1,721
Views
20
CrossRef citations to date
0
Altmetric
Review

Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs)

, &
Pages 101-110 | Received 18 Jan 2013, Accepted 28 May 2013, Published online: 01 Apr 2013

References

  • Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958; 182:64 - 5; http://dx.doi.org/10.1038/182064a0; PMID: 13566187
  • Chung Y, Bishop CE, Treff NR, Walker SJ, Sandler VM, Becker S, et al. Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells 2009; 11:213 - 23; http://dx.doi.org/10.1089/clo.2009.0004; PMID: 19186982
  • Noggle S, Fung HL, Gore A, Martinez H, Satriani KC, Prosser R, et al. Human oocytes reprogram somatic cells to a pluripotent state. Nature 2011; 478:70 - 5; http://dx.doi.org/10.1038/nature10397; PMID: 21979046
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663 - 76; http://dx.doi.org/10.1016/j.cell.2006.07.024; PMID: 16904174
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861 - 72; http://dx.doi.org/10.1016/j.cell.2007.11.019; PMID: 18035408
  • Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 2012; 10:678 - 84; http://dx.doi.org/10.1016/j.stem.2012.05.005; PMID: 22704507
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917 - 20; http://dx.doi.org/10.1126/science.1151526; PMID: 18029452
  • Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321(5889): 699-702.12.
  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 2009; 85:348 - 62; http://dx.doi.org/10.2183/pjab.85.348; PMID: 19838014
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008; 322:945 - 9; http://dx.doi.org/10.1126/science.1162494; PMID: 18818365
  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7:618 - 30; http://dx.doi.org/10.1016/j.stem.2010.08.012; PMID: 20888316
  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009; 4:472 - 6; http://dx.doi.org/10.1016/j.stem.2009.05.005; PMID: 19481515
  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471:63 - 7; http://dx.doi.org/10.1038/nature09805; PMID: 21368825
  • Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011; 471:58 - 62; http://dx.doi.org/10.1038/nature09871; PMID: 21368824
  • Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474:212 - 5; http://dx.doi.org/10.1038/nature10135; PMID: 21572395
  • Abdulrazzak H, Moschidou D, Jones G, Guillot PV. Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 2010; 7:Suppl 6 S689 - 706; http://dx.doi.org/10.1098/rsif.2010.0347.focus; PMID: 20739312
  • De Coppi P, Bartsch G Jr., Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25:100 - 6; http://dx.doi.org/10.1038/nbt1274; PMID: 17206138
  • Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 2012; 20:1953 - 67; http://dx.doi.org/10.1038/mt.2012.117; PMID: 22760542
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302:415 - 9; http://dx.doi.org/10.1126/science.1088547; PMID: 14564000
  • Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum?. Regen Med 2009; 4:423 - 33; http://dx.doi.org/10.2217/rme.09.12; PMID: 19438317
  • Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 2008; 12:730 - 42; http://dx.doi.org/10.1111/j.1582-4934.2008.00221.x; PMID: 18194447
  • Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 2009; 18:Suppl 1 17 - 27; http://dx.doi.org/10.1016/S1472-6483(10)60111-3; PMID: 19281660
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143 - 7; http://dx.doi.org/10.1126/science.284.5411.143; PMID: 10102814
  • Pozzobon M, Ghionzoli M, De Coppi PES. ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatr Surg Int 2010; 26:3 - 10; http://dx.doi.org/10.1007/s00383-009-2478-8; PMID: 19727766
  • Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007; 25:646 - 54; http://dx.doi.org/10.1634/stemcells.2006-0208; PMID: 17124009
  • Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98:2396 - 402; http://dx.doi.org/10.1182/blood.V98.8.2396; PMID: 11588036
  • Götherström C, West A, Liden J, Uzunel M, Lahesmaa R, Le Blanc K. Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica 2005; 90:1017 - 26; PMID: 16079100
  • Mackenzie TC, Flake AW. Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy 2001; 3:403 - 5; http://dx.doi.org/10.1080/146532401753277571; PMID: 11953022
  • Kennea NL, Waddington SN, Chan J, O’Donoghue K, Yeung D, Taylor DL, et al. Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 2009; 8:1069 - 79; http://dx.doi.org/10.4161/cc.8.7.8121; PMID: 19270512
  • Taylor PA, McElmurry RT, Lees CJ, Harrison DE, Blazar BR. Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood 2002; 99:1870 - 2; http://dx.doi.org/10.1182/blood.V99.5.1870; PMID: 11861310
  • MacKenzie TS, Campagnoli C, Almeida-Porada G. Circulating human fetal stromal cells engraft and differentiate in multiple tissues following transplantation into pre-immune fetal lambs. Blood 2001; 98:328a
  • Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112:3543 - 53; http://dx.doi.org/10.1182/blood-2008-08-078220; PMID: 18948588
  • Huss R. Perspectives on the morphology and biology of CD34-negative stem cells. J Hematother Stem Cell Res 2000; 9:783 - 93; http://dx.doi.org/10.1089/152581600750062228; PMID: 11177591
  • Bigas A, D’Altri T, Espinosa L. The Notch pathway in hematopoietic stem cells. Curr Top Microbiol Immunol 2012; 360:1 - 18; http://dx.doi.org/10.1007/82_2012_229; PMID: 22692832
  • Lim FT, Kanhai HH, Falkenburg JH. Characterization of the human CD34+ hematopoietic progenitor cell compartment during the second trimester of pregnancy. Haematologica 2005; 90:173 - 9; PMID: 15710568
  • Wagers AJ, Allsopp RC, Weissman IL. Changes in integrin expression are associated with altered homing properties of Lin(-/lo)Thy1.1(lo)Sca-1(+)c-kit(+) hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Exp Hematol 2002; 30:176 - 85; http://dx.doi.org/10.1016/S0301-472X(01)00777-9; PMID: 11823053
  • Broxmeyer HE. Cord blood hematopoietic stem cell transplantation. StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute 2008.
  • Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9:959 - 63; http://dx.doi.org/10.1038/nm886; PMID: 12796774
  • Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, et al. SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 2003; 101:2924 - 31; http://dx.doi.org/10.1182/blood-2002-09-2782; PMID: 12480697
  • Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 2011; 21:518 - 29; http://dx.doi.org/10.1038/cr.2011.12; PMID: 21243013
  • Delaney C, Ratajczak MZ, Laughlin MJ. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients. Expert Rev Hematol 2010; 3:273 - 83; http://dx.doi.org/10.1586/ehm.10.24; PMID: 20835351
  • McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res 2004; 295:350 - 9; http://dx.doi.org/10.1016/j.yexcr.2003.12.028; PMID: 15093735
  • Takenaka C, Nishishita N, Takada N, Jakt LM, Kawamata S. Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Exp Hematol 2010; 38:154 - 62; http://dx.doi.org/10.1016/j.exphem.2009.11.003; PMID: 19922768
  • Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 2011; 117:4773 - 7; http://dx.doi.org/10.1182/blood-2011-01-330514; PMID: 21393480
  • Parolini O, Alviano F, Bergwerf I, Boraschi D, De Bari C, De Waele P, et al. Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev 2010; 19:143 - 54; http://dx.doi.org/10.1089/scd.2009.0404; PMID: 19947828
  • Tamagawa T, Oi S, Ishiwata I, Ishikawa H, Nakamura Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 2007; 20:77 - 84; http://dx.doi.org/10.1111/j.1749-0774.2007.00032.x; PMID: 17645727
  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005; 23:1549 - 59; http://dx.doi.org/10.1634/stemcells.2004-0357; PMID: 16081662
  • Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2006; 2:133 - 42; http://dx.doi.org/10.1007/s12015-006-0020-0; PMID: 17237552
  • Jones GN, Moschidou D, Puga-Iglesias TI, Kuleszewicz K, Vanleene M, Shefelbine SJ, et al. Ontological differences in first compared to third trimester human fetal placental chorionic stem cells. PLoS One 2012; 7:e43395; http://dx.doi.org/10.1371/journal.pone.0043395; PMID: 22962584
  • Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World J Stem Cells 2010; 2:81 - 92; http://dx.doi.org/10.4252/wjsc.v2.i4.81; PMID: 21607124
  • Spitalieri P, Cortese G, Pietropolli A, Filareto A, Dolci S, Klinger FG, et al. Identification of multipotent cytotrophoblast cells from human first trimester chorionic villi. Cloning Stem Cells 2009; 11:535 - 56; http://dx.doi.org/10.1089/clo.2009.0046; PMID: 20025524
  • Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006; 194:664 - 73; http://dx.doi.org/10.1016/j.ajog.2006.01.101; PMID: 16522395
  • Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007; 77:577 - 88; http://dx.doi.org/10.1095/biolreprod.106.055244; PMID: 17494917
  • Chien CC, Yen BL, Lee FK, Lai TH, Chen YC, Chan SH, et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 2006; 24:1759 - 68; http://dx.doi.org/10.1634/stemcells.2005-0521; PMID: 16822884
  • Huang HI. Isolation of human placenta-derived multipotent cells and in vitro differentiation into hepatocyte-like cells. Curr Protoc Stem Cell Biol 2007; Chapter 1:1; PMID: 18785166
  • Zhao HX, Li Y, Jin HF, Xie L, Liu C, Jiang F, et al. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation 2010; 80:123 - 9; http://dx.doi.org/10.1016/j.diff.2010.03.002; PMID: 20510497
  • Klemmt PA, Vafaizadeh V, Groner B. The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opin Biol Ther 2011; 11:1297 - 314; http://dx.doi.org/10.1517/14712598.2011.587800; PMID: 21623704
  • Kunisaki SM, Jennings RW, Fauza DO. Fetal cartilage engineering from amniotic mesenchymal progenitor cells. Stem Cells Dev 2006; 15:245 - 53; http://dx.doi.org/10.1089/scd.2006.15.245; PMID: 16646670
  • Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO. A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng 2007; 13:2633 - 44; http://dx.doi.org/10.1089/ten.2006.0407; PMID: 17655491
  • Kunisaki SM, Fuchs JR, Kaviani A, Oh JT, LaVan DA, Vacanti JP, et al. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg 2006; 41:34 - 9, discussion 34-9; http://dx.doi.org/10.1016/j.jpedsurg.2005.10.011; PMID: 16410104
  • Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 2004; 39:834 - 8, discussion 834-8; http://dx.doi.org/10.1016/j.jpedsurg.2004.02.014; PMID: 15185207
  • Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation 2007; 116:Suppl I64 - 70; http://dx.doi.org/10.1161/CIRCULATIONAHA.106.681494; PMID: 17846327
  • Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet 2009; 18:4340 - 9; http://dx.doi.org/10.1093/hmg/ddp386; PMID: 19679563
  • Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou Y, et al. Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet 2011; 20:962 - 74; http://dx.doi.org/10.1093/hmg/ddq542; PMID: 21156717
  • Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 2008; 3:568 - 74; http://dx.doi.org/10.1016/j.stem.2008.10.004; PMID: 18983970
  • Park J, Kim C, Tang Y, Amano T, Lin CJ, Tian XC. Reprogramming of mouse fibroblasts to an intermediate state of differentiation by chemical induction. Cell Reprogram 2011; 13:121 - 31; http://dx.doi.org/10.1089/cell.2010.0067; PMID: 21473689
  • Ren Y, Lee MY, Schliffke S, Paavola J, Amos PJ, Ge X, et al. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol 2011; 51:280 - 7; http://dx.doi.org/10.1016/j.yjmcc.2011.04.012; PMID: 21569778
  • Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011; 29:1717 - 26; http://dx.doi.org/10.1002/stem.718; PMID: 21898685
  • Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 2011; 10:908 - 11; http://dx.doi.org/10.1111/j.1474-9726.2011.00722.x; PMID: 21615676
  • Wang Q, Xu X, Li J, Liu J, Gu H, Zhang R, et al. Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res 2011; 21:1424 - 35; http://dx.doi.org/10.1038/cr.2011.108; PMID: 21727907
  • Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010; 6:71 - 9; http://dx.doi.org/10.1016/j.stem.2009.12.001; PMID: 20036631
  • Liu T, Zou G, Gao Y, Zhao X, Wang H, Huang Q, et al. High efficiency of reprogramming CD34⁺ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev 2012; 21:2322 - 32; http://dx.doi.org/10.1089/scd.2011.0715; PMID: 22264161
  • Moschidou D, Mukherjee S, Blundell MP, Jones GN, Atala AJ, Thrasher AJ, et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells Dev 2013; 22:444 - 58; http://dx.doi.org/10.1089/scd.2012.0267; PMID: 23050522
  • Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram 2010; 12:117 - 25; http://dx.doi.org/10.1089/cell.2009.0077; PMID: 20677926
  • Mukherjee S, Thrasher AJ. iPSCs: Unstable origins?. Mol Ther 2011; 19:1188 - 90; http://dx.doi.org/10.1038/mt.2011.116; PMID: 21720379
  • Fan Y, Luo Y, Chen X, Li Q, Sun X. Generation of human β-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev 2012; 58:404 - 9; http://dx.doi.org/10.1262/jrd.2011-046; PMID: 22498813
  • Cai J, Li W, Su H, Qin D, Yang J, Zhu F, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 2010; 285:11227 - 34; http://dx.doi.org/10.1074/jbc.M109.086389; PMID: 20139068
  • Guillot PV, Abass O, Bassett JH, Shefelbine SJ, Bou-Gharios G, Chan J, et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 2008; 111:1717 - 25; http://dx.doi.org/10.1182/blood-2007-08-105809; PMID: 17967940
  • Le Blanc K, Götherström C, Ringdén O, Hassan M, McMahon R, Horwitz E, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005; 79:1607 - 14; http://dx.doi.org/10.1097/01.TP.0000159029.48678.93; PMID: 15940052
  • Ersek A, Pixley JS, Goodrich AD, Porada CD, Almeida-Porada G, Thain DS, et al. Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells. Exp Hematol 2010; 38:311 - 20; http://dx.doi.org/10.1016/j.exphem.2010.02.005; PMID: 20170708
  • Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008; 26:2902 - 11
  • Yeh YC, Lee WY, Yu CL, Hwang SM, Chung MF, Hsu LW, et al. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials 2010; 31:6444 - 53; http://dx.doi.org/10.1016/j.biomaterials.2010.04.069; PMID: 20621766
  • De Coppi P, Callegari A, Chiavegato A, Gasparotto L, Piccoli M, Taiani J, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 2007; 177:369 - 76
  • Kong XY, Cai Z, Pan L, Zhang L, Shu J, Dong YL, et al. Transplantation of human amniotic cells exerts neuroprotection in MPTP-induced Parkinson disease mice. Brain Res 2008; 1205:108 - 15; http://dx.doi.org/10.1016/j.brainres.2008.02.040; PMID: 18353283

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.