4,493
Views
88
CrossRef citations to date
0
Altmetric
Special Focus Review

Autonomic cardiac innervation

Development and adult plasticity

Pages 176-193 | Received 02 Apr 2013, Accepted 01 May 2013, Published online: 14 May 2013

References

  • Westfall TC. Local regulation of adrenergic neurotransmission. Physiol Rev 1977; 57:659 - 728; PMID: 198824
  • Smolen AJ. Morphology of synapses in the autonomic nervous system. J Electron Microsc Tech 1988; 10:187 - 204; http://dx.doi.org/10.1002/jemt.1060100205; PMID: 3068334
  • Levy MN. Autonomic interactions in cardiac control. Ann N Y Acad Sci 1990; 601:209 - 21; http://dx.doi.org/10.1111/j.1749-6632.1990.tb37302.x; PMID: 2221687
  • Ito M, Zipes DP. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation 1994; 90:1459 - 68; http://dx.doi.org/10.1161/01.CIR.90.3.1459; PMID: 8087953
  • Crick SJ, Anderson RH, Ho SY, Sheppard MN. Localisation and quantitation of autonomic innervation in the porcine heart II: endocardium, myocardium and epicardium. J Anat 1999; 195:359 - 73; http://dx.doi.org/10.1046/j.1469-7580.1999.19530359.x; PMID: 10580851
  • Crick SJ, Wharton J, Sheppard MN, Royston D, Yacoub MH, Anderson RH, et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation 1994; 89:1697 - 708; http://dx.doi.org/10.1161/01.CIR.89.4.1697; PMID: 7908612
  • Crick SJ, Sheppard MN, Ho SY, Anderson RH. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J Anat 1999; 195:341 - 57; http://dx.doi.org/10.1046/j.1469-7580.1999.19530341.x; PMID: 10580850
  • Chow LT, Chow SS, Anderson RH, Gosling JA. Innervation of the human cardiac conduction system at birth. Br Heart J 1993; 69:430 - 5; http://dx.doi.org/10.1136/hrt.69.5.430; PMID: 7686024
  • Pardini BJ, Lund DD, Schmid PG. Organization of the sympathetic postganglionic innervation of the rat heart. J Auton Nerv Syst 1989; 28:193 - 201; http://dx.doi.org/10.1016/0165-1838(89)90146-X; PMID: 2628461
  • Pardini BJ, Lund DD, Schmid PG. Innervation patterns of the middle cervical--stellate ganglion complex in the rat. Neurosci Lett 1990; 117:300 - 6; http://dx.doi.org/10.1016/0304-3940(90)90681-X; PMID: 2128849
  • Protas L, Qu J, Robinson RB. Neuropeptide y: neurotransmitter or trophic factor in the heart?. News Physiol Sci 2003; 18:181 - 5; PMID: 14500795
  • Ernsberger U. The development of postganglionic sympathetic neurons: coordinating neuronal differentiation and diversification. Auton Neurosci 2001; 94:1 - 13; http://dx.doi.org/10.1016/S1566-0702(01)00336-8; PMID: 11775697
  • Yang T, Levy MN. Sequence of excitation as a factor in sympathetic-parasympathetic interactions in the heart. Circ Res 1992; 71:898 - 905; http://dx.doi.org/10.1161/01.RES.71.4.898; PMID: 1516162
  • Warner MR, Levy MN. Neuropeptide Y as a putative modulator of the vagal effects on heart rate. Circ Res 1989; 64:882 - 9; http://dx.doi.org/10.1161/01.RES.64.5.882; PMID: 2706760
  • Herring N, Cranley J, Lokale MN, Li D, Shanks J, Alston EN, et al. The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol 2012; 52:667 - 76; http://dx.doi.org/10.1016/j.yjmcc.2011.11.016; PMID: 22172449
  • Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ. Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. J Mol Cell Cardiol 2008; 44:477 - 85; http://dx.doi.org/10.1016/j.yjmcc.2007.10.001; PMID: 17996892
  • Singh S, Johnson PI, Javed A, Gray TS, Lonchyna VA, Wurster RD. Monoamine- and histamine-synthesizing enzymes and neurotransmitters within neurons of adult human cardiac ganglia. Circulation 1999; 99:411 - 9; http://dx.doi.org/10.1161/01.CIR.99.3.411; PMID: 9918529
  • Ardell JL, Randall WC. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 1986; 251:H764 - 73; PMID: 3021001
  • Randall WC, Milosavljevic M, Wurster RD, Geis GS, Ardell JL. Selective vagal innervation of the heart. Ann Clin Lab Sci 1986; 16:198 - 208; PMID: 2872849
  • Singh S, Johnson PI, Lee RE, Orfei E, Lonchyna VA, Sullivan HJ, et al. Topography of cardiac ganglia in the adult human heart. J Thorac Cardiovasc Surg 1996; 112:943 - 53; http://dx.doi.org/10.1016/S0022-5223(96)70094-6; PMID: 8873720
  • Lachman N, Syed FF, Habib A, Kapa S, Bisco SE, Venkatachalam KL, et al. Correlative anatomy for the electrophysiologist, part II: cardiac ganglia, phrenic nerve, coronary venous system. J Cardiovasc Electrophysiol 2011; 22:104 - 10; http://dx.doi.org/10.1111/j.1540-8167.2010.01882.x; PMID: 20807274
  • Kapa S, Venkatachalam KL, Asirvatham SJ. The autonomic nervous system in cardiac electrophysiology: an elegant interaction and emerging concepts. Cardiol Rev 2010; 18:275 - 84; http://dx.doi.org/10.1097/CRD.0b013e3181ebb152; PMID: 20926936
  • Conlon K, Collins T, Kidd C. Modulation of vagal actions on heart rate produced by inhibition of nitric oxide synthase in the anaesthetized ferret. Exp Physiol 1996; 81:547 - 50; PMID: 8737087
  • Herring N, Zaman JA, Paterson DJ. Natriuretic peptides like NO facilitate cardiac vagal neurotransmission and bradycardia via a cGMP pathway. Am J Physiol Heart Circ Physiol 2001; 281:H2318 - 27; PMID: 11709398
  • Henning RJ, Sawmiller DR. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 2001; 49:27 - 37; http://dx.doi.org/10.1016/S0008-6363(00)00229-7; PMID: 11121793
  • Vanhoutte PM, Levy MN. Prejunctional cholinergic modulation of adrenergic neurotransmission in the cardiovascular system. Am J Physiol 1980; 238:H275 - 81; PMID: 6245589
  • Manabe N, Foldes FF, Töröcsik A, Nagashima H, Goldiner PL, Vizi ES. Presynaptic interaction between vagal and sympathetic innervation in the heart: modulation of acetylcholine and noradrenaline release. J Auton Nerv Syst 1991; 32:233 - 42; http://dx.doi.org/10.1016/0165-1838(91)90117-L; PMID: 1645381
  • Löffelholz K, Pappano AJ. The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 1985; 37:1 - 24; PMID: 2408285
  • Pappano AJ. Development of cholinergic neuroeffector transmission in the avian heart. Implications for regulatory mechanisms. Ann N Y Acad Sci 1990; 588:131 - 6; http://dx.doi.org/10.1111/j.1749-6632.1990.tb13203.x; PMID: 2162649
  • Ehinger B, Falck B, Sporrong B. Possible axo-axonal synapses between peripheral adrenergic and cholinergic nerve terminals. Z Zellforsch Mikrosk Anat 1970; 107:508 - 21; http://dx.doi.org/10.1007/BF00335438; PMID: 5448481
  • Choate JK, Klemm M, Hirst GD. Sympathetic and parasympathetic neuromuscular junctions in the guinea-pig sino-atrial node. J Auton Nerv Syst 1993; 44:1 - 15; http://dx.doi.org/10.1016/0165-1838(93)90374-4; PMID: 8409214
  • Parsons RL. Mammalian cardiac ganglia as local integration centers: histochemical and electrophysiological evidence. In: Dun NJ, ed. Neural Mechanisms of Cardiovascular Regulation. Boston: Kluwer Academic Publishers; 2004:335-6.
  • Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 2004; 287:R262 - 71; http://dx.doi.org/10.1152/ajpregu.00183.2004; PMID: 15271675
  • Ardell JL. Neurohumoral control of cardiac fauntion. In: Sperelakis N, ed. Heart physiology and pathophysiology. San Diego: Academic Press; 2001:45-59.
  • Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL. Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1066 - 75; PMID: 12842863
  • Waldmann M, Thompson GW, Kember GC, Ardell JL, Armour JA. Stochastic behavior of atrial and ventricular intrinsic cardiac neurons. J Appl Physiol 2006; 101:413 - 9; http://dx.doi.org/10.1152/japplphysiol.01346.2005; PMID: 16645188
  • Thompson GW, Collier K, Ardell JL, Kember G, Armour JA. Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus. J Physiol 2000; 528:561 - 71; http://dx.doi.org/10.1111/j.1469-7793.2000.00561.x; PMID: 11060132
  • Olshansky B. Interrelationships between the autonomic nervous system and atrial fibrillation. Prog Cardiovasc Dis 2005; 48:57 - 78; http://dx.doi.org/10.1016/j.pcad.2005.06.004; PMID: 16194692
  • Armour JA. Intrinsic cardiac neurons involved in cardiac regulation possess alpha 1-, alpha 2-, beta 1- and beta 2-adrenoceptors. Can J Cardiol 1997; 13:277 - 84; PMID: 9117916
  • Yiallourou SR, Sands SA, Walker AM, Horne RS. Maturation of heart rate and blood pressure variability during sleep in term-born infants. Sleep 2012; 35:177 - 86; PMID: 22294807
  • Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RS. The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev 2013; 89:145 - 52; http://dx.doi.org/10.1016/j.earlhumdev.2012.09.009; PMID: 23058299
  • Ledwidge M, Fox G, Matthews T. Neurocardiogenic syncope: a model for SIDS. Arch Dis Child 1998; 78:481 - 3; http://dx.doi.org/10.1136/adc.78.5.481; PMID: 9659101
  • Crump C, Winkleby MA, Sundquist K, Sundquist J. Risk of hypertension among young adults who were born preterm: a Swedish national study of 636,000 births. Am J Epidemiol 2011; 173:797 - 803; http://dx.doi.org/10.1093/aje/kwq440; PMID: 21320866
  • Barker DJ, Eriksson JG, Forsén T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002; 31:1235 - 9; http://dx.doi.org/10.1093/ije/31.6.1235; PMID: 12540728
  • Barker DJ. Fetal programming of coronary heart disease. Trends Endocrinol Metab 2002; 13:364 - 8; http://dx.doi.org/10.1016/S1043-2760(02)00689-6; PMID: 12367816
  • Leon DA, Lithell HO, Vâgerö D, Koupilová I, Mohsen R, Berglund L, et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915-29. BMJ 1998; 317:241 - 5; http://dx.doi.org/10.1136/bmj.317.7153.241; PMID: 9677213
  • Alkon A, Boyce WT, Davis NV, Eskenazi B. Developmental changes in autonomic nervous system resting and reactivity measures in Latino children from 6 to 60 months of age. J Dev Behav Pediatr 2011; 32:668 - 77; http://dx.doi.org/10.1097/DBP.0b013e3182331fa6; PMID: 22008788
  • Treadwell MJ, Alkon A, Styles L, Boyce WT. Autonomic nervous system reactivity: children with and without sickle cell disease. Nurs Res 2011; 60:197 - 207; http://dx.doi.org/10.1097/NNR.0b013e3182186a21; PMID: 21532352
  • Mizuno M, Siddique K, Baum M, Smith SA. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress. Hypertension 2013; 61:180 - 6; http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.199356; PMID: 23150514
  • Samuelsson AM, Morris A, Igosheva N, Kirk SL, Pombo JM, Coen CW, et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension 2010; 55:76 - 82; http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.139402; PMID: 19901159
  • Tucker DC, Johnson AK. Development of autonomic control of heart rate in genetically hypertensive and normotensive rats. Am J Physiol 1984; 246:R570 - 7; PMID: 6144273
  • Moore KL, Persaud TVN. The Developing Human: Clinically Oriented Embryology. 8th ed. Elsevier, 2007.
  • Huber K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 2006; 298:335 - 43; http://dx.doi.org/10.1016/j.ydbio.2006.07.010; PMID: 16928368
  • Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 2009; 151:46 - 60; http://dx.doi.org/10.1016/j.autneu.2009.08.009; PMID: 19748836
  • Davies AM. Extracellular signals regulating sympathetic neuron survival and target innervation during development. Auton Neurosci 2009; 151:39 - 45; http://dx.doi.org/10.1016/j.autneu.2009.07.011; PMID: 19660992
  • Rohrer H. Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 2011; 34:1563 - 73; http://dx.doi.org/10.1111/j.1460-9568.2011.07860.x; PMID: 22103414
  • Jiang M, Stanke J, Lahti JM. The connections between neural crest development and neuroblastoma. Curr Top Dev Biol 2011; 94:77 - 127; http://dx.doi.org/10.1016/B978-0-12-380916-2.00004-8; PMID: 21295685
  • Stewart RA, Lee JS, Lachnit M, Look AT, Kanki JP, Henion PD. Studying peripheral sympathetic nervous system development and neuroblastoma in zebrafish. Methods Cell Biol 2010; 100:127 - 52; http://dx.doi.org/10.1016/B978-0-12-384892-5.00005-0; PMID: 21111216
  • Vincentz JW, Rubart M, Firulli AB. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease. Pediatr Cardiol 2012; 33:923 - 8; http://dx.doi.org/10.1007/s00246-012-0248-1; PMID: 22395650
  • Kirby ML, Hutson MR. Factors controlling cardiac neural crest cell migration. Cell Adh Migr 2010; 4:609 - 21; http://dx.doi.org/10.4161/cam.4.4.13489; PMID: 20890117
  • Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2011; 165:10 - 27; http://dx.doi.org/10.1016/j.autneu.2010.03.002; PMID: 20346736
  • Cane KN, Anderson CR. Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17 - 29; http://dx.doi.org/10.1016/j.autneu.2009.08.010; PMID: 19819195
  • Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat 2009; 22:36 - 46; http://dx.doi.org/10.1002/ca.20695; PMID: 18846544
  • Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl) 2005; 209:425 - 38; http://dx.doi.org/10.1007/s00429-005-0462-1; PMID: 15887046
  • Kimura K, Ieda M, Fukuda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res 2012; 110:325 - 36; http://dx.doi.org/10.1161/CIRCRESAHA.111.257253; PMID: 22267838
  • Kasemeier-Kulesa JC, Kulesa PM, Lefcort F. Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 2005; 132:235 - 45; http://dx.doi.org/10.1242/dev.01553; PMID: 15590743
  • Lallier TE, Bronner-Fraser M. A spatial and temporal analysis of dorsal root and sympathetic ganglion formation in the avian embryo. Dev Biol 1988; 127:99 - 112; http://dx.doi.org/10.1016/0012-1606(88)90192-3; PMID: 3282939
  • Loring JF, Erickson CA. Neural crest cell migratory pathways in the trunk of the chick embryo. Dev Biol 1987; 121:220 - 36; http://dx.doi.org/10.1016/0012-1606(87)90154-0; PMID: 3552788
  • Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, Kulesa PM. Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development 2006; 133:4839 - 47; http://dx.doi.org/10.1242/dev.02662; PMID: 17108003
  • Krull CE, Lansford R, Gale NW, Collazo A, Marcelle C, Yancopoulos GD, et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 1997; 7:571 - 80; http://dx.doi.org/10.1016/S0960-9822(06)00256-9; PMID: 9259560
  • Wang HU, Anderson DJ. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 1997; 18:383 - 96; http://dx.doi.org/10.1016/S0896-6273(00)81240-4; PMID: 9115733
  • Henion PD, Weston JA. Timing and pattern of cell fate restrictions in the neural crest lineage. Development 1997; 124:4351 - 9; PMID: 9334283
  • Rubin E. Development of the rat superior cervical ganglion: ganglion cell maturation. J Neurosci 1985; 5:673 - 84; PMID: 2983044
  • Purves D, Rubin E, Snider WD, Lichtman J. Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways. J Neurosci 1986; 6:158 - 63; PMID: 3944617
  • Gonsalvez DG, Cane KN, Landman KA, Enomoto H, Young HM, Anderson CR. Proliferation and cell cycle dynamics in the developing stellate ganglion. J Neurosci 2013; 33:5969 - 79; http://dx.doi.org/10.1523/JNEUROSCI.4350-12.2013; PMID: 23554478
  • Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, et al. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 2002; 35:267 - 82; http://dx.doi.org/10.1016/S0896-6273(02)00774-2; PMID: 12160745
  • Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM Jr., Milbrandt J. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 2001; 128:3963 - 74; PMID: 11641220
  • Young HM, Anderson RB, Anderson CR. Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 2004; 112:1 - 14; http://dx.doi.org/10.1016/j.autneu.2004.02.008; PMID: 15233925
  • Schwarz Q, Maden CH, Vieira JM, Ruhrberg C. Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci U S A 2009; 106:6164 - 9; http://dx.doi.org/10.1073/pnas.0811521106; PMID: 19325129
  • Fantin A, Maden CH, Ruhrberg C. Neuropilin ligands in vascular and neuronal patterning. Biochem Soc Trans 2009; 37:1228 - 32; http://dx.doi.org/10.1042/BST0371228; PMID: 19909252
  • Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, et al. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 2007; 13:604 - 12; http://dx.doi.org/10.1038/nm1570; PMID: 17417650
  • Tillo M, Ruhrberg C, Mackenzie F. Emerging roles for semaphorins and VEGFs in synaptogenesis and synaptic plasticity. Cell Adh Migr 2012; 6:541 - 6; http://dx.doi.org/10.4161/cam.22408; PMID: 23076132
  • Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C. NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 2012; 369:277 - 85; http://dx.doi.org/10.1016/j.ydbio.2012.06.026; PMID: 22790009
  • Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels 2003; 18:32 - 9; http://dx.doi.org/10.1007/s003800300005; PMID: 12644879
  • Waimey KE, Huang PH, Chen M, Cheng HJ. Plexin-A3 and plexin-A4 restrict the migration of sympathetic neurons but not their neural crest precursors. Dev Biol 2008; 315:448 - 58; http://dx.doi.org/10.1016/j.ydbio.2008.01.002; PMID: 18262512
  • Chan WY, Cheung CS, Yung KM, Copp AJ. Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development 2004; 131:3367 - 79; http://dx.doi.org/10.1242/dev.01197; PMID: 15226254
  • Verberne ME, Gittenberger-de Groot AC, van Iperen L, Poelmann RE. Distribution of different regions of cardiac neural crest in the extrinsic and the intrinsic cardiac nervous system. Dev Dyn 2000; 217:191 - 204; http://dx.doi.org/10.1002/(SICI)1097-0177(200002)217:2<191::AID-DVDY6>3.0.CO;2-X; PMID: 10706143
  • Hildreth V, Webb S, Bradshaw L, Brown NA, Anderson RH, Henderson DJ. Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart. J Anat 2008; 212:1 - 11; PMID: 18031480
  • Pappano AJ. Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev 1977; 29:3 - 33; PMID: 22089
  • Kirby ML, McKenzie JW, Weidman TA. Developing innervation of the chick heart: a histofluorescence and light microscopic study of sympthetic innervation. Anat Rec 1980; 196:333 - 40; http://dx.doi.org/10.1002/ar.1091960309; PMID: 7406224
  • Kirby ML, Weidman TA, McKenzie JW. An ultrastructural study of the cardia ganglia in the bulbar plexus of the developing chick heart. Dev Neurosci 1980; 3:174 - 84; http://dx.doi.org/10.1159/000112390; PMID: 7460790
  • O’Rahilly R, Müller F. The development of the neural crest in the human. J Anat 2007; 211:335 - 51; http://dx.doi.org/10.1111/j.1469-7580.2007.00773.x; PMID: 17848161
  • Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983; 220:1059 - 61; http://dx.doi.org/10.1126/science.6844926; PMID: 6844926
  • Kirby ML, Stewart DE. Neural crest origin of cardiac ganglion cells in the chick embryo: identification and extirpation. Dev Biol 1983; 97:433 - 43; http://dx.doi.org/10.1016/0012-1606(83)90100-8; PMID: 6852374
  • Brown CB, Feiner L, Lu MM, Li J, Ma X, Webber AL, et al. PlexinA2 and semaphorin signaling during cardiac neural crest development. Development 2001; 128:3071 - 80; PMID: 11688557
  • Verberne ME, Gittenberger-De Groot AC, Poelmann RE. Distribution of antigen epitopes shared by nerves and the myocardium of the embryonic chick heart using different neuronal markers. Anat Rec 2000; 260:335 - 50; http://dx.doi.org/10.1002/1097-0185(200012)260:4<334::AID-AR20>3.0.CO;2-Y; PMID: 11074398
  • Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 1999; 24:861 - 70; http://dx.doi.org/10.1016/S0896-6273(00)81033-8; PMID: 10624949
  • Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996; 85:331 - 43; http://dx.doi.org/10.1016/S0092-8674(00)81112-5; PMID: 8616889
  • Morikawa Y, Zehir A, Maska E, Deng C, Schneider MD, Mishina Y, et al. BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development 2009; 136:3575 - 84; http://dx.doi.org/10.1242/dev.038133; PMID: 19793887
  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999; 399:366 - 70; http://dx.doi.org/10.1038/20700; PMID: 10360575
  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 1993; 75:463 - 76; http://dx.doi.org/10.1016/0092-8674(93)90381-Y; PMID: 8221886
  • Pattyn A, Guillemot F, Brunet JF. Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 2006; 295:67 - 75; http://dx.doi.org/10.1016/j.ydbio.2006.03.008; PMID: 16677628
  • Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 1998; 125:599 - 608; PMID: 9435281
  • Yang C, Kim HS, Seo H, Kim CH, Brunet JF, Kim KS. Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine beta-hydroxylase gene. J Neurochem 1998; 71:1813 - 26; http://dx.doi.org/10.1046/j.1471-4159.1998.71051813.x; PMID: 9798905
  • Chen S, Ji M, Paris M, Hullinger RL, Andrisani OM. The cAMP pathway regulates both transcription and activity of the paired homeobox transcription factor Phox2a required for development of neural crest-derived and central nervous system-derived catecholaminergic neurons. J Biol Chem 2005; 280:41025 - 36; http://dx.doi.org/10.1074/jbc.M503537200; PMID: 16204240
  • Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 2000; 25:209 - 12; http://dx.doi.org/10.1038/76080; PMID: 10835639
  • Tsarovina K, Pattyn A, Stubbusch J, Müller F, van der Wees J, Schneider C, et al. Essential role of Gata transcription factors in sympathetic neuron development. Development 2004; 131:4775 - 86; http://dx.doi.org/10.1242/dev.01370; PMID: 15329349
  • Moriguchi T, Takako N, Hamada M, Maeda A, Fujioka Y, Kuroha T, et al. Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 2006; 133:3871 - 81; http://dx.doi.org/10.1242/dev.02553; PMID: 16943277
  • Müller F, Rohrer H. Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 2002; 129:5707 - 17; http://dx.doi.org/10.1242/dev.00165; PMID: 12421710
  • Lucas ME, Müller F, Rüdiger R, Henion PD, Rohrer H. The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development 2006; 133:4015 - 24; http://dx.doi.org/10.1242/dev.02574; PMID: 17008447
  • Morikawa Y, D’Autréaux F, Gershon MD, Cserjesi P. Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 2007; 307:114 - 26; http://dx.doi.org/10.1016/j.ydbio.2007.04.027; PMID: 17531968
  • Hendershot TJ, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, et al. Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 2008; 319:179 - 91; http://dx.doi.org/10.1016/j.ydbio.2008.03.036; PMID: 18501887
  • Vincentz JW, VanDusen NJ, Fleming AB, Rubart M, Firulli BA, Howard MJ, et al. A Phox2- and Hand2-dependent Hand1 cis-regulatory element reveals a unique gene dosage requirement for Hand2 during sympathetic neurogenesis. J Neurosci 2012; 32:2110 - 20; http://dx.doi.org/10.1523/JNEUROSCI.3584-11.2012; PMID: 22323723
  • Schmidt M, Lin S, Pape M, Ernsberger U, Stanke M, Kobayashi K, et al. The bHLH transcription factor Hand2 is essential for the maintenance of noradrenergic properties in differentiated sympathetic neurons. Dev Biol 2009; 329:191 - 200; http://dx.doi.org/10.1016/j.ydbio.2009.02.020; PMID: 19254708
  • Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S. Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 2012; 241:1289 - 300; http://dx.doi.org/10.1002/dvdy.23819; PMID: 22689348
  • Zehir A, Hua LL, Maska EL, Morikawa Y, Cserjesi P. Dicer is required for survival of differentiating neural crest cells. Dev Biol 2010; 340:459 - 67; http://dx.doi.org/10.1016/j.ydbio.2010.01.039; PMID: 20144605
  • Heermann S, Mätlik K, Hinz U, Fey J, Arumae U, Krieglstein K. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors. J Neurosci Res 2013; 91:780 - 5; http://dx.doi.org/10.1002/jnr.23188; PMID: 23426908
  • Groves AK, George KM, Tissier-Seta JP, Engel JD, Brunet JF, Anderson DJ. Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 1995; 121:887 - 901; PMID: 7720591
  • Lee VM, Bronner-Fraser M, Baker CV. Restricted response of mesencephalic neural crest to sympathetic differentiation signals in the trunk. Dev Biol 2005; 278:175 - 92; http://dx.doi.org/10.1016/j.ydbio.2004.10.024; PMID: 15649470
  • Schmidt M, Huber L, Majdazari A, Schütz G, Williams T, Rohrer H. The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 2011; 355:89 - 100; http://dx.doi.org/10.1016/j.ydbio.2011.04.011; PMID: 21539825
  • Hong SJ, Lardaro T, Oh MS, Huh Y, Ding Y, Kang UJ, et al. Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2beta. J Biol Chem 2008; 283:16860 - 7; http://dx.doi.org/10.1074/jbc.M709106200; PMID: 18424435
  • Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2012; 363:219 - 33; http://dx.doi.org/10.1016/j.ydbio.2011.12.026; PMID: 22236961
  • Morin X, Cremer H, Hirsch MR, Kapur RP, Goridis C, Brunet JF. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 1997; 18:411 - 23; http://dx.doi.org/10.1016/S0896-6273(00)81242-8; PMID: 9115735
  • Lipp JA, Rudolph AM. Sympathetic nerve development in the rat and guinea-pig heart. Biol Neonate 1972; 21:76 - 82; http://dx.doi.org/10.1159/000240497; PMID: 4651153
  • Lebowitz EA, Novick JS, Rudolph AM. Development of myocardial sympathetic innervation in the fetal lamb. Pediatr Res 1972; 6:887 - 93; http://dx.doi.org/10.1203/00006450-197212000-00006; PMID: 4643537
  • Vapaavouri EK, Shinebourne EA, Williams RL, Heymann MA, Rudolph AM. Development of cardiovascular responses to autonomic blockade in intact fetal and neonatal lambs. Biol Neonate 1973; 22:177 - 88; http://dx.doi.org/10.1159/000240552; PMID: 4147780
  • Walker AM, Cannata J, Dowling MH, Ritchie B, Maloney JE. Sympathetic and parasympathetic control of heart rate in unanaesthetized fetal and newborn lambs. Biol Neonate 1978; 33:135 - 43; http://dx.doi.org/10.1159/000241063; PMID: 28158
  • Llanos AJ, Green JR, Creasy RK, Rudolph AM. Increased heart rate response to parasympathetic and beta adrenergic blockade in growth-retarded fetal lambs. Am J Obstet Gynecol 1980; 136:808 - 13; PMID: 7355968
  • Macdonald AA, Llanos AJ, Heymann MA, Rudolph AM. Cardiovascular responsiveness of the pig fetus to autonomic blockade. Pflugers Arch 1981; 390:262 - 4; http://dx.doi.org/10.1007/BF00658273; PMID: 7196025
  • Tucker DC. Components of functional sympathetic control of heart rate in neonatal rats. Am J Physiol 1985; 248:R601 - 10; PMID: 2859811
  • Woods JR Jr., Dandavino A, Murayama K, Brinkman CR 3rd, Assali NS. Autonomic control of cardiovascular functions during neonatal development and in adult sheep. Circ Res 1977; 40:401 - 7; http://dx.doi.org/10.1161/01.RES.40.4.401; PMID: 14791
  • Nuwayhid B, Brinkman CR 3rd, Su C, Bevan JA, Assali NS. Development of autonomic control of fetal circulation. Am J Physiol 1975; 228:337 - 44; PMID: 235216
  • Tanaka H, Kasuya Y, Saito H, Shigenobu K. Organ culture of rat heart: maintained high sensitivity of fetal atria before innervation to norepinephrine. Can J Physiol Pharmacol 1988; 66:901 - 6; http://dx.doi.org/10.1139/y88-147; PMID: 3214802
  • Shigenobu K, Tanaka H, Kasuya Y. Changes in sensitivity of rat heart to norepinephrine and isoproterenol during pre- and postnatal development and its relation to sympathetic innervation. Dev Pharmacol Ther 1988; 11:226 - 36; PMID: 3224536
  • Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature 1995; 374:643 - 6; http://dx.doi.org/10.1038/374643a0; PMID: 7715704
  • Pfeifer K, Boe SP, Rong Q, Ebert SN. Generating mouse models for studying the function and fate of intrinsic cardiac adrenergic cells. Ann N Y Acad Sci 2004; 1018:418 - 23; http://dx.doi.org/10.1196/annals.1296.051; PMID: 15240397
  • Ebert SN, Thompson RP. Embryonic epinephrine synthesis in the rat heart before innervation: association with pacemaking and conduction tissue development. Circ Res 2001; 88:117 - 24; http://dx.doi.org/10.1161/01.RES.88.1.117; PMID: 11139483
  • Zhou QY, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 1995; 374:640 - 3; http://dx.doi.org/10.1038/374640a0; PMID: 7715703
  • Ebert SN, Taylor DG. Catecholamines and development of cardiac pacemaking: an intrinsically intimate relationship. Cardiovasc Res 2006; 72:364 - 74; http://dx.doi.org/10.1016/j.cardiores.2006.08.013; PMID: 17022958
  • Althurwi HN, Tse MM, Abdelhamid G, Zordoky BN, Hammock BD, El-Kadi AO. Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br J Pharmacol 2013; 168:1794 - 807; http://dx.doi.org/10.1111/bph.12066; PMID: 23176298
  • Králová E, Mokrán T, Murín J, Stankovicová T. Electrocardiography in two models of isoproterenol-induced left ventricular remodeling. Physiol Res 2008; 57:Suppl 2 S83 - 9; PMID: 18373388
  • Elayan HH, Kennedy BP, Ziegler MG. Cardiac atria and ventricles contain different inducible adrenaline synthesising enzymes. Cardiovasc Res 1990; 24:53 - 6; http://dx.doi.org/10.1093/cvr/24.1.53; PMID: 2328515
  • Huang MH, Friend DS, Sunday ME, Singh K, Haley K, Austen KF, et al. An intrinsic adrenergic system in mammalian heart. J Clin Invest 1996; 98:1298 - 303; http://dx.doi.org/10.1172/JCI118916; PMID: 8823294
  • Long CS, Kariya K, Karns L, Simpson PC. Sympathetic activity: modulator of myocardial hypertrophy. J Cardiovasc Pharmacol 1991; 17:Suppl 2 S20 - 4; http://dx.doi.org/10.1097/00005344-199117002-00005; PMID: 1715479
  • Natarajan AR, Rong Q, Katchman AN, Ebert SN. Intrinsic cardiac catecholamines help maintain beating activity in neonatal rat cardiomyocyte cultures. Pediatr Res 2004; 56:411 - 7; http://dx.doi.org/10.1203/01.PDR.0000136279.80897.4C; PMID: 15333759
  • Abboud FM. An intrinsic cardiac adrenergic system can regulate cardiac development and function. J Clin Invest 1996; 98:1275 - 6; http://dx.doi.org/10.1172/JCI118912; PMID: 8823290
  • Murphy DA, O’Blenes S, Hanna BD, Armour JA. Capacity of intrinsic cardiac neurons to modify the acutely autotransplanted mammalian heart. J Heart Lung Transplant 1994; 13:847 - 56; PMID: 7803426
  • Matthews MR. Small, intensely fluorescent cells and the paraneuron concept. J Electron Microsc Tech 1989; 12:408 - 16; http://dx.doi.org/10.1002/jemt.1060120413; PMID: 2671307
  • Tanaka K, Chiba T. Microvascular organization of sympathetic ganglia, with special reference to small intensely-fluorescent cells. Microsc Res Tech 1996; 35:137 - 45; http://dx.doi.org/10.1002/(SICI)1097-0029(19961001)35:2<137::AID-JEMT4>3.0.CO;2-N; PMID: 8923448
  • Kriebel RM, Angel A, Parsons RL. Biogenic amine localization in cardiac ganglion intrinsic neurons: electron microscopic histochemistry of SIF cells. Brain Res Bull 1991; 27:175 - 9; http://dx.doi.org/10.1016/0361-9230(91)90064-Q; PMID: 1742604
  • Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C, Reichardt L, et al. NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 1999; 210:411 - 27; http://dx.doi.org/10.1006/dbio.1999.9269; PMID: 10357900
  • Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, et al. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 2004; 118:243 - 55; http://dx.doi.org/10.1016/j.cell.2004.06.021; PMID: 15260993
  • Glebova NO, Ginty DD. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 2004; 24:743 - 51; http://dx.doi.org/10.1523/JNEUROSCI.4523-03.2004; PMID: 14736860
  • Nam J, Onitsuka I, Hatch J, Uchida Y, Ray S, Huang S, et al. Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 2013; 140:1475 - 85; http://dx.doi.org/10.1242/dev.087601; PMID: 23462468
  • Yan H, Newgreen DF, Young HM. Developmental changes in neurite outgrowth responses of dorsal root and sympathetic ganglia to GDNF, neurturin, and artemin. Dev Dyn 2003; 227:395 - 401; http://dx.doi.org/10.1002/dvdy.10294; PMID: 12815625
  • Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 2008; 452:759 - 63; http://dx.doi.org/10.1038/nature06859; PMID: 18401410
  • Ben-Zvi A, Ben-Gigi L, Klein H, Behar O. Modulation of semaphorin3A activity by p75 neurotrophin receptor influences peripheral axon patterning. J Neurosci 2007; 27:13000 - 11; http://dx.doi.org/10.1523/JNEUROSCI.3373-07.2007; PMID: 18032673
  • Lorentz CU, Alston EN, Belcik T, Lindner JR, Giraud GD, Habecker BA. Heterogeneous ventricular sympathetic innervation, altered beta-adrenergic receptor expression, and rhythm instability in mice lacking the p75 neurotrophin receptor. Am J Physiol Heart Circ Physiol 2010; 298:H1652 - 60; http://dx.doi.org/10.1152/ajpheart.01128.2009; PMID: 20190098
  • Heumann R, Korsching S, Scott J, Thoenen H. Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J 1984; 3:3183 - 9; PMID: 6549295
  • Korsching S, Thoenen H. Developmental changes of nerve growth factor levels in sympathetic ganglia and their target organs. Dev Biol 1988; 126:40 - 6; http://dx.doi.org/10.1016/0012-1606(88)90236-9; PMID: 3342935
  • Wright LL, Cunningham TJ, Smolen AJ. Developmental neuron death in the rat superior cervical sympathetic ganglion: cell counts and ultrastructure. J Neurocytol 1983; 12:727 - 38; http://dx.doi.org/10.1007/BF01258147; PMID: 6644353
  • Ruit KG, Osborne PA, Schmidt RE, Johnson EM Jr., Snider WD. Nerve growth factor regulates sympathetic ganglion cell morphology and survival in the adult mouse. J Neurosci 1990; 10:2412 - 9; PMID: 2376779
  • Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991; 14:453 - 501; http://dx.doi.org/10.1146/annurev.ne.14.030191.002321; PMID: 2031577
  • Davies AM. Nerve growth factor synthesis and nerve growth factor receptor expression in neural development. Int Rev Cytol 1991; 128:109 - 38; http://dx.doi.org/10.1016/S0074-7696(08)60498-2; PMID: 1655670
  • Davies AM. The role of neurotrophins in the developing nervous system. J Neurobiol 1994; 25:1334 - 48; http://dx.doi.org/10.1002/neu.480251103; PMID: 7852989
  • Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci 1993; 13:2739 - 48; PMID: 8331370
  • Lockhart ST, Mead JN, Pisano JM, Slonimsky JD, Birren SJ. Nerve growth factor collaborates with myocyte-derived factors to promote development of presynaptic sites in cultured sympathetic neurons. J Neurobiol 2000; 42:460 - 76; http://dx.doi.org/10.1002/(SICI)1097-4695(200003)42:4<460::AID-NEU7>3.0.CO;2-#; PMID: 10699983
  • Lockhart ST, Turrigiano GG, Birren SJ. Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J Neurosci 1997; 17:9573 - 82; PMID: 9391012
  • Zhou S, Paz O, Cao JM, Asotra K, Chai NN, Wang C, et al. Differential beta-adrenoceptor expression induced by nerve growth factor infusion into the canine right and left stellate ganglia. Heart Rhythm 2005; 2:1347 - 55; http://dx.doi.org/10.1016/j.hrthm.2005.08.027; PMID: 16360089
  • Ieda M, Fukuda K, Hisaka Y, Kimura K, Kawaguchi H, Fujita J, et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest 2004; 113:876 - 84; PMID: 15067320
  • Zhou XF, Deng YS, Chie E, Xue Q, Zhong JH, McLachlan EM, et al. Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur J Neurosci 1999; 11:1711 - 22; http://dx.doi.org/10.1046/j.1460-9568.1999.00589.x; PMID: 10215925
  • Ebendal T, Jacobson CO. Tests of possible role of NGF in neurite outgrowth stimulation exerted by glial cells and heart explants in culture. Brain Res 1977; 131:373 - 8; http://dx.doi.org/10.1016/0006-8993(77)90531-5; PMID: 890466
  • Varon S, Skaper SD, Manthorpe M. Trophic activities for dorsal root and sympathetic ganglionic neurons in media conditioned by Schwann and other peripheral cells. Brain Res 1981; 227:73 - 87; PMID: 7470935
  • Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001; 24:1217 - 81; http://dx.doi.org/10.1146/annurev.neuro.24.1.1217; PMID: 11520933
  • Hasan W, Pedchenko T, Krizsan-Agbas D, Baum L, Smith PG. Sympathetic neurons synthesize and secrete pro-nerve growth factor protein. J Neurobiol 2003; 57:38 - 53; http://dx.doi.org/10.1002/neu.10250; PMID: 12973827
  • Marvin WJ Jr., Hermsmeyer K, McDonald RI, Roskoski LM, Roskoski R Jr.. Ontogenesis of cholingergic innervation in the rat heart. Circ Res 1980; 46:690 - 5; http://dx.doi.org/10.1161/01.RES.46.5.690; PMID: 6102497
  • Heathcote RD, Sargent PB. Growth and morphogenesis of an autonomic ganglion. I. Matching neurons with target. J Neurosci 1987; 7:2493 - 501; PMID: 3612250
  • Heathcote RD, Chen A. Morphogenesis of adrenergic cells in a frog parasympathetic ganglion. J Comp Neurol 1991; 308:139 - 48; http://dx.doi.org/10.1002/cne.903080112; PMID: 1874979
  • Soinila S. Clustering of intensely fluorescent sympathetic cells in embryonal and postnatal rats. J Auton Nerv Syst 1984; 11:207 - 22; http://dx.doi.org/10.1016/0165-1838(84)90078-X; PMID: 6491161
  • Soinila S, Eränkö O. Intensely fluorescent cells in embryonic and postnatal superior cervical ganglia of the rat cultured with or without hydrocortisone. J Auton Nerv Syst 1984; 11:43 - 57; http://dx.doi.org/10.1016/0165-1838(84)90007-9; PMID: 6470409
  • Saarma M. GDNF - a stranger in the TGF-beta superfamily?. Eur J Biochem 2000; 267:6968 - 71; http://dx.doi.org/10.1046/j.1432-1327.2000.01826.x; PMID: 11106404
  • Ernsberger U. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 2008; 333:353 - 71; http://dx.doi.org/10.1007/s00441-008-0634-4; PMID: 18629541
  • Peterziel H, Paech T, Strelau J, Unsicker K, Krieglstein K. Specificity in the crosstalk of TGFbeta/GDNF family members is determined by distinct GFR alpha receptors. J Neurochem 2007; 103:2491 - 504; http://dx.doi.org/10.1111/j.1471-4159.2007.04962.x; PMID: 17953664
  • Enomoto H, Heuckeroth RO, Golden JP, Johnson EM, Milbrandt J. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development 2000; 127:4877 - 89; PMID: 11044402
  • Hiltunen JO, Laurikainen A, Airaksinen MS, Saarma M. GDNF family receptors in the embryonic and postnatal rat heart and reduced cholinergic innervation in mice hearts lacking ret or GFRalpha2. Dev Dyn 2000; 219:28 - 39; http://dx.doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1031>3.0.CO;2-P; PMID: 10974669
  • Mabe AM, Hoover DB. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovasc Res 2009; 82:93 - 9; http://dx.doi.org/10.1093/cvr/cvp029; PMID: 19176599
  • Mabe AM, Hoard JL, Duffourc MM, Hoover DB. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene. Cell Tissue Res 2006; 326:57 - 67; http://dx.doi.org/10.1007/s00441-006-0215-3; PMID: 16708241
  • Hashino E, Shero M, Junghans D, Rohrer H, Milbrandt J, Johnson EM Jr.. GDNF and neurturin are target-derived factors essential for cranial parasympathetic neuron development. Development 2001; 128:3773 - 82; PMID: 11585803
  • Hoard JL, Hoover DB, Mabe AM, Blakely RD, Feng N, Paolocci N. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75. Neuroscience 2008; 156:129 - 42; http://dx.doi.org/10.1016/j.neuroscience.2008.06.063; PMID: 18674600
  • Habecker BA, Bilimoria P, Linick C, Gritman K, Lorentz CU, Woodward W, et al. Regulation of cardiac innervation and function via the p75 neurotrophin receptor. Auton Neurosci 2008; 140:40 - 8; http://dx.doi.org/10.1016/j.autneu.2008.03.002; PMID: 18430612
  • Hasan W, Woodward WR, Habecker BA. Altered atrial neurotransmitter release in transgenic p75(-/-) and gp130 KO mice. Neurosci Lett 2012; 529:55 - 9; http://dx.doi.org/10.1016/j.neulet.2012.08.089; PMID: 22999927
  • Stewart AL, Anderson RB, Kobayashi K, Young HM. Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. BMC Dev Biol 2008; 8:73; http://dx.doi.org/10.1186/1471-213X-8-73; PMID: 18657279
  • Meusburger SM, Keast JR. Testosterone and nerve growth factor have distinct but interacting effects on structure and neurotransmitter expression of adult pelvic ganglion cells in vitro. Neuroscience 2001; 108:331 - 40; http://dx.doi.org/10.1016/S0306-4522(01)00420-1; PMID: 11734365
  • Hazari MS, Pan JH, Myers AC. Nerve growth factor acutely potentiates synaptic transmission in vitro and induces dendritic growth in vivo on adult neurons in airway parasympathetic ganglia. Am J Physiol Lung Cell Mol Physiol 2007; 292:L992 - 1001; http://dx.doi.org/10.1152/ajplung.00216.2006; PMID: 17158596
  • Collins F. Developmental time course of the effect of nerve growth factor on the parasympathetic ciliary ganglion. Brain Res 1988; 467:111 - 6; PMID: 3359323
  • Collins F, Dawson A. An effect of nerve growth factor on parasympathetic neurite outgrowth. Proc Natl Acad Sci U S A 1983; 80:2091 - 4; http://dx.doi.org/10.1073/pnas.80.7.2091; PMID: 6340114
  • Smith PG, Warn JD, Steinle JJ, Krizsan-Agbas D, Hasan W. Modulation of parasympathetic neuron phenotype and function by sympathetic innervation. Auton Neurosci 2002; 96:33 - 42; http://dx.doi.org/10.1016/S1566-0702(01)00371-X; PMID: 11911500
  • Hasan W, Smith PG. Nerve growth factor expression in parasympathetic neurons: regulation by sympathetic innervation. Eur J Neurosci 2000; 12:4391 - 7; http://dx.doi.org/10.1046/j.0953-816X.2000.01353.x; PMID: 11122349
  • Hasan W, Smith PG. Modulation of rat parasympathetic cardiac ganglion phenotype and NGF synthesis by adrenergic nerves. Auton Neurosci 2009; 145:17 - 26; http://dx.doi.org/10.1016/j.autneu.2008.10.012; PMID: 19019738
  • Rana OR, Saygili E, Gemein C, Zink MD, Buhr A, Saygili E, et al. Chronic electrical neuronal stimulation increases cardiac parasympathetic tone by eliciting neurotrophic effects. Circ Res 2011; 108:1209 - 19; http://dx.doi.org/10.1161/CIRCRESAHA.110.234518; PMID: 21441135
  • James JM, Mukouyama YS. Neuronal action on the developing blood vessel pattern. Semin Cell Dev Biol 2011; 22:1019 - 27; http://dx.doi.org/10.1016/j.semcdb.2011.09.010; PMID: 21978864
  • Storkebaum E, Carmeliet P. Paracrine control of vascular innervation in health and disease. Acta Physiol (Oxf) 2011; 203:61 - 86; http://dx.doi.org/10.1111/j.1748-1716.2011.02333.x; PMID: 21689379
  • Lazarovici P, Marcinkiewicz C, Lelkes PI. Cross talk between the cardiovascular and nervous systems: neurotrophic effects of vascular endothelial growth factor (VEGF) and angiogenic effects of nerve growth factor (NGF)-implications in drug development. Curr Pharm Des 2006; 12:2609 - 22; http://dx.doi.org/10.2174/138161206777698738; PMID: 16842161
  • Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D. Nerve growth factor as an angiogenic factor. Microvasc Res 2008; 75:135 - 41; http://dx.doi.org/10.1016/j.mvr.2007.07.004; PMID: 17764704
  • Caporali A, Emanueli C. Cardiovascular actions of neurotrophins. Physiol Rev 2009; 89:279 - 308; http://dx.doi.org/10.1152/physrev.00007.2008; PMID: 19126759
  • Donovan MJ, Hahn R, Tessarollo L, Hempstead BL. Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat Genet 1996; 14:210 - 3; http://dx.doi.org/10.1038/ng1096-210; PMID: 8841198
  • Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev 2010; 90:513 - 57; http://dx.doi.org/10.1152/physrev.00007.2009; PMID: 20393193
  • Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 2012; 33:1058 - 66; http://dx.doi.org/10.1093/eurheartj/ehs041; PMID: 22507981
  • Fisher JP, Paton JF. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens 2012; 26:463 - 75; http://dx.doi.org/10.1038/jhh.2011.66; PMID: 21734720
  • Wenzel RR, Spieker L, Qui S, Shaw S, Lüscher TF, Noll G. I1-imidazoline agonist moxonidine decreases sympathetic nerve activity and blood pressure in hypertensives. Hypertension 1998; 32:1022 - 7; http://dx.doi.org/10.1161/01.HYP.32.6.1022; PMID: 9856967
  • Esler M, Lux A, Jennings G, Hastings J, Socratous F, Lambert G. Rilmenidine sympatholytic activity preserves mental stress, orthostatic sympathetic responses and adrenaline secretion. J Hypertens 2004; 22:1529 - 34; http://dx.doi.org/10.1097/01.hjh.0000125453.28861.b8; PMID: 15257176
  • Arsenault KA, Yusuf AM, Crystal E, Healey JS, Morillo CA, Nair GM, et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst Rev 2013; 1:CD003611; PMID: 23440790
  • Feldman D, Elton TS, Menachemi DM, Wexler RK. Heart rate control with adrenergic blockade: clinical outcomes in cardiovascular medicine. Vasc Health Risk Manag 2010; 6:387 - 97; http://dx.doi.org/10.2147/VHRM.S10358; PMID: 20539841
  • Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 2009; 54:1747 - 62; http://dx.doi.org/10.1016/j.jacc.2009.05.015; PMID: 19874988
  • Frishman WH, Aronow WS. Pharmacology of antiarrhythmic drugs in elderly patients. Clin Geriatr Med 2012; 28:575 - 615; http://dx.doi.org/10.1016/j.cger.2012.07.001; PMID: 23101572
  • Chatterjee S, Biondi-Zoccai G, Abbate A, D’Ascenzo F, Castagno D, Van Tassell B, et al. Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ 2013; 346:f55; http://dx.doi.org/10.1136/bmj.f55; PMID: 23325883
  • Slotkin TA, Seidler FJ. Terbutaline impairs the development of peripheral noradrenergic projections: Potential implications for autism spectrum disorders and pharmacotherapy of preterm labor. Neurotoxicol Teratol 2013; 36:91 - 6; PMID: 22813780
  • Clarke GL, Bhattacherjee A, Tague SE, Hasan W, Smith PG. ß-adrenoceptor blockers increase cardiac sympathetic innervation by inhibiting autoreceptor suppression of axon growth. J Neurosci 2010; 30:12446 - 54; http://dx.doi.org/10.1523/JNEUROSCI.1667-10.2010; PMID: 20844139
  • Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 2001; 50:409 - 16; http://dx.doi.org/10.1016/S0008-6363(00)00308-4; PMID: 11334845
  • Saygili E, Schauerte P, Küppers F, Heck L, Weis J, Weber C, et al. Electrical stimulation of sympathetic neurons induces autocrine/paracrine effects of NGF mediated by TrkA. J Mol Cell Cardiol 2010; 49:79 - 87; http://dx.doi.org/10.1016/j.yjmcc.2010.01.019; PMID: 20138055
  • Zipes DP. Heart-brain interactions in cardiac arrhythmias: role of the autonomic nervous system. Cleve Clin J Med 2008; 75:Suppl 2 S94 - 6; http://dx.doi.org/10.3949/ccjm.75.Suppl_2.S94; PMID: 18540155
  • Ieda M, Fukuda K. Cardiac innervation and sudden cardiac death. Curr Cardiol Rev 2009; 5:289 - 95; http://dx.doi.org/10.2174/157340309789317904; PMID: 21037846
  • Volders PG. Novel insights into the role of the sympathetic nervous system in cardiac arrhythmogenesis. Heart Rhythm 2010; 7:1900 - 6; http://dx.doi.org/10.1016/j.hrthm.2010.06.003; PMID: 20570754
  • Arora R. Recent insights into the role of the autonomic nervous system in the creation of substrate for atrial fibrillation: implications for therapies targeting the atrial autonomic nervous system. Circ Arrhythm Electrophysiol 2012; 5:850 - 9; http://dx.doi.org/10.1161/CIRCEP.112.972273; PMID: 22895601
  • Park HW, Shen MJ, Lin SF, Fishbein MC, Chen LS, Chen PS. Neural mechanisms of atrial fibrillation. Curr Opin Cardiol 2012; 27:24 - 8; http://dx.doi.org/10.1097/HCO.0b013e32834dc4e8; PMID: 22139702
  • Chen PS, Choi EK, Zhou S, Lin SF, Chen LS. Cardiac neural remodeling and its role in arrhythmogenesis. Heart Rhythm 2010; 7:1512 - 3; http://dx.doi.org/10.1016/j.hrthm.2010.05.020; PMID: 20478404
  • Billette J, Tadros R. Concealed autonomic mechanisms underlying atrial fibrillation. J Cardiovasc Electrophysiol 2013; 24:196 - 8; http://dx.doi.org/10.1111/jce.12050; PMID: 23217109
  • Olgin JE, Sih HJ, Hanish S, Jayachandran JV, Wu J, Zheng QH, et al. Heterogeneous atrial denervation creates substrate for sustained atrial fibrillation. Circulation 1998; 98:2608 - 14; http://dx.doi.org/10.1161/01.CIR.98.23.2608; PMID: 9843470
  • Gould PA, Yii M, McLean C, Finch S, Marshall T, Lambert GW, et al. Evidence for increased atrial sympathetic innervation in persistent human atrial fibrillation. Pacing Clin Electrophysiol 2006; 29:821 - 9; http://dx.doi.org/10.1111/j.1540-8159.2006.00447.x; PMID: 16922997
  • Ng J, Villuendas R, Cokic I, Schliamser JE, Gordon D, Koduri H, et al. Autonomic remodeling in the left atrium and pulmonary veins in heart failure: creation of a dynamic substrate for atrial fibrillation. Circ Arrhythm Electrophysiol 2011; 4:388 - 96; http://dx.doi.org/10.1161/CIRCEP.110.959650; PMID: 21421805
  • Jayachandran JV, Sih HJ, Winkle W, Zipes DP, Hutchins GD, Olgin JE. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation 2000; 101:1185 - 91; http://dx.doi.org/10.1161/01.CIR.101.10.1185; PMID: 10715267
  • Chang CM, Wu TJ, Zhou S, Doshi RN, Lee MH, Ohara T, et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation 2001; 103:22 - 5; http://dx.doi.org/10.1161/01.CIR.103.1.22; PMID: 11136680
  • Lu Z, Scherlag BJ, Lin J, Niu G, Fung KM, Zhao L, et al. Atrial fibrillation begets atrial fibrillation: autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circ Arrhythm Electrophysiol 2008; 1:184 - 92; http://dx.doi.org/10.1161/CIRCEP.108.784272; PMID: 19808412
  • Hamabe A, Chang CM, Zhou S, Chou CC, Yi J, Miyauchi Y, et al. Induction of atrial fibrillation and nerve sprouting by prolonged left atrial pacing in dogs. Pacing Clin Electrophysiol 2003; 26:2247 - 52; http://dx.doi.org/10.1111/j.1540-8159.2003.00355.x; PMID: 14675008
  • Miyauchi Y, Zhou S, Okuyama Y, Miyauchi M, Hayashi H, Hamabe A, et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation 2003; 108:360 - 6; http://dx.doi.org/10.1161/01.CIR.0000080327.32573.7C; PMID: 12835207
  • Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation 2008; 118:916 - 25; http://dx.doi.org/10.1161/CIRCULATIONAHA.108.776203; PMID: 18697820
  • Swissa M, Zhou S, Tan AY, Fishbein MC, Chen PS, Chen LS. Atrial sympathetic and parasympathetic nerve sprouting and hyperinnervation induced by subthreshold electrical stimulation of the left stellate ganglion in normal dogs. Cardiovasc Pathol 2008; 17:303 - 8; http://dx.doi.org/10.1016/j.carpath.2007.11.003; PMID: 18692409
  • Hwang C, Chen PS. Ligament of Marshall: why it is important for atrial fibrillation ablation. Heart Rhythm 2009; 6:Suppl S35 - 40; http://dx.doi.org/10.1016/j.hrthm.2009.08.034; PMID: 19959141
  • Wu TJ, Ong JJ, Chang CM, Doshi RN, Yashima M, Huang HL, et al. Pulmonary veins and ligament of Marshall as sources of rapid activations in a canine model of sustained atrial fibrillation. Circulation 2001; 103:1157 - 63; http://dx.doi.org/10.1161/01.CIR.103.8.1157; PMID: 11222481
  • Okuyama Y, Miyauchi Y, Park AM, Hamabe A, Zhou S, Hayashi H, et al. High resolution mapping of the pulmonary vein and the vein of Marshall during induced atrial fibrillation and atrial tachycardia in a canine model of pacing-induced congestive heart failure. J Am Coll Cardiol 2003; 42:348 - 60; http://dx.doi.org/10.1016/S0735-1097(03)00586-2; PMID: 12875775
  • Coleman MA, Bos JM, Johnson JN, Owen HJ, Deschamps C, Moir C, et al. Videoscopic left cardiac sympathetic denervation for patients with recurrent ventricular fibrillation/malignant ventricular arrhythmia syndromes besides congenital long-QT syndrome. Circ Arrhythm Electrophysiol 2012; 5:782 - 8; http://dx.doi.org/10.1161/CIRCEP.112.971754; PMID: 22787014
  • Nakagawa H, Scherlag BJ, Patterson E, Ikeda A, Lockwood D, Jackman WM. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm 2009; 6:Suppl S26 - 34; http://dx.doi.org/10.1016/j.hrthm.2009.07.029; PMID: 19959140
  • Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol 2009; 20:1186 - 9; http://dx.doi.org/10.1111/j.1540-8167.2009.01515.x; PMID: 19563367
  • Stöllberger C, Schneider B, Winkler-Dworak M, Finsterer J. Prevention of embolic stroke by catheter ablation of atrial fibrillation. Eur J Neurol 2008; 15:1419 - 20; http://dx.doi.org/10.1111/j.1468-1331.2008.02341.x; PMID: 19049566
  • Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 1999; 100:87 - 95; http://dx.doi.org/10.1161/01.CIR.100.1.87; PMID: 10393686
  • Liu Y, Scherlag BJ, Fan Y, Varma V, Male S, Chaudhry MA, et al. Inducibility of atrial fibrillation after GP ablations and “autonomic blockade”: evidence for the pathophysiological role of the nonadrenergic and noncholinergic neurotransmitters. J Cardiovasc Electrophysiol 2013; 24:188 - 95; http://dx.doi.org/10.1111/j.1540-8167.2012.02449.x; PMID: 23066921
  • Fallavollita JA, Canty JM Jr.. Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol 2010; 17:1107 - 15; http://dx.doi.org/10.1007/s12350-010-9292-5; PMID: 20857351
  • Buendia-Fuentes F, Almenar L, Ruiz C, Vercher JL, Sánchez-Lázaro I, Martínez-Dolz L, et al. Sympathetic reinnervation 1 year after heart transplantation, assessed using iodine-123 metaiodobenzylguanidine imaging. Transplant Proc 2011; 43:2247 - 8; http://dx.doi.org/10.1016/j.transproceed.2011.05.020; PMID: 21839246
  • Wernli G, Hasan W, Bhattacherjee A, van Rooijen N, Smith PG. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol 2009; 104:681 - 93; http://dx.doi.org/10.1007/s00395-009-0033-3; PMID: 19437062
  • Hiltunen JO, Laurikainen A, Väkevä A, Meri S, Saarma M. Nerve growth factor and brain-derived neurotrophic factor mRNAs are regulated in distinct cell populations of rat heart after ischaemia and reperfusion. J Pathol 2001; 194:247 - 53; http://dx.doi.org/10.1002/path.878; PMID: 11400155
  • Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 2006; 1124:142 - 54; http://dx.doi.org/10.1016/j.brainres.2006.09.054; PMID: 17084822
  • Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, et al. Nerve sprouting and sudden cardiac death. Circ Res 2000; 86:816 - 21; http://dx.doi.org/10.1161/01.RES.86.7.816; PMID: 10764417
  • Kimura K, Ieda M, Kanazawa H, Yagi T, Tsunoda M, Ninomiya S, et al. Cardiac sympathetic rejuvenation: a link between nerve function and cardiac hypertrophy. Circ Res 2007; 100:1755 - 64; http://dx.doi.org/10.1161/01.RES.0000269828.62250.ab; PMID: 17495227
  • Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 2004; 95:76 - 83; http://dx.doi.org/10.1161/01.RES.0000133678.22968.e3; PMID: 15166093
  • Vracko R, Thorning D, Frederickson RG. Fate of nerve fibers in necrotic, healing, and healed rat myocardium. Lab Invest 1990; 63:490 - 501; PMID: 2232703
  • Wang Y, Xuan YL, Hu HS, Li XL, Xue M, Cheng WJ, et al. Risk of ventricular arrhythmias after myocardial infarction with diabetes associated with sympathetic neural remodeling in rabbits. Cardiology 2012; 121:1 - 9; http://dx.doi.org/10.1159/000336148; PMID: 22377967
  • Vracko R, Thorning D, Frederickson RG. Nerve fibers in human myocardial scars. Hum Pathol 1991; 22:138 - 46; http://dx.doi.org/10.1016/0046-8177(91)90035-N; PMID: 1705914
  • Nguyen BL, Li H, Fishbein MC, Lin SF, Gaudio C, Chen PS, et al. Acute myocardial infarction induces bilateral stellate ganglia neural remodeling in rabbits. Cardiovasc Pathol 2012; 21:143 - 8; http://dx.doi.org/10.1016/j.carpath.2011.08.001; PMID: 22001051
  • Ulphani JS, Cain JH, Inderyas F, Gordon D, Gikas PV, Shade G, et al. Quantitative analysis of parasympathetic innervation of the porcine heart. Heart Rhythm 2010; 7:1113 - 9; http://dx.doi.org/10.1016/j.hrthm.2010.03.043; PMID: 20381645
  • Lobos E, Gebhardt C, Kluge A, Spanel-Borowski K. Expression of nerve growth factor (NGF) isoforms in the rat uterus during pregnancy: accumulation of precursor proNGF. Endocrinology 2005; 146:1922 - 9; http://dx.doi.org/10.1210/en.2004-0925; PMID: 15637294
  • Bierl MA, Isaacson LG. Increased NGF proforms in aged sympathetic neurons and their targets. Neurobiol Aging 2007; 28:122 - 34; http://dx.doi.org/10.1016/j.neurobiolaging.2005.11.008; PMID: 16377033
  • Al-Shawi R, Hafner A, Olsen J, Chun S, Raza S, Thrasivoulou C, et al. Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci 2008; 27:2103 - 14; http://dx.doi.org/10.1111/j.1460-9568.2008.06152.x; PMID: 18412630
  • Loiacono RE, Story DF. Effect of alpha-adrenoceptor agonists and antagonists on cholinergic transmission in guinea-pig isolated atria. Naunyn Schmiedebergs Arch Pharmacol 1986; 334:40 - 7; http://dx.doi.org/10.1007/BF00498738; PMID: 2878372
  • Wetzel GT, Goldstein D, Brown JH. Acetylcholine release from rat atria can be regulated through an alpha 1-adrenergic receptor. Circ Res 1985; 56:763 - 6; http://dx.doi.org/10.1161/01.RES.56.5.763; PMID: 2986875
  • Qin F, Vulapalli RS, Stevens SY, Liang CS. Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. Am J Physiol Heart Circ Physiol 2002; 282:H363 - 71; PMID: 11748083
  • Kaye DM, Vaddadi G, Gruskin SL, Du XJ, Esler MD. Reduced myocardial nerve growth factor expression in human and experimental heart failure. Circ Res 2000; 86:E80 - 4; http://dx.doi.org/10.1161/01.RES.86.7.e80; PMID: 10764418
  • Kreusser MM, Buss SJ, Krebs J, Kinscherf R, Metz J, Katus HA, et al. Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol 2008; 44:380 - 7; http://dx.doi.org/10.1016/j.yjmcc.2007.10.019; PMID: 18037433
  • Stanton MS, Tuli MM, Radtke NL, Heger JJ, Miles WM, Mock BH, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol 1989; 14:1519 - 26; http://dx.doi.org/10.1016/0735-1097(89)90391-4; PMID: 2809013
  • Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellman HN, et al. Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988; 78:1008 - 19; http://dx.doi.org/10.1161/01.CIR.78.4.1008; PMID: 3168182
  • Hartikainen J, Kuikka J, Mäntysaari M, Länsimies E, Pyörälä K. Sympathetic reinnervation after acute myocardial infarction. Am J Cardiol 1996; 77:5 - 9; http://dx.doi.org/10.1016/S0002-9149(97)89125-4; PMID: 8540457
  • Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation 1983; 67:787 - 96; http://dx.doi.org/10.1161/01.CIR.67.4.787; PMID: 6825234
  • Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, et al. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J Mol Cell Cardiol 2001; 33:461 - 72; http://dx.doi.org/10.1006/jmcc.2000.1319; PMID: 11181015
  • Böhm M, La Rosée K, Schwinger RH, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 1995; 25:146 - 53; http://dx.doi.org/10.1016/0735-1097(94)00353-R; PMID: 7798493
  • Chidsey CA, Braunwald E, Morrow AG. Catecholamine Excretion and Cardiac Stores of Norepinephrine in Congestive Heart Failure. Am J Med 1965; 39:442 - 51; http://dx.doi.org/10.1016/0002-9343(65)90211-1; PMID: 14338295
  • Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986; 73:615 - 21; http://dx.doi.org/10.1161/01.CIR.73.4.615; PMID: 3948363
  • Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation 1996; 93:1667 - 76; http://dx.doi.org/10.1161/01.CIR.93.9.1667; PMID: 8653872
  • Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 1997; 95:169 - 75; http://dx.doi.org/10.1161/01.CIR.95.1.169; PMID: 8994433
  • Meredith IT, Broughton A, Jennings GL, Esler MD. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med 1991; 325:618 - 24; http://dx.doi.org/10.1056/NEJM199108293250905; PMID: 1861695
  • Ramchandra R, Hood SG, Denton DA, Woods RL, McKinley MJ, McAllen RM, et al. Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci U S A 2009; 106:924 - 8; http://dx.doi.org/10.1073/pnas.0811929106; PMID: 19136635
  • Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 1993; 22:Suppl A 72A - 84A; http://dx.doi.org/10.1016/0735-1097(93)90466-E; PMID: 8376699
  • Himura Y, Felten SY, Kashiki M, Lewandowski TJ, Delehanty JM, Liang CS. Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation 1993; 88:1299 - 309; http://dx.doi.org/10.1161/01.CIR.88.3.1299; PMID: 8102598
  • Kimura K, Kanazawa H, Ieda M, Kawaguchi-Manabe H, Miyake Y, Yagi T, et al. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci 2010; 156:27 - 35; http://dx.doi.org/10.1016/j.autneu.2010.02.005; PMID: 20335077
  • Rana OR, Saygili E, Meyer C, Gemein C, Krüttgen A, Andrzejewski MG, et al. Regulation of nerve growth factor in the heart: the role of the calcineurin-NFAT pathway. J Mol Cell Cardiol 2009; 46:568 - 78; http://dx.doi.org/10.1016/j.yjmcc.2008.12.006; PMID: 19150448
  • Li W, Knowlton D, Van Winkle DM, Habecker BA. Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol 2004; 286:H2229 - 36; http://dx.doi.org/10.1152/ajpheart.00768.2003; PMID: 14726300
  • Parrish DC, Alston EN, Rohrer H, Nkadi P, Woodward WR, Schütz G, et al. Infarction-induced cytokines cause local depletion of tyrosine hydroxylase in cardiac sympathetic nerves. Exp Physiol 2010; 95:304 - 14; http://dx.doi.org/10.1113/expphysiol.2009.049965; PMID: 19880537
  • Shi X, Habecker BA. gp130 cytokines stimulate proteasomal degradation of tyrosine hydroxylase via extracellular signal regulated kinases 1 and 2. J Neurochem 2012; 120:239 - 47; http://dx.doi.org/10.1111/j.1471-4159.2011.07539.x; PMID: 22007720
  • Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 1990; 70:963 - 85; PMID: 1977182
  • Mathes P, Cowan C, Gudbjarnason S. Storage and metabolism of norepinephrine after experimental myocardial infarction. Am J Physiol 1971; 220:27 - 32; PMID: 5538664
  • Parrish DC, Gritman K, Van Winkle DM, Woodward WR, Bader M, Habecker BA. Postinfarct sympathetic hyperactivity differentially stimulates expression of tyrosine hydroxylase and norepinephrine transporter. Am J Physiol Heart Circ Physiol 2008; 294:H99 - 106; http://dx.doi.org/10.1152/ajpheart.00533.2007; PMID: 17951370
  • Pellegrino MJ, Parrish DC, Zigmond RE, Habecker BA. Cytokines inhibit norepinephrine transporter expression by decreasing Hand2. Mol Cell Neurosci 2011; 46:671 - 80; http://dx.doi.org/10.1016/j.mcn.2011.01.008; PMID: 21241805
  • Guidry GL, Landis SC. Developmental regulation of neurotransmitters in sympathetic neurons. Adv Pharmacol 1998; 42:895 - 8; http://dx.doi.org/10.1016/S1054-3589(08)60891-1; PMID: 9328042
  • Habecker BA, Symes AJ, Stahl N, Francis NJ, Economides A, Fink JS, et al. A sweat gland-derived differentiation activity acts through known cytokine signaling pathways. J Biol Chem 1997; 272:30421 - 8; http://dx.doi.org/10.1074/jbc.272.48.30421; PMID: 9374533
  • Kanazawa H, Ieda M, Kimura K, Arai T, Kawaguchi-Manabe H, Matsuhashi T, et al. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest 2010; 120:408 - 21; http://dx.doi.org/10.1172/JCI39778; PMID: 20051627
  • Smith-White MA, Wallace D, Potter EK. Sympathetic-parasympathetic interactions at the heart in the anaesthetised rat. J Auton Nerv Syst 1999; 75:171 - 5; http://dx.doi.org/10.1016/S0165-1838(98)00169-6; PMID: 10189119
  • Lundberg JM, Hua XY, Franco-Cereceda A. Effects of neuropeptide Y (NPY) on mechanical activity and neurotransmission in the heart, vas deferens and urinary bladder of the guinea-pig. Acta Physiol Scand 1984; 121:325 - 32; http://dx.doi.org/10.1111/j.1748-1716.1984.tb07463.x; PMID: 6091417
  • Alston EN, Parrish DC, Hasan W, Tharp K, Pahlmeyer L, Habecker BA. Cardiac ischemia-reperfusion regulates sympathetic neuropeptide expression through gp130-dependent and independent mechanisms. Neuropeptides 2011; 45:33 - 42; http://dx.doi.org/10.1016/j.npep.2010.10.002; PMID: 21035185
  • Potter EK, Smith-White MA. Galanin modulates cholinergic neurotransmission in the heart. Neuropeptides 2005; 39:345 - 8; http://dx.doi.org/10.1016/j.npep.2004.12.006; PMID: 15944033
  • Smith-White MA, Iismaa TP, Potter EK. Galanin and neuropeptide Y reduce cholinergic transmission in the heart of the anaesthetised mouse. Br J Pharmacol 2003; 140:170 - 8; http://dx.doi.org/10.1038/sj.bjp.0705404; PMID: 12967946
  • Smith-White MA, Herzog H, Potter EK. Role of neuropeptide Y Y(2) receptors in modulation of cardiac parasympathetic neurotransmission. Regul Pept 2002; 103:105 - 11; http://dx.doi.org/10.1016/S0167-0115(01)00368-8; PMID: 11786149
  • Schwertfeger E, Klein T, Vonend O, Oberhauser V, Stegbauer J, Rump LC. Neuropeptide Y inhibits acetylcholine release in human heart atrium by activation of Y2-receptors. Naunyn Schmiedebergs Arch Pharmacol 2004; 369:455 - 61; http://dx.doi.org/10.1007/s00210-004-0930-9; PMID: 15103451
  • Shishehbor MH, Alves C, Rajagopal V. Inflammation: implications for understanding the heart-brain connection. Cleve Clin J Med 2007; 74:Suppl 1 S37 - 41; http://dx.doi.org/10.3949/ccjm.74.Suppl_1.S37; PMID: 17455542
  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405:458 - 62; http://dx.doi.org/10.1038/35013070; PMID: 10839541
  • Karayannis G, Giamouzis G, Cokkinos DV, Skoularigis J, Triposkiadis F. Diabetic cardiovascular autonomic neuropathy: clinical implications. Expert Rev Cardiovasc Ther 2012; 10:747 - 65; http://dx.doi.org/10.1586/erc.12.53; PMID: 22894631
  • Kuehl M, Stevens MJ. Cardiovascular autonomic neuropathies as complications of diabetes mellitus. Nat Rev Endocrinol 2012; 8:405 - 16; http://dx.doi.org/10.1038/nrendo.2012.21; PMID: 22371159
  • Pop-Busui R. What do we know and we do not know about cardiovascular autonomic neuropathy in diabetes. J Cardiovasc Transl Res 2012; 5:463 - 78; http://dx.doi.org/10.1007/s12265-012-9367-6; PMID: 22644723
  • Pop-Busui R, Cleary PA, Braffett BH, Martin CL, Herman WH, Low PA, et al, DCCT/EDIC Research Group. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol 2013; 61:447 - 54; http://dx.doi.org/10.1016/j.jacc.2012.10.028; PMID: 23265339
  • Yang B, Chon KH. Assessment of diabetic cardiac autonomic neuropathy in type I diabetic mice. Conf Proc IEEE Eng Med Biol Soc 2011; 2011:6560 - 3; PMID: 22255842
  • Mabe AM, Hoover DB. Remodeling of cardiac cholinergic innervation and control of heart rate in mice with streptozotocin-induced diabetes. Auton Neurosci 2011; 162:24 - 31; http://dx.doi.org/10.1016/j.autneu.2011.01.008; PMID: 21334985
  • Lambert GW, Straznicky NE, Lambert EA, Dixon JB, Schlaich MP. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Pharmacol Ther 2010; 126:159 - 72; http://dx.doi.org/10.1016/j.pharmthera.2010.02.002; PMID: 20171982
  • Skrapari I, Tentolouris N, Perrea D, Bakoyiannis C, Papazafiropoulou A, Katsilambros N. Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity. Obesity (Silver Spring) 2007; 15:1685 - 93; http://dx.doi.org/10.1038/oby.2007.201; PMID: 17636086
  • Lambert E, Sari CI, Dawood T, Nguyen J, McGrane M, Eikelis N, et al. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension 2010; 56:351 - 8; http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.155663; PMID: 20625075
  • Straznicky NE, Lambert GW, Lambert EA. Neuroadrenergic dysfunction in obesity: an overview of the effects of weight loss. Curr Opin Lipidol 2010; 21:21 - 30; http://dx.doi.org/10.1097/MOL.0b013e3283329c62; PMID: 19809312
  • Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension 2005; 45:9 - 14; PMID: 15583075
  • Grassi G, Arenare F, Quarti-Trevano F, Seravalle G, Mancia G. Heart rate, sympathetic cardiovascular influences, and the metabolic syndrome. Prog Cardiovasc Dis 2009; 52:31 - 7; http://dx.doi.org/10.1016/j.pcad.2009.05.007; PMID: 19615491
  • Grassi G, Seravalle G, Colombo M, Bolla G, Cattaneo BM, Cavagnini F, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998; 97:2037 - 42; http://dx.doi.org/10.1161/01.CIR.97.20.2037; PMID: 9610534
  • Tentolouris N, Argyrakopoulou G, Katsilambros N. Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular Med 2008; 10:169 - 78; http://dx.doi.org/10.1007/s12017-008-8022-5; PMID: 18224460
  • Beske SD, Taylor JA. Obesity and autonomic function. Clin Auton Res 2001; 11:61 - 2; http://dx.doi.org/10.1007/BF02322046; PMID: 11570603
  • Rossi M, Marti G, Ricordi L, Fornasari G, Finardi G, Fratino P, et al. Cardiac autonomic dysfunction in obese subjects. Clin Sci (Lond) 1989; 76:567 - 72; PMID: 2736876
  • Piccirillo G, Vetta F, Viola E, Santagada E, Ronzoni S, Cacciafesta M, et al. Heart rate and blood pressure variability in obese normotensive subjects. Int J Obes Relat Metab Disord 1998; 22:741 - 50; http://dx.doi.org/10.1038/sj.ijo.0800650; PMID: 9725633
  • Piccirillo G, Vetta F, Fimognari FL, Ronzoni S, Lama J, Cacciafesta M, et al. Power spectral analysis of heart rate variability in obese subjects: evidence of decreased cardiac sympathetic responsiveness. Int J Obes Relat Metab Disord 1996; 20:825 - 9; PMID: 8880349
  • Porter TR, Eckberg DL, Fritsch JM, Rea RF, Beightol LA, Schmedtje JF Jr., et al. Autonomic pathophysiology in heart failure patients. Sympathetic-cholinergic interrelations. J Clin Invest 1990; 85:1362 - 71; http://dx.doi.org/10.1172/JCI114580; PMID: 2332495
  • Nolan J, Flapan AD, Capewell S, MacDonald TM, Neilson JM, Ewing DJ. Decreased cardiac parasympathetic activity in chronic heart failure and its relation to left ventricular function. Br Heart J 1992; 67:482 - 5; http://dx.doi.org/10.1136/hrt.67.6.482; PMID: 1622699
  • Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 1971; 285:877 - 83; http://dx.doi.org/10.1056/NEJM197110142851602; PMID: 4398792
  • Sroka K. On the genesis of myocardial ischemia. Z Kardiol 2004; 93:768 - 83; http://dx.doi.org/10.1007/s00392-004-0137-6; PMID: 15492892
  • Watson AM, Hood SG, May CN. Mechanisms of sympathetic activation in heart failure. Clin Exp Pharmacol Physiol 2006; 33:1269 - 74; http://dx.doi.org/10.1111/j.1440-1681.2006.04523.x; PMID: 17184514
  • La Rovere MT, Bigger JT Jr., Marcus FI, Mortara A, Schwartz PJ, ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998; 351:478 - 84; http://dx.doi.org/10.1016/S0140-6736(97)11144-8; PMID: 9482439
  • Lechat P, Hulot JS, Escolano S, Mallet A, Leizorovicz A, Werhlen-Grandjean M, et al. Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation 2001; 103:1428 - 33; http://dx.doi.org/10.1161/01.CIR.103.10.1428; PMID: 11245648
  • Billman GE. A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: implications for future anti-arrhythmic drug development. Pharmacol Ther 2006; 111:808 - 35; http://dx.doi.org/10.1016/j.pharmthera.2006.01.002; PMID: 16483666
  • Lara A, Damasceno DD, Pires R, Gros R, Gomes ER, Gavioli M, et al. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Mol Cell Biol 2010; 30:1746 - 56; http://dx.doi.org/10.1128/MCB.00996-09; PMID: 20123977
  • De Ferrari GM, Vanoli E, Stramba-Badiale M, Hull SS Jr., Foreman RD, Schwartz PJ. Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Physiol 1991; 261:H63 - 9; PMID: 1858931
  • Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr., Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 1991; 68:1471 - 81; http://dx.doi.org/10.1161/01.RES.68.5.1471; PMID: 2019002
  • Zheng C, Li M, Inagaki M, Kawada T, Sunagawa K, Sugimachi M. Vagal stimulation markedly suppresses arrhythmias in conscious rats with chronic heart failure after myocardial infarction. Conf Proc IEEE Eng Med Biol Soc 2005; 7:7072 - 5; PMID: 17281904
  • Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 2004; 109:120 - 4; http://dx.doi.org/10.1161/01.CIR.0000105721.71640.DA; PMID: 14662714
  • Bibevski S, Dunlap ME. Prevention of diminished parasympathetic control of the heart in experimental heart failure. Am J Physiol Heart Circ Physiol 2004; 287:H1780 - 5; http://dx.doi.org/10.1152/ajpheart.00430.2004; PMID: 15191889
  • De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, et al, CardioFit Multicenter Trial Investigators. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 2011; 32:847 - 55; http://dx.doi.org/10.1093/eurheartj/ehq391; PMID: 21030409
  • Sabbah HN. Electrical vagus nerve stimulation for the treatment of chronic heart failure. Cleve Clin J Med 2011; 78:Suppl 1 S24 - 9; http://dx.doi.org/10.3949/ccjm.78.s1.04; PMID: 21972326
  • Dunlap ME, Bibevski S, Rosenberry TL, Ernsberger P. Mechanisms of altered vagal control in heart failure: influence of muscarinic receptors and acetylcholinesterase activity. Am J Physiol Heart Circ Physiol 2003; 285:H1632 - 40; PMID: 12829433
  • Behling A, Moraes RS, Rohde LE, Ferlin EL, Nóbrega AC, Ribeiro JP. Cholinergic stimulation with pyridostigmine reduces ventricular arrhythmia and enhances heart rate variability in heart failure. Am Heart J 2003; 146:494 - 500; http://dx.doi.org/10.1016/S0002-8703(03)00319-3; PMID: 12947369
  • Paton JF, Kasparov S, Paterson DJ. Nitric oxide and autonomic control of heart rate: a question of specificity. Trends Neurosci 2002; 25:626 - 31; http://dx.doi.org/10.1016/S0166-2236(02)02261-0; PMID: 12446130
  • Nihei M, Lee JK, Honjo H, Yasui K, Uzzaman M, Kamiya K, et al. Decreased vagal control over heart rate in rats with right-sided congestive heart failure: downregulation of neuronal nitric oxide synthase. Circ J 2005; 69:493 - 9; http://dx.doi.org/10.1253/circj.69.493; PMID: 15791049
  • Lynch SW, Braas KM, Harakall SA, Kennedy AL, Mawe GM, Parsons RL. Neuropeptide Y (NPY) expression is increased in explanted guinea pig parasympathetic cardiac ganglia neurons. Brain Res 1999; 827:70 - 8; http://dx.doi.org/10.1016/S0006-8993(99)01308-6; PMID: 10320695
  • Girard BM, Young BA, Buttolph TR, White SL, Parsons RL. Regulation of neuronal pituitary adenylate cyclase-activating polypeptide expression during culture of guinea-pig cardiac ganglia. Neuroscience 2007; 146:584 - 93; http://dx.doi.org/10.1016/j.neuroscience.2007.02.001; PMID: 17367946
  • Tompkins JD, Ardell JL, Hoover DB, Parsons RL. Neurally released pituitary adenylate cyclase-activating polypeptide enhances guinea pig intrinsic cardiac neurone excitability. J Physiol 2007; 582:87 - 93; http://dx.doi.org/10.1113/jphysiol.2007.134965; PMID: 17495034
  • Arora RC, Cardinal R, Smith FM, Ardell JL, Dell’Italia LJ, Armour JA. Intrinsic cardiac nervous system in tachycardia induced heart failure. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1212 - 23; PMID: 12893651
  • Smith PG, Beauregard CL. Conversion of parasympathetic nerve function from prejunctional inhibition to postjunctional excitation following sympathectomy of rat periorbital smooth muscle. Brain Res 1993; 629:319 - 22; http://dx.doi.org/10.1016/0006-8993(93)91338-S; PMID: 7906603
  • Moravec M, Moravec J, Forsgren S. Catecholaminergic and peptidergic nerve components of intramural ganglia in the rat heart. An immunohistochemical study. Cell Tissue Res 1990; 262:315 - 27; http://dx.doi.org/10.1007/BF00309887; PMID: 1706221
  • Forsgren S, Moravec M, Moravec J. Catecholamine-synthesizing enzymes and neuropeptides in rat heart epicardial ganglia; an immunohistochemical study. Histochem J 1990; 22:667 - 76; http://dx.doi.org/10.1007/BF01047451; PMID: 1706694
  • Slavíková J, Kuncová J, Reischig J, Dvoráková M. Catecholaminergic neurons in the rat intrinsic cardiac nervous system. Neurochem Res 2003; 28:593 - 8; http://dx.doi.org/10.1023/A:1022837810357; PMID: 12675149
  • Bałuk P, Gabella G. Some parasympathetic neurons in the guinea-pig heart express aspects of the catecholaminergic phenotype in vivo. Cell Tissue Res 1990; 261:275 - 85; http://dx.doi.org/10.1007/BF00318669; PMID: 1976043
  • Forsgren S, Moravec M, Moravec J. Catecholamine-synthesizing enzymes and neuropeptides in rat heart epicardial ganglia; an immunohistochemical study. Histochem J 1990; 22:667 - 76; http://dx.doi.org/10.1007/BF01047451; PMID: 1706694
  • Horackova M, Armour JA, Byczko Z. Distribution of intrinsic cardiac neurons in whole-mount guinea pig atria identified by multiple neurochemical coding. A confocal microscope study. Cell Tissue Res 1999; 297:409 - 21; http://dx.doi.org/10.1007/s004410051368; PMID: 10460488
  • Weihe E, Schütz B, Hartschuh W, Anlauf M, Schäfer MK, Eiden LE. Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. J Comp Neurol 2005; 492:370 - 9; http://dx.doi.org/10.1002/cne.20745; PMID: 16217790
  • Moravec J, Moravec M. Intrinsic nerve plexus of mammalian heart: morphological basis of cardiac rhythmical activity?. Int Rev Cytol 1987; 106:89 - 148; http://dx.doi.org/10.1016/S0074-7696(08)61711-8; PMID: 3294720
  • Hoover DB, Isaacs ER, Jacques F, Hoard JL, Pagé P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 2009; 164:1170 - 9; http://dx.doi.org/10.1016/j.neuroscience.2009.09.001; PMID: 19747529
  • Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm 2010; 7:994 - 6; http://dx.doi.org/10.1016/j.hrthm.2010.02.014; PMID: 20156593
  • Brodski C, Schnürch H, Dechant G. Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons. Proc Natl Acad Sci U S A 2000; 97:9683 - 8; http://dx.doi.org/10.1073/pnas.160080697; PMID: 10931939
  • Slonimsky JD, Mattaliano MD, Moon JI, Griffith LC, Birren SJ. Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proc Natl Acad Sci U S A 2006; 103:2915 - 9; http://dx.doi.org/10.1073/pnas.0511276103; PMID: 16476997
  • Slonimsky JD, Yang B, Hinterneder JM, Nokes EB, Birren SJ. BDNF and CNTF regulate cholinergic properties of sympathetic neurons through independent mechanisms. Mol Cell Neurosci 2003; 23:648 - 60; http://dx.doi.org/10.1016/S1044-7431(03)00102-7; PMID: 12932444
  • Pongrac JL, Rylett RJ. Optimization of serum-free culture conditions for growth of embryonic rat cholinergic basal forebrain neurons. J Neurosci Methods 1998; 84:69 - 76; http://dx.doi.org/10.1016/S0165-0270(98)00099-5; PMID: 9821636
  • Tuszynski MH, Mafong E, Meyer S. Central infusions of brain-derived neurotrophic factor and neurotrophin-4/5, but not nerve growth factor and neurotrophin-3, prevent loss of the cholinergic phenotype in injured adult motor neurons. Neuroscience 1996; 71:761 - 71; http://dx.doi.org/10.1016/0306-4522(95)00440-8; PMID: 8867048
  • Apostolova G, Dorn R, Ka S, Hallböök F, Lundeberg J, Liser K, et al. Neurotransmitter phenotype-specific expression changes in developing sympathetic neurons. Mol Cell Neurosci 2007; 35:397 - 408; http://dx.doi.org/10.1016/j.mcn.2007.03.014; PMID: 17513123
  • Brodski C, Schaubmar A, Dechant G. Opposing functions of GDNF and NGF in the development of cholinergic and noradrenergic sympathetic neurons. Mol Cell Neurosci 2002; 19:528 - 38; http://dx.doi.org/10.1006/mcne.2001.1093; PMID: 11988020
  • Potter DD, Landis SC, Matsumoto SG, Furshpan EJ. Synaptic functions in rat sympathetic neurons in microcultures. II. Adrenergic/cholinergic dual status and plasticity. J Neurosci 1986; 6:1080 - 98; PMID: 3009730
  • Felder E, Dechant G. Neurotrophic factors acutely alter the sorting of the vesicular acetyl choline transporter and the vesicular monoamine transporter 2 in bimodal sympathetic neurons. Mol Cell Neurosci 2007; 34:1 - 9; http://dx.doi.org/10.1016/j.mcn.2006.09.005; PMID: 17059887
  • Yang B, Slonimsky JD, Birren SJ. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat Neurosci 2002; 5:539 - 45; http://dx.doi.org/10.1038/nn0602-853; PMID: 11992117
  • Burau K, Stenull I, Huber K, Misawa H, Berse B, Unsicker K, et al. c-ret regulates cholinergic properties in mouse sympathetic neurons: evidence from mutant mice. Eur J Neurosci 2004; 20:353 - 62; http://dx.doi.org/10.1111/j.1460-9568.2004.03500.x; PMID: 15233745