1,104
Views
5
CrossRef citations to date
0
Altmetric
Review

How to exploit stress-related immunity against Hodgkin’s lymphoma

Targeting ERp5 and ADAM sheddases

&
Article: e27089 | Received 23 Sep 2013, Accepted 04 Nov 2013, Published online: 05 Dec 2013

References

  • Steidl C, Connors JM, Gascoyne RD. Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol 2011; 29:1812 - 26; http://dx.doi.org/10.1200/JCO.2010.32.8401; PMID: 21483001
  • Montes-Moreno S. Hodgkin’s Lymphomas: a tumor recognized by its microenvironment. Adv Hematol 2011; 2011: 142395; doi: http://dx.doi.org/10.1155/2011/142395; PMID: 20981155.
  • Carbone A, Gloghini A, Cabras A, Elia G. The Germinal centre-derived lymphomas seen through their cellular microenvironment. Br J Haematol 2009; 145:468 - 80; http://dx.doi.org/10.1111/j.1365-2141.2009.07651.x; PMID: 19344401
  • Küppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Invest 2012; 122:3439 - 47; http://dx.doi.org/10.1172/JCI61245; PMID: 23023715
  • Catellani S, Poggi A, Bruzzone A, Dadati P, Ravetti J-L, Gobbi M, Zocchi MR. Expansion of Vdelta1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas expressing UL-16-binding proteins. Blood 2007; 109:2078 - 85; http://dx.doi.org/10.1182/blood-2006-06-028985; PMID: 16973957
  • Zocchi MR, Catellani S, Canevali P, Tavella S, Garuti A, Villaggio B, Zunino A, Gobbi M, Fraternali-Orcioni G, Kunkl A, et al. High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas. Blood 2012; 119:1479 - 89; http://dx.doi.org/10.1182/blood-2011-07-370841; PMID: 22167753
  • Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 2009; 31:184 - 96; http://dx.doi.org/10.1016/j.immuni.2009.08.006; PMID: 19699170
  • Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10:467 - 78; http://dx.doi.org/10.1038/nri2781; PMID: 20539306
  • Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8:279 - 89; http://dx.doi.org/10.1038/nri2215; PMID: 18340345
  • Nausch N, Cerwenka A. NKG2D ligands in tumor immunity. Oncogene 2008; 27:5944 - 58; http://dx.doi.org/10.1038/onc.2008.272; PMID: 18836475
  • Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses. Immunol Rev 210; 235(1): 267-85; doi: http://dx.doi.org/10.1111/j.0105-2896.2010.00893.x; PMID: 20536569.
  • González S, López-Soto A, Suarez-Alvarez B, López-Vázquez A, López-Larrea C. NKG2D ligands: key targets of the immune response. Trends Immunol 2008; 29:397 - 403; http://dx.doi.org/10.1016/j.it.2008.04.007; PMID: 18602338
  • Ferrarini M, Ferrero E, Dagna L, Poggi A, Zocchi MR. Human gammadelta T cells: a nonredundant system in the immune-surveillance against cancer. Trends Immunol 2002; 23:14 - 8; http://dx.doi.org/10.1016/S1471-4906(01)02110-X; PMID: 11801449
  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003; 102:1389 - 96; http://dx.doi.org/10.1182/blood-2003-01-0019; PMID: 12714493
  • Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M, Steinle A, Ghia P, Stella S, Caligaris-Cappio F, et al. Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 2004; 64:9172 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-04-2417; PMID: 15604289
  • Poggi A, Catellani S, Garuti A, Pierri I, Gobbi M, Zocchi MR. Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 2009; 23:641 - 8; http://dx.doi.org/10.1038/leu.2008.354; PMID: 19151770
  • Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419:734 - 8; http://dx.doi.org/10.1038/nature01112; PMID: 12384702
  • Waldhauer I, Steinle A. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 2006; 66:2520 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-05-2520; PMID: 16510567
  • Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102:200 - 6; http://dx.doi.org/10.1182/blood-2002-12-3665; PMID: 12623838
  • Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 2004; 199:879 - 84; http://dx.doi.org/10.1084/jem.20031981; PMID: 15007091
  • Kabelitz D, Wesch D, He W. Perspectives of gammadelta T cells in tumor immunology. Cancer Res 2007; 67:5 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-06-3069; PMID: 17210676
  • Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, Fournié JJ. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 1994; 264:267 - 70; http://dx.doi.org/10.1126/science.8146660; PMID: 8146660
  • Gober HJ, Kistowska M, Angman L, Jenö P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197:163 - 8; http://dx.doi.org/10.1084/jem.20021500; PMID: 12538656
  • Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 2007; 215:59 - 76; http://dx.doi.org/10.1111/j.1600-065X.2006.00479.x; PMID: 17291279
  • Kunzmann V, Bauer E, Wilhelm M. Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 1999; 340:737 - 8; http://dx.doi.org/10.1056/NEJM199903043400914; PMID: 10068336
  • Moss ML, Bartsch JW. Therapeutic benefits from targeting of ADAM family members. Biochemistry 2004; 43:7227 - 35; http://dx.doi.org/10.1021/bi049677f; PMID: 15182168
  • Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 2005; 6:32 - 43; http://dx.doi.org/10.1038/nrm1548; PMID: 15688065
  • Smalley DM, Ley K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med 2005; 9:255 - 66; http://dx.doi.org/10.1111/j.1582-4934.2005.tb00354.x; PMID: 15963248
  • Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci 2004; 95:930 - 5; http://dx.doi.org/10.1111/j.1349-7006.2004.tb03179.x; PMID: 15596040
  • Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta 2004; 1699:35 - 44; http://dx.doi.org/10.1016/j.bbapap.2004.02.017; PMID: 15158710
  • Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ. Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sciences 2006; 31(8): 455–64; doi:http://dx.doi.org/10.1016/j.tibs.2006.06.001; P MID 16815710.
  • Hatahet F, Ruddock LW. Substrate recognition by the protein disulfide isomerases. FEBS J 2007; 274:5223 - 34; http://dx.doi.org/10.1111/j.1742-4658.2007.06058.x; PMID: 17892489
  • Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807 - 50; http://dx.doi.org/10.1089/ars.2009.2466; PMID: 19476414
  • Escrevente C, Morais VA, Keller S, Soares CM, Altevogt P, Costa J. Functional role of N-glycosylation from ADAM10 in processing, localization and activity of the enzyme. Biochim Biophys Acta 2008; 1780:905 - 13; http://dx.doi.org/10.1016/j.bbagen.2008.03.004; PMID: 18381078
  • Rzymski T, Petry A, Kračun D, Rieß F, Pike L, Harris AL, Görlach A. The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene 2012; 31:3621 - 34; http://dx.doi.org/10.1038/onc.2011.522; PMID: 22105359
  • Kaiser BK, Yim D, Chow I-T, Gonzalez S, Dai Z, Mann HH, Strong RK, Groh V, Spies T. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 2007; 447:482 - 6; http://dx.doi.org/10.1038/nature05768; PMID: 17495932
  • Huergo-Zapico L, Gonzalez-Rodriguez AP, Contesti J, Gonzalez E, López-Soto A, Fernandez-Guizan A, Acebes-Huerta A, de Los Toyos JR, Lopez-Larrea C, Groh V, et al. Expression of ERp5 and GRP78 on the membrane of chronic lymphocytic leukemia cells: association with soluble MICA shedding. Cancer Immunol Immunother 2012; 61:1201 - 10; http://dx.doi.org/10.1007/s00262-011-1195-z; PMID: 22215138
  • Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR, Dranoff G. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci U S A 2008; 105:1285 - 90; http://dx.doi.org/10.1073/pnas.0711293105; PMID: 18202175
  • Fonseca C, Soiffer R, Ho V, Vanneman M, Jinushi M, Ritz J, Neuberg D, Stone R, DeAngelo D, Dranoff G. Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction. Blood 2009; 113:1681 - 8; http://dx.doi.org/10.1182/blood-2007-09-114157; PMID: 19008459
  • Nückel H, Switala M, Sellmann L, Horn PA, Dürig J, Dührsen U, Küppers R, Grosse-Wilde H, Rebmann V. The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia 2010; 24:1152 - 9; http://dx.doi.org/10.1038/leu.2010.74; PMID: 20428196
  • Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG, Steinle A. Tumor-associated MICA is shed by ADAM proteases. Cancer Res 2008; 68:6368 - 76; http://dx.doi.org/10.1158/0008-5472.CAN-07-6768; PMID: 18676862
  • Fernández-Messina L, Ashiru O, Boutet P, Agüera-González S, Skepper JN, Reyburn HT, Valés-Gómez M. Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem 2010; 285:8543 - 51; http://dx.doi.org/10.1074/jbc.M109.045906; PMID: 20080967
  • Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 2004; 172:7335 - 40; PMID: 15187109
  • Kohga K, Takehara T, Tatsumi T, Miyagi T, Ishida H, Ohkawa K, Kanto T, Hiramatsu N, Hayashi N. Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res 2009; 69:8050 - 7; http://dx.doi.org/10.1158/0008-5472.CAN-09-0789; PMID: 19826051
  • Wu JD, Atteridge CL, Wang X, Seya T, Plymate SR. Obstructing shedding of the immunostimulatory MHC class I chain-related gene B prevents tumor formation. Clin Cancer Res 2009; 15:632 - 40; http://dx.doi.org/10.1158/1078-0432.CCR-08-1305; PMID: 19147769
  • Wang X, Lundgren AD, Singh P, Goodlett DR, Plymate SR, Wu JD. An six-amino acid motif in the alpha3 domain of MICA is the cancer therapeutic target to inhibit shedding. Biochem Biophys Res Commun 2009; 387:476 - 81; http://dx.doi.org/10.1016/j.bbrc.2009.07.062; PMID: 19615970
  • Rossello A, Nuti E, Orlandini E, Carelli P, Rapposelli S, Macchia M, Minutolo F, Carbonaro L, Albini A, Benelli R, et al. New N-arylsulfonyl-N-alkoxyaminoacetohydroxamic acids as selective inhibitors of gelatinase A (MMP-2). Bioorg Med Chem 2004; 12:2441 - 50; http://dx.doi.org/10.1016/j.bmc.2004.01.047; PMID: 15080939
  • Nuti E, Panelli L, Casalini F, Avramova SI, Orlandini E, Santamaria S, Nencetti S, Tuccinardi T, Martinelli A, Cercignani G, et al. Design, synthesis, biological evaluation, and NMR studies of a new series of arylsulfones as selective and potent matrix metalloproteinase-12 inhibitors. J Med Chem 2009; 52:6347 - 61; http://dx.doi.org/10.1021/jm900335a; PMID: 19775099
  • Nuti E, Casalini F, Avramova SI, Santamaria S, Fabbi M, Ferrini S, Marinelli L, La Pietra V, Limongelli V, Novellino E, et al. Potent arylsulfonamide inhibitors of tumor necrosis factor-alpha converting enzyme able to reduce activated leukocyte cell adhesion molecule shedding in cancer cell models. [PMID] J Med Chem 2010; 53:2622 - 35; http://dx.doi.org/10.1021/jm901868z; PMID: 20180536
  • Herbst H, Foss HD, Samol J, Araujo I, Klotzbach H, Krause H, Agathanggelou A, Niedobitek G, Stein H. Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood 1996; 87:2918 - 29; PMID: 8639912
  • Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Blood 2002; 99:4283 - 97; http://dx.doi.org/10.1182/blood-2002-01-0099; PMID: 12036854
  • Poggi A, Zancolli M, Boero S, Catellani S, Musso A, Zocchi MR. Differential survival of γδT cells, αβT cells and NK cells upon engagement of NKG2D by NKG2DL-expressing leukemic cells. Int J Cancer 2011; 129:387 - 96; http://dx.doi.org/10.1002/ijc.25682; PMID: 20853320
  • Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, Vickers MA. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004; 103:1755 - 62; http://dx.doi.org/10.1182/blood-2003-07-2594; PMID: 14604957
  • Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 2005; 65:6321 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-04-4252; PMID: 16024634
  • Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 2008; 111:1428 - 36; http://dx.doi.org/10.1182/blood-2007-07-101311; PMID: 17993609
  • Butler JE, Moore MB, Presnell SR, Chan HW, Chalupny NJ, Lutz CT. Proteasome regulation of ULBP1 transcription. J Immunol 2009; 182:6600 - 9; http://dx.doi.org/10.4049/jimmunol.0801214; PMID: 19414815
  • Richards FM, Tape CJ, Jodrell DI, Murphy G. Anti-tumour effects of a specific anti-ADAM17 antibody in an ovarian cancer model in vivo. PLoS One 2012; 7:e40597; http://dx.doi.org/10.1371/journal.pone.0040597; PMID: 22792380
  • Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 2004; 64:7596 - 603; http://dx.doi.org/10.1158/0008-5472.CAN-04-1627; PMID: 15492287
  • Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M. Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96:384 - 92; PMID: 10887096
  • Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano C, et al. Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 2003; 102:2310 - 1; http://dx.doi.org/10.1182/blood-2003-05-1655; PMID: 12959943
  • Mariani S, Muraro M, Pantaleoni F, Fiore F, Nuschak B, Peola S, Foglietta M, Palumbo A, Coscia M, Castella B, et al. Effector gammadelta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia 2005; 19:664 - 70; PMID: 15744346
  • Capietto A-H, Martinet L, Cendron D, Fruchon S, Pont F, Fournié JJ. Phosphoantigens overcome human TCRVgamma9+ gammadelta Cell immunosuppression by TGF-beta: relevance for cancer immunotherapy. J Immunol 2010; 184:6680 - 7; http://dx.doi.org/10.4049/jimmunol.1000681; PMID: 20483742
  • Chiplunkar S, Dhar S, Wesch D, Kabelitz D. gammadelta T cells in cancer immunotherapy: current status and future prospects. Immunotherapy 2009; 1:663 - 78; http://dx.doi.org/10.2217/imt.09.27; PMID: 20635991