chemoradiotherapy for locally advanced, nonmetastatic, squamous carcinoma of the head and neck: consensus, controversy, and conundrum. J Clin Oncol 2006; 24:2612 - 7; http://dx.doi.org/10.1200/JCO.2005.05.2829; PMID: 16763273
  • Garden AS, Harris J, Trotti A, Jones CU, Carrascosa L, Cheng JD, et al. Long-term results of concomitant boost radiation plus concurrent cisplatin for advanced head and neck carcinomas: a phase II trial of the radiation therapy oncology group (RTOG 99-14). Int J Radiat Oncol Biol Phys 2008; 71:1351 - 5; http://dx.doi.org/10.1016/j.ijrobp.2008.04.006; PMID: 18640496
  • Nuyts S, Dirix P, Clement PM, Poorten VV, Delaere P, Schoenaers J, et al. Impact of adding concomitant chemotherapy to hyperfractionated accelerated radiotherapy for advanced head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2009; 73:1088 - 95; http://dx.doi.org/10.1016/j.ijrobp.2008.05.042; PMID: 18707823
  • Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869 - 83; http://dx.doi.org/10.1038/onc.2011.384; PMID: 21892204
  • Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al, EORTC Radiotherapy Group Trial 22921. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 2006; 355:1114 - 23; http://dx.doi.org/10.1056/NEJMoa060829; PMID: 16971718
  • Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann Oncol 2012; 23:2479 - 516; http://dx.doi.org/10.1093/annonc/mds236; PMID: 23012255
  • Van Cutsem E, Borràs JM, Castells A, Ciardiello F, Ducreux M, Haq A, et al. Improving outcomes in colorectal cancer: Where do we go from here?. Eur J Cancer 2013; In press http://dx.doi.org/10.1016/j.ejca.2013.03.026; PMID: 23642327
  • Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology 2012; 1:670 - 86; http://dx.doi.org/10.4161/onci.20426; PMID: 22934259
  • Brunsvig PF, Kyte JA, Kersten C, Sundstrøm S, Møller M, Nyakas M, et al. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res 2011; 17:6847 - 57; http://dx.doi.org/10.1158/1078-0432.CCR-11-1385; PMID: 21918169
  • Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics 2005; 25:Suppl 1 S41 - 55; http://dx.doi.org/10.1148/rg.25si055515; PMID: 16227496
  • Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138:52 - 64; http://dx.doi.org/10.1053/j.gastro.2009.09.006; PMID: 19766639
  • Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R. Radioembolization for the treatment of liver tumors general principles. Am J Clin Oncol 2012; 35:91 - 9; http://dx.doi.org/10.1097/COC.0b013e3181f47583; PMID: 22363944
  • Montemurro F, Aglietta M. Duration of trastuzumab for HER2-positive breast cancer. Lancet Oncol 2013; 14:678 - 9; http://dx.doi.org/10.1016/S1470-2045(13)70273-0; PMID: 23764182
  • Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al, Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011; 365:1273 - 83; http://dx.doi.org/10.1056/NEJMoa0910383; PMID: 21991949
  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344:783 - 92; http://dx.doi.org/10.1056/NEJM200103153441101; PMID: 11248153
  • Kute T, Stehle JR Jr., Ornelles D, Walker N, Delbono O, Vaughn JP. Understanding key assay parameters that affect measurements of trastuzumab-mediated ADCC against Her2 positive breast cancer cells. Oncoimmunology 2012; 1:810 - 21; http://dx.doi.org/10.4161/onci.20447; PMID: 23162748
  • Hoffman ES, Smith RE, Renaud RC Jr.. From the analyst’s couch: TLR-targeted therapeutics. Nat Rev Drug Discov 2005; 4:879 - 80; http://dx.doi.org/10.1038/nrd1880; PMID: 16299917
  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196 - 200; http://dx.doi.org/10.1038/ni758; PMID: 11812998
  • Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunochemotherapy. OncoImmunology 2013; 2:e25396; http://dx.doi.org/10.4161/onci.25396
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity 2013; In press
  • Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011; 8:151 - 60; http://dx.doi.org/10.1038/nrclinonc.2010.223; PMID: 21364688
  • Prendergast GC. Immunological thought in the mainstream of cancer research: Past divorce, recent remarriage and elective affinities of the future. Oncoimmunology 2012; 1:793 - 7; http://dx.doi.org/10.4161/onci.20909; PMID: 23162746
  • Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy--revisited. Nat Rev Drug Discov 2011; 10:591 - 600; http://dx.doi.org/10.1038/nrd3500; PMID: 21804596
  • Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12:237 - 51; http://dx.doi.org/10.1038/nrc3237; PMID: 22437869
  • Baxevanis CN, Perez SA, Papamichail M. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother 2009; 58:317 - 24; http://dx.doi.org/10.1007/s00262-008-0576-4; PMID: 18704409
  • Kachikwu EL, Iwamoto KS, Liao YP, DeMarco JJ, Agazaryan N, Economou JS, et al. Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 2011; 81:1128 - 35; http://dx.doi.org/10.1016/j.ijrobp.2010.09.034; PMID: 21093169
  • Baba J, Watanabe S, Saida Y, Tanaka T, Miyabayashi T, Koshio J, et al. Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia. Blood 2012; 120:2417 - 27; http://dx.doi.org/10.1182/blood-2012-02-411124; PMID: 22806892
  • Le DT, Jaffee EM. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res 2012; 72:3439 - 44; http://dx.doi.org/10.1158/0008-5472.CAN-11-3912; PMID: 22761338