1,688
Views
30
CrossRef citations to date
0
Altmetric
Review

Trial Watch

Adoptive cell transfer for anticancer immunotherapy

, , , , , , , , , & show all
Article: e28344 | Received 24 Feb 2014, Accepted 24 Feb 2014, Published online: 01 May 2014

References

  • Speiser DE. Hit parade for adoptive cell transfer therapy: the best T cells for superior clinical responses. Cancer Discov 2013; 3:379 - 81; http://dx.doi.org/10.1158/2159-8290.CD-13-0064; PMID: 23580281
  • Yee C. Adoptive T-cell therapy for cancer: boutique therapy or treatment modality?. Clin Cancer Res 2013; 19:4550 - 2; http://dx.doi.org/10.1158/1078-0432.CCR-13-1367; PMID: 23922301
  • Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev 2014; 257:14 - 38; http://dx.doi.org/10.1111/imr.12136; PMID: 24329787
  • Yee C. The use of endogenous T cells for adoptive transfer. Immunol Rev 2014; 257:250 - 63; http://dx.doi.org/10.1111/imr.12134; PMID: 24329802
  • Kirk R. Immunotherapy: Adoptive cell therapy simplified. Nat Rev Clin Oncol 2013; 10:368; http://dx.doi.org/10.1038/nrclinonc.2013.85; PMID: 23689751
  • Humphries C. Adoptive cell therapy: Honing that killer instinct. Nature 2013; 504:S13 - 5; http://dx.doi.org/10.1038/504S13a; PMID: 24352359
  • Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. Adoptive Immunotherapy for Cancer or Viruses. Annu Rev Immunol 2014; Forthcoming PMID: 24423116
  • Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12:269 - 81; http://dx.doi.org/10.1038/nri3191; PMID: 22437939
  • Morgan RA, Dudley ME, Rosenberg SA. Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 2010; 16:336 - 41; http://dx.doi.org/10.1097/PPO.0b013e3181eb3879; PMID: 20693844
  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8:299 - 308; http://dx.doi.org/10.1038/nrc2355; PMID: 18354418
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111 - 34; http://dx.doi.org/10.4161/onci.21494; PMID: 23170259
  • Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771; http://dx.doi.org/10.4161/onci.25771; PMID: 24286020
  • Ueno H, Klechevsky E, Schmitt N, Ni L, Flamar AL, Zurawski S, Zurawski G, Palucka K, Banchereau J, Oh S. Targeting human dendritic cell subsets for improved vaccines. Semin Immunol 2011; 23:21 - 7; http://dx.doi.org/10.1016/j.smim.2011.01.004; PMID: 21277223
  • Ueno H, Palucka AK, Banchereau J. The expanding family of dendritic cell subsets. Nat Biotechnol 2010; 28:813 - 5; http://dx.doi.org/10.1038/nbt0810-813; PMID: 20697407
  • Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 2010; 33:464 - 78; http://dx.doi.org/10.1016/j.immuni.2010.10.007; PMID: 21029958
  • Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23:2346 - 57; http://dx.doi.org/10.1200/JCO.2005.00.240; PMID: 15800326
  • Jenq RR, van den Brink MR. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer 2010; 10:213 - 21; http://dx.doi.org/10.1038/nrc2804; PMID: 20168320
  • Barriga F, Ramírez P, Wietstruck A, Rojas N. Hematopoietic stem cell transplantation: clinical use and perspectives. Biol Res 2012; 45:307 - 16; http://dx.doi.org/10.4067/S0716-97602012000300012; PMID: 23283440
  • Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 2008; 358:2698 - 703; http://dx.doi.org/10.1056/NEJMoa0800251; PMID: 18565862
  • Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Darcy PK. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol 2008; 181:3449 - 55; PMID: 18714017
  • Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295:2097 - 100; http://dx.doi.org/10.1126/science.1068440; PMID: 11896281
  • Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 2009; 21:525 - 30; http://dx.doi.org/10.1016/j.coi.2009.07.015; PMID: 19717293
  • Ohira M, Ohdan H, Mitsuta H, Ishiyama K, Tanaka Y, Igarashi Y, Asahara T. Adoptive transfer of TRAIL-expressing natural killer cells prevents recurrence of hepatocellular carcinoma after partial hepatectomy. Transplantation 2006; 82:1712 - 9; http://dx.doi.org/10.1097/01.tp.0000250935.41034.2d; PMID: 17198265
  • Okada K, Nannmark U, Vujanovic NL, Watkins S, Basse P, Herberman RB, Whiteside TL. Elimination of established liver metastases by human interleukin 2-activated natural killer cells after locoregional or systemic adoptive transfer. Cancer Res 1996; 56:1599 - 608; PMID: 8603408
  • Besser MJ, Shoham T, Harari-Steinberg O, Zabari N, Ortenberg R, Yakirevitch A, Nagler A, Loewenthal R, Schachter J, Markel G. Development of allogeneic NK cell adoptive transfer therapy in metastatic melanoma patients: in vitro preclinical optimization studies. PLoS One 2013; 8:e57922; http://dx.doi.org/10.1371/journal.pone.0057922; PMID: 23483943
  • Terme M, Fridman WH, Tartour E. NK cells from pleural effusions are potent antitumor effector cells. Eur J Immunol 2013; 43:331 - 4; http://dx.doi.org/10.1002/eji.201243264; PMID: 23322344
  • Lister J, Rybka WB, Donnenberg AD, deMagalhaes-Silverman M, Pincus SM, Bloom EJ, Elder EM, Ball ED, Whiteside TL. Autologous peripheral blood stem cell transplantation and adoptive immunotherapy with activated natural killer cells in the immediate posttransplant period. Clin Cancer Res 1995; 1:607 - 14; PMID: 9816022
  • Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 2011; 17:6287 - 97; http://dx.doi.org/10.1158/1078-0432.CCR-11-1347; PMID: 21844012
  • Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, Rigatos G, Papamichail M, Perez SA. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 2010; 59:1781 - 9; http://dx.doi.org/10.1007/s00262-010-0904-3; PMID: 20703455
  • Badoual C, Bastier P-L, Roussel H, Mandavit M, Tartour E. An allogeneic NK cell line engineered to express chimeric antigen receptors: A novel strategy of cellular immunotherapy against cancer. OncoImmunology 2013; 2:e27156; http://dx.doi.org/10.4161/onci.27156
  • Boissel L, Betancur-Boissel M, Lu W, Krause DS, Van Etten RA, Wels WS, Klingemann H. Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncoimmunology 2013; 2:e26527; http://dx.doi.org/10.4161/onci.26527; PMID: 24404423
  • Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, Campana D, Juergens H, Pule M, Rossig C. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res 2009; 15:4857 - 66; http://dx.doi.org/10.1158/1078-0432.CCR-08-2810; PMID: 19638467
  • Boissel L, Betancur M, Wels WS, Tuncer H, Klingemann H. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res 2009; 33:1255 - 9; http://dx.doi.org/10.1016/j.leukres.2008.11.024; PMID: 19147228
  • Li Q, Lao X, Pan Q, Ning N, Yet J, Xu Y, Li S, Chang AE. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res 2011; 17:4987 - 95; http://dx.doi.org/10.1158/1078-0432.CCR-11-0207; PMID: 21690573
  • de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005; 7:411 - 23; http://dx.doi.org/10.1016/j.ccr.2005.04.014; PMID: 15894262
  • Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C, Coussens LM, Balkwill FR. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci U S A 2011; 108:10662 - 7; http://dx.doi.org/10.1073/pnas.1100994108; PMID: 21670304
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323 - 43; http://dx.doi.org/10.4161/onci.22009; PMID: 23243596
  • Yun YS, Hargrove ME, Ting CC. In vivo antitumor activity of anti-CD3-induced activated killer cells. Cancer Res 1989; 49:4770 - 4; PMID: 2527087
  • Bouquié R, Bonnin A, Bernardeau K, Khammari A, Dréno B, Jotereau F, Labarrière N, Lang F. A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes. Cancer Immunol Immunother 2009; 58:553 - 66; http://dx.doi.org/10.1007/s00262-008-0578-2; PMID: 18751701
  • Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer--what clinicians need to know. Nat Rev Clin Oncol 2011; 8:577 - 85; http://dx.doi.org/10.1038/nrclinonc.2011.116; PMID: 21808266
  • Chhabra A, Yang L, Wang P, Comin-Anduix B, Das R, Chakraborty NG, Ray S, Mehrotra S, Yang H, Hardee CL, et al. CD4+CD25- T cells transduced to express MHC class I-restricted epitope-specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model. J Immunol 2008; 181:1063 - 70; PMID: 18606658
  • Ray S, Chhabra A, Chakraborty NG, Hegde U, Dorsky DI, Chodon T, von Euw E, Comin-Anduix B, Koya RC, Ribas A, et al, UCLA-CALTECH-CHLA-USC-UCONN Consortium on Translational Program in Engineered Immunity. MHC-I-restricted melanoma antigen specific TCR-engineered human CD4+ T cells exhibit multifunctional effector and helper responses, in vitro. Clin Immunol 2010; 136:338 - 47; http://dx.doi.org/10.1016/j.clim.2010.04.013; PMID: 20547105
  • Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003; 3:35 - 45; http://dx.doi.org/10.1038/nrc971; PMID: 12509765
  • Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29:917 - 24; http://dx.doi.org/10.1200/JCO.2010.32.2537; PMID: 21282551
  • Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3:388 - 98; http://dx.doi.org/10.1158/2159-8290.CD-12-0548; PMID: 23550147
  • Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257:107 - 26; http://dx.doi.org/10.1111/imr.12131; PMID: 24329793
  • Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 2014; 257:127 - 44; http://dx.doi.org/10.1111/imr.12139; PMID: 24329794
  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365:725 - 33; http://dx.doi.org/10.1056/NEJMoa1103849; PMID: 21830940
  • Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 2013; 10:267 - 76; http://dx.doi.org/10.1038/nrclinonc.2013.46; PMID: 23546520
  • Long AH, Haso WM, Orentas RJ. Lessons learned from a highly-active CD22-specific chimeric antigen receptor. Oncoimmunology 2013; 2:e23621; http://dx.doi.org/10.4161/onci.23621; PMID: 23734316
  • Spear P, Barber A, Sentman CL. Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Oncoimmunology 2013; 2:e23564; http://dx.doi.org/10.4161/onci.23564; PMID: 23734311
  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119:2709 - 20; http://dx.doi.org/10.1182/blood-2011-10-384388; PMID: 22160384
  • Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, Maric I, Raffeld M, Nathan DA, Lanier BJ, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010; 116:4099 - 102; http://dx.doi.org/10.1182/blood-2010-04-281931; PMID: 20668228
  • Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010; 116:3875 - 86; http://dx.doi.org/10.1182/blood-2010-01-265041; PMID: 20631379
  • Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118:4817 - 28; http://dx.doi.org/10.1182/blood-2011-04-348540; PMID: 21849486
  • Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3:95ra73; http://dx.doi.org/10.1126/scitranslmed.3002842; PMID: 21832238
  • Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP, Mei Z, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121:1822 - 6; http://dx.doi.org/10.1172/JCI46110; PMID: 21540550
  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5:177ra38; http://dx.doi.org/10.1126/scitranslmed.3005930; PMID: 23515080
  • Merhavi-Shoham E, Haga-Friedman A, Cohen CJ. Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2012; 22:14 - 22; http://dx.doi.org/10.1016/j.semcancer.2011.12.006; PMID: 22210183
  • Liu K, Rosenberg SA. Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 2001; 167:6356 - 65; PMID: 11714800
  • Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 2005; 175:7046 - 52; PMID: 16272366
  • Kalbasi A, Shrimali RK, Chinnasamy D, Rosenberg SA. Prevention of interleukin-2 withdrawal-induced apoptosis in lymphocytes retrovirally cotransduced with genes encoding an antitumor T-cell receptor and an antiapoptotic protein. J Immunother 2010; 33:672 - 83; http://dx.doi.org/10.1097/CJI.0b013e3181e475cd; PMID: 20664359
  • Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR, Huang J, Klebanoff CA, Johnson LA, Kerkar SP, Yang S, et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 2011; 117:808 - 14; http://dx.doi.org/10.1182/blood-2010-05-286286; PMID: 20971955
  • Bellone M, Calcinotto A, Corti A. Won’t you come on in? How to favor lymphocyte infiltration in tumors. Oncoimmunology 2012; 1:986 - 8; http://dx.doi.org/10.4161/onci.20213; PMID: 23162781
  • Kershaw MH, Teng MW, Smyth MJ, Darcy PK. Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev Immunol 2005; 5:928 - 40; http://dx.doi.org/10.1038/nri1729; PMID: 16322746
  • Galluzzi L, Lugli E. Rejuvenated T cells attack old tumors. Oncoimmunology 2013; 2:e24103; http://dx.doi.org/10.4161/onci.24103; PMID: 23526137
  • Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 2012; 12:671 - 84; http://dx.doi.org/10.1038/nrc3322; PMID: 22996603
  • Somerville RP, Dudley ME. Bioreactors get personal. Oncoimmunology 2012; 1:1435 - 7; http://dx.doi.org/10.4161/onci.21206; PMID: 23243620
  • Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 2013; 121:573 - 84; http://dx.doi.org/10.1182/blood-2012-05-431718; PMID: 23160470
  • Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, Klatt NR, Brenchley JM, Vaccari M, Gostick E, et al. Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 2013; 123:594 - 9; PMID: 23281401
  • Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011; 17:1290 - 7; http://dx.doi.org/10.1038/nm.2446; PMID: 21926977
  • Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, Nakayama-Hosoya K, Iriguchi S, Uemura Y, Shimizu T, et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 2013; 12:114 - 26; http://dx.doi.org/10.1016/j.stem.2012.11.002; PMID: 23290140
  • Haymaker C, Wu R, Bernatchez C, Radvanyi L. PD-1 and BTLA and CD8(+) T-cell “exhaustion” in cancer: “Exercising” an alternative viewpoint. Oncoimmunology 2012; 1:735 - 8; http://dx.doi.org/10.4161/onci.20823; PMID: 22934265
  • Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S, Koseki H, Kawamoto H. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell 2013; 12:31 - 6; http://dx.doi.org/10.1016/j.stem.2012.12.006; PMID: 23290135
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; http://dx.doi.org/10.4161/onci.24238; PMID: 23762803
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306 - 15; http://dx.doi.org/10.4161/onci.19549; PMID: 22737606
  • Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC, Gattinoni L, Yu Z, Rosenberg SA, Restifo NP. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother 2010; 33:1 - 7; http://dx.doi.org/10.1097/CJI.0b013e3181b88ffc; PMID: 19952961
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162 - 74; http://dx.doi.org/10.1038/nri2506; PMID: 19197294
  • Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother 2012; 35:107 - 15; http://dx.doi.org/10.1097/CJI.0b013e318242169f; PMID: 22306898
  • Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells in human cancer. Cancer J 2010; 16:348 - 53; http://dx.doi.org/10.1097/PPO.0b013e3181eb3358; PMID: 20693846
  • Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev 2011; 241:63 - 76; http://dx.doi.org/10.1111/j.1600-065X.2011.01004.x; PMID: 21488890
  • Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev 2011; 241:260 - 8; http://dx.doi.org/10.1111/j.1600-065X.2011.01018.x; PMID: 21488902
  • Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME, Liu F, Schrump DS, Steinberg SM, Rosenberg SA, Robbins PF. Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood 2012; 119:5688 - 96; http://dx.doi.org/10.1182/blood-2011-10-386482; PMID: 22555974
  • Kodumudi KN, Weber A, Sarnaik AA, Pilon-Thomas S. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. J Immunol 2012; 189:5147 - 54; http://dx.doi.org/10.4049/jimmunol.1200274; PMID: 23100512
  • Pere H, Tanchot C, Bayry J, Terme M, Taieb J, Badoual C, Adotevi O, Merillon N, Marcheteau E, Quillien VR, et al. Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer. Oncoimmunology 2012; 1:326 - 33; http://dx.doi.org/10.4161/onci.18852; PMID: 22737608
  • Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202:907 - 12; http://dx.doi.org/10.1084/jem.20050732; PMID: 16203864
  • Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 2005; 26:111 - 7; http://dx.doi.org/10.1016/j.it.2004.12.003; PMID: 15668127
  • Mignot G, Ullrich E, Bonmort M, Ménard C, Apetoh L, Taieb J, Bosisio D, Sozzani S, Ferrantini M, Schmitz J, et al. The critical role of IL-15 in the antitumor effects mediated by the combination therapy imatinib and IL-2. J Immunol 2008; 180:6477 - 83; PMID: 18453565
  • Ullrich E, Bonmort M, Mignot G, Jacobs B, Bosisio D, Sozzani S, Jalil A, Louache F, Bulanova E, Geissman F, et al. Trans-presentation of IL-15 dictates IFN-producing killer dendritic cells effector functions. J Immunol 2008; 180:7887 - 97; PMID: 18523252
  • Liu DL, Håkansson CH, Seifert J. Immunotherapy in liver tumors: II. Intratumoral injection with activated tumor-infiltrating lymphocytes, intrasplenic administration of recombinant interleukin-2 and interferon alpha causes tumor regression and lysis. Cancer Lett 1994; 85:39 - 46; http://dx.doi.org/10.1016/0304-3835(94)90236-4; PMID: 7923100
  • Helms MW, Prescher JA, Cao YA, Schaffert S, Contag CH. IL-12 enhances efficacy and shortens enrichment time in cytokine-induced killer cell immunotherapy. Cancer Immunol Immunother 2010; 59:1325 - 34; http://dx.doi.org/10.1007/s00262-010-0860-y; PMID: 20532883
  • Dings RP, Vang KB, Castermans K, Popescu F, Zhang Y, Oude Egbrink MG, Mescher MF, Farrar MA, Griffioen AW, Mayo KH. Enhancement of T-cell-mediated antitumor response: angiostatic adjuvant to immunotherapy against cancer. Clin Cancer Res 2011; 17:3134 - 45; http://dx.doi.org/10.1158/1078-0432.CCR-10-2443; PMID: 21252159
  • Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010; 70:6171 - 80; http://dx.doi.org/10.1158/0008-5472.CAN-10-0153; PMID: 20631075
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699 - 716; http://dx.doi.org/10.4161/onci.20696; PMID: 22934262
  • Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, Muranski P, Sanchez-Perez L, Palmer DC, Yu Z, et al. Toll-like receptors in tumor immunotherapy. Clin Cancer Res 2007; 13:5280 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-07-1378; PMID: 17875756
  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894 - 907; http://dx.doi.org/10.4161/onci.20931; PMID: 23162757
  • Yang Y, Huang CT, Huang X, Pardoll DM. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 2004; 5:508 - 15; http://dx.doi.org/10.1038/ni1059; PMID: 15064759
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215 - 33; http://dx.doi.org/10.1038/nrd3626; PMID: 22301798
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74 - 88; http://dx.doi.org/10.1016/j.immuni.2013.06.014; PMID: 23890065
  • Yeh S, Karne NK, Kerkar SP, Heller CK, Palmer DC, Johnson LA, Li Z, Bishop RJ, Wong WT, Sherry RM, et al. Ocular and systemic autoimmunity after successful tumor-infiltrating lymphocyte immunotherapy for recurrent, metastatic melanoma. Ophthalmology 2009; 116:981 - , e1; http://dx.doi.org/10.1016/j.ophtha.2008.12.004; PMID: 19410956
  • Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013; 36:133 - 51; http://dx.doi.org/10.1097/CJI.0b013e3182829903; PMID: 23377668
  • Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, McGary K, Huang K, Boyer J, Corse E, et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci U S A 2013; 110:6973 - 8; http://dx.doi.org/10.1073/pnas.1221609110; PMID: 23576742
  • Wilde S, Schendel DJ. High-quality and high-avidity T cell clones specific for tumor-associated antigens and how to find them. Oncoimmunology 2012; 1:1643 - 4; http://dx.doi.org/10.4161/onci.21717; PMID: 23264922
  • Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2013; 2:e23803; http://dx.doi.org/10.4161/onci.23803; PMID: 23734328
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557 - 76; http://dx.doi.org/10.4161/onci.22428; PMID: 23264902
  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368:1509 - 18; http://dx.doi.org/10.1056/NEJMoa1215134; PMID: 23527958
  • Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, Chen K, Shin M, Wall DM, Hönemann D, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 2013; 21:2122 - 9; http://dx.doi.org/10.1038/mt.2013.154; PMID: 23831595
  • Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG, Hakim FT, Halverson DC, Fowler DH, Hardy NM, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 2013; 122:4129 - 39; http://dx.doi.org/10.1182/blood-2013-08-519413; PMID: 24055823
  • Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, Diouf O, Liu E, Barrett AJ, Ito S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 2013; 122:2965 - 73; http://dx.doi.org/10.1182/blood-2013-06-506741; PMID: 24030379
  • Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, Carrum G, Ramos C, Fayad L, Shpall EJ, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol 2013; Forthcoming http://dx.doi.org/10.1200/JCO.2013.51.5304; PMID: 24344220
  • Dudley ME, Gross CA, Somerville RP, Hong Y, Schaub NP, Rosati SF, White DE, Nathan D, Restifo NP, Steinberg SM, et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol 2013; 31:2152 - 9; http://dx.doi.org/10.1200/JCO.2012.46.6441; PMID: 23650429
  • Besser MJ, Shapira-Frommer R, Itzhaki O, Treves AJ, Zippel DB, Levy D, Kubi A, Shoshani N, Zikich D, Ohayon Y, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 2013; 19:4792 - 800; http://dx.doi.org/10.1158/1078-0432.CCR-13-0380; PMID: 23690483
  • Domschke C, Ge Y, Bernhardt I, Schott S, Keim S, Juenger S, Bucur M, Mayer L, Blumenstein M, Rom J, et al. Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother 2013; 62:1053 - 60; http://dx.doi.org/10.1007/s00262-013-1414-x; PMID: 23595207
  • Chia WK, Teo M, Wang WW, Lee B, Ang SF, Tai WM, Chee CL, Ng J, Kan R, Lim WT, et al. Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Mol Ther 2014; 22:132 - 9; http://dx.doi.org/10.1038/mt.2013.242; PMID: 24297049
  • Shimizu K, Kotera Y, Aruga A, Takeshita N, Katagiri S, Ariizumi SI, Takahashi Y, Yoshitoshi K, Takasaki K, Yamamoto M. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum Vaccin Immunother 2014; 10; Forthcoming http://dx.doi.org/10.4161/hv.27678; PMID: 24419174
  • Wang Z, Zhang Y, Liu Y, Wang L, Zhao L, Yang T, He C, Song Y, Gao Q. Association of myeloid-derived suppressor cells and efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma patients. J Immunother 2014; 37:43 - 50; http://dx.doi.org/10.1097/CJI.0000000000000005; PMID: 24316555
  • Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 2013; 21:904 - 12; http://dx.doi.org/10.1038/mt.2013.17; PMID: 23423337
  • Davila ML, Brentjens R, Wang X, Rivière I, Sadelain M. How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology 2012; 1:1577 - 83; http://dx.doi.org/10.4161/onci.22524; PMID: 23264903
  • Kaluza KM, Vile R. Improving the outcome of adoptive cell transfer by targeting tumor escape. Oncoimmunology 2013; 2:e22059; http://dx.doi.org/10.4161/onci.22059; PMID: 23483796
  • Cao Y, Merling A, Karsten U, Schwartz-Albiez R. The fucosylated histo-blood group antigens H type 2 (blood group O, CD173) and Lewis Y (CD174) are expressed on CD34+ hematopoietic progenitors but absent on mature lymphocytes. Glycobiology 2001; 11:677 - 83; http://dx.doi.org/10.1093/glycob/11.8.677; PMID: 11479278
  • Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362:1375 - 7; http://dx.doi.org/10.1016/S0140-6736(03)14634-X; PMID: 14585640
  • Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, Carrum G, Krance RA, Chang CC, Molldrem JJ, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12:1160 - 6; http://dx.doi.org/10.1038/nm1475; PMID: 16998485
  • Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002; 2:85 - 95; http://dx.doi.org/10.1038/nri724; PMID: 11910899
  • Vanderlugt CJ, Miller SD. Epitope spreading. Curr Opin Immunol 1996; 8:831 - 6; http://dx.doi.org/10.1016/S0952-7915(96)80012-4; PMID: 8994863
  • Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, Levy D, Kubi A, Hovav E, Chermoshniuk N, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 2010; 16:2646 - 55; http://dx.doi.org/10.1158/1078-0432.CCR-10-0041; PMID: 20406835
  • Donia M, Junker N, Ellebaek E, Andersen MH, Straten PT, Svane IM. Characterization and comparison of “Standard” and “Young” tumor infiltrating lymphocytes for adoptive cell therapy at a Danish Translational Research Institution. Scand J Immunol 2011; Forthcoming PMID: 21955245
  • Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010; 16:6122 - 31; http://dx.doi.org/10.1158/1078-0432.CCR-10-1297; PMID: 20668005
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. OncoImmunology 2014; 3:e27297
  • Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; http://dx.doi.org/10.4161/onci.22789; PMID: 23482847
  • Besser MJ. Is there a future for adoptive cell transfer in melanoma patients?. Oncoimmunology 2013; 2:e26098; http://dx.doi.org/10.4161/onci.26098; PMID: 24353909
  • Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2013; 2:e24117; http://dx.doi.org/10.4161/onci.24117; PMID: 23734336
  • Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869 - 83; http://dx.doi.org/10.1038/onc.2011.384; PMID: 21892204
  • Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S, Michaud M, Menger L, Gdoura A, Tajeddine N, et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011; 30:1147 - 58; http://dx.doi.org/10.1038/onc.2010.500; PMID: 21151176
  • Disis ML, Schiffman K, Gooley TA, McNeel DG, Rinn K, Knutson KL. Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin Cancer Res 2000; 6:1347 - 50; PMID: 10778962
  • de Vries IJ, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijk SP, Gerritsen MJ, Ruiter DJ, Figdor CG, Punt CJ, Adema GJ. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 2005; 23:5779 - 87; http://dx.doi.org/10.1200/JCO.2005.06.478; PMID: 16110035
  • Wolchok JD, Chapman PB. How can we tell when cancer vaccines vaccinate?. J Clin Oncol 2003; 21:586 - 7; http://dx.doi.org/10.1200/JCO.2003.12.065; PMID: 12586792
  • Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. J Transl Med 2013; 11:83; http://dx.doi.org/10.1186/1479-5876-11-83; PMID: 23536996
  • Introna M, Golay J, Rambaldi A. Cytokine Induced Killer (CIK) cells for the treatment of haematological neoplasms. Immunol Lett 2013; 155:27 - 30; http://dx.doi.org/10.1016/j.imlet.2013.09.017; PMID: 24084446
  • Sangiolo D, Mesiano G, Gammaitoni L, Leuci V, Todorovic M, Giraudo L, Cammarata C, Dell’Aglio C, D’Ambrosio L, Pisacane A, et al. Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas. Cancer Res 2014; 74:119 - 29; http://dx.doi.org/10.1158/0008-5472.CAN-13-1559; PMID: 24356422
  • Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 2009; 9:900 - 9; http://dx.doi.org/10.1016/j.intimp.2009.03.015; PMID: 19336265
  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11:6713 - 21; http://dx.doi.org/10.1158/1078-0432.CCR-05-0883; PMID: 16166452
  • Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013; 12:829 - 46; http://dx.doi.org/10.1038/nrd4145; PMID: 24113830
  • Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Kroemer G. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179 - 88; http://dx.doi.org/10.4161/onci.1.2.19026; PMID: 22720239
  • Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; http://dx.doi.org/10.4161/onci.23510; PMID: 23687621
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51 - 72; http://dx.doi.org/10.1146/annurev-immunol-032712-100008; PMID: 23157435
  • Budde LE, Berger C, Lin Y, Wang J, Lin X, Frayo SE, Brouns SA, Spencer DM, Till BG, Jensen MC, et al. Combining a CD20 Chimeric Antigen Receptor and an Inducible Caspase 9 Suicide Switch to Improve the Efficacy and Safety of T Cell Adoptive Immunotherapy for Lymphoma. PLoS One 2013; 8:e82742; http://dx.doi.org/10.1371/journal.pone.0082742; PMID: 24358223
  • Labarriere N, Fortun A, Bellec A, Khammari A, Dreno B, Saïagh S, Lang F. A full GMP process to select and amplify epitope-specific T lymphocytes for adoptive immunotherapy of metastatic melanoma. Clin Dev Immunol 2013; 2013:932318; http://dx.doi.org/10.1155/2013/932318; PMID: 24194775
  • Ma C, Cheung AF, Chodon T, Koya RC, Wu Z, Ng C, Avramis E, Cochran AJ, Witte ON, Baltimore D, et al. Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov 2013; 3:418 - 29; http://dx.doi.org/10.1158/2159-8290.CD-12-0383; PMID: 23519018
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780 - 8; http://dx.doi.org/10.1038/nrm3479; PMID: 23175281
  • Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11:621 - 32; http://dx.doi.org/10.1038/nrm2952; PMID: 20683470
  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell 2010; 37:299 - 310; http://dx.doi.org/10.1016/j.molcel.2010.01.025; PMID: 20159550
  • Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR. Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci U S A 2008; 105:20327 - 32; http://dx.doi.org/10.1073/pnas.0808036105; PMID: 19074266
  • Karlsson H, Lindqvist AC, Fransson M, Paul-Wetterberg G, Nilsson B, Essand M, Nilsson K, Frisk P, Jernberg-Wiklund H, Loskog A. Combining CAR T cells and the Bcl-2 family apoptosis inhibitor ABT-737 for treating B-cell malignancy. Cancer Gene Ther 2013; 20:386 - 93; http://dx.doi.org/10.1038/cgt.2013.35; PMID: 23788110
  • Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, Hoffman L, Aguilar B, Chang WC, Bretzlaff W, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 2013; 122:3138 - 48; http://dx.doi.org/10.1182/blood-2012-12-474056; PMID: 24030378
  • Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013; 19:747 - 52; http://dx.doi.org/10.1038/nm.3161; PMID: 23644516
  • Semeraro M, Galluzzi L. Novel insights into the mechanism of action of lenalidomide. OncoImmunology 2014; 3 Forthcoming
  • Noonan K, Rudraraju L, Ferguson A, Emerling A, Pasetti MF, Huff CA, Borrello I. Lenalidomide-induced immunomodulation in multiple myeloma: impact on vaccines and antitumor responses. Clin Cancer Res 2012; 18:1426 - 34; http://dx.doi.org/10.1158/1078-0432.CCR-11-1221; PMID: 22241792
  • Semeraro M, Vacchelli E, Eggermont A, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Lenalidomide-based immunochemotherapy. Oncoimmunology 2013; 2:e26494; http://dx.doi.org/10.4161/onci.26494; PMID: 24482747
  • Kotla V, Goel S, Nischal S, Heuck C, Vivek K, Das B, Verma A. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol 2009; 2:36; http://dx.doi.org/10.1186/1756-8722-2-36; PMID: 19674465
  • Lai JP, Rosenberg AZ, Miettinen MM, Lee CC. NY-ESO-1 expression in sarcomas: A diagnostic marker and immunotherapy target. Oncoimmunology 2012; 1:1409 - 10; http://dx.doi.org/10.4161/onci.21059; PMID: 23243610
  • Suri A, Saini S, Sinha A, Agarwal S, Verma A, Parashar D, Singh S, Gupta N, Jagadish N. Cancer testis antigens: A new paradigm for cancer therapy. Oncoimmunology 2012; 1:1194 - 6; http://dx.doi.org/10.4161/onci.20686; PMID: 23170277
  • Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5:615 - 25; http://dx.doi.org/10.1038/nrc1669; PMID: 16034368
  • O’Connell FP, Pinkus JL, Pinkus GS. CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol 2004; 121:254 - 63; http://dx.doi.org/10.1309/617DWB5GNFWXHW4L; PMID: 14983940
  • Chiron D, Surget S, Maïga S, Bataille R, Moreau P, Le Gouill S, Amiot M, Pellat-Deceunynck C. The peripheral CD138+ population but not the CD138- population contains myeloma clonogenic cells in plasma cell leukaemia patients. Br J Haematol 2012; 156:679 - 83; http://dx.doi.org/10.1111/j.1365-2141.2011.08904.x; PMID: 21988294
  • Kaufman HL. Vaccines for melanoma and renal cell carcinoma. Semin Oncol 2012; 39:263 - 75; http://dx.doi.org/10.1053/j.seminoncol.2012.02.011; PMID: 22595049
  • Hauschild A. Adjuvant interferon alfa for melanoma: new evidence-based treatment recommendations?. Curr Oncol 2009; 16:3 - 6; http://dx.doi.org/10.3747/co.v16i3.447; PMID: 19526078
  • Heemskerk B, Liu K, Dudley ME, Johnson LA, Kaiser A, Downey S, Zheng Z, Shelton TE, Matsuda K, Robbins PF, et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther 2008; 19:496 - 510; http://dx.doi.org/10.1089/hum.2007.0171; PMID: 18444786
  • Kharaziha P, Ceder S, Sanchez C, Panaretakis T. Multitargeted therapies for multiple myeloma. Autophagy 2013; 9:255 - 7; http://dx.doi.org/10.4161/auto.22738; PMID: 23183549
  • Kharaziha P, De Raeve H, Fristedt C, Li Q, Gruber A, Johnsson P, Kokaraki G, Panzar M, Laane E, Osterborg A, et al. Sorafenib has potent antitumor activity against multiple myeloma in vitro, ex vivo, and in vivo in the 5T33MM mouse model. Cancer Res 2012; 72:5348 - 62; http://dx.doi.org/10.1158/0008-5472.CAN-12-0658; PMID: 22952216
  • Kharaziha P, Rodriguez P, Li Q, Rundqvist H, Björklund AC, Augsten M, Ullén A, Egevad L, Wiklund P, Nilsson S, et al. Targeting of distinct signaling cascades and cancer-associated fibroblasts define the efficacy of Sorafenib against prostate cancer cells. Cell Death Dis 2012; 3:e262; http://dx.doi.org/10.1038/cddis.2012.1; PMID: 22278289
  • Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006; 5:835 - 44; http://dx.doi.org/10.1038/nrd2130; PMID: 17016424
  • Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, Norley S, Lipp M, Walther W, Pezzutto A, et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2012; 1:1537 - 45; http://dx.doi.org/10.4161/onci.22563; PMID: 23264900
  • Inoue M, Mimura K, Izawa S, Shiraishi K, Inoue A, Shiba S, Watanabe M, Maruyama T, Kawaguchi Y, Inoue S, et al. Expression of MHC Class I on breast cancer cells correlates inversely with HER2 expression. Oncoimmunology 2012; 1:1104 - 10; http://dx.doi.org/10.4161/onci.21056; PMID: 23170258
  • Boehrer S, Adès L, Braun T, Galluzzi L, Grosjean J, Fabre C, Le Roux G, Gardin C, Martin A, de Botton S, et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 2008; 111:2170 - 80; http://dx.doi.org/10.1182/blood-2007-07-100362; PMID: 17925489
  • de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T, Ripoche H, Lazar V, Dessen P, Harper F, et al. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 2007; 67:6253 - 62; http://dx.doi.org/10.1158/0008-5472.CAN-07-0538; PMID: 17616683
  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Fridman WH, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: DNA vaccines for cancer therapy. OncoImmunology 2014; 3:e28185 Forthcoming
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621; http://dx.doi.org/10.4161/onci.26621; PMID: 24498550
  • Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 2013; 39:49 - 60; http://dx.doi.org/10.1016/j.immuni.2013.07.002; PMID: 23890063
  • Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y, Zhang YJ, Baskin DS, Merchant FA, Brawley VS, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 2013; 21:2087 - 101; http://dx.doi.org/10.1038/mt.2013.185; PMID: 23939024
  • Kaluza KM, Kottke T, Diaz RM, Rommelfanger D, Thompson J, Vile R. Adoptive transfer of cytotoxic T lymphocytes targeting two different antigens limits antigen loss and tumor escape. Hum Gene Ther 2012; 23:1054 - 64; http://dx.doi.org/10.1089/hum.2012.030; PMID: 22734672
  • Stone JD, Kranz DM. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 2013; 4:244; http://dx.doi.org/10.3389/fimmu.2013.00244; PMID: 23970885
  • Brentjens RJ. CARs and cancers: questions and answers. Blood 2012; 119:3872 - 3; http://dx.doi.org/10.1182/blood-2012-02-410373; PMID: 22538493
  • Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013; 13:525 - 41; http://dx.doi.org/10.1038/nrc3565; PMID: 23880905