2,029
Views
29
CrossRef citations to date
0
Altmetric
Special Focus Review

Neural networks in intestinal immunoregulation

, , &
Pages 216-223 | Received 18 Mar 2013, Accepted 06 Jul 2013, Published online: 18 Jul 2013

References

  • Berthoud HR, Bereiter DA, Jeanrenaud B. Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia. J Auton Nerv Syst 1980; 2:183 - 98; http://dx.doi.org/10.1016/0165-1838(80)90044-2; PMID: 7021651
  • Olsson C, Chen BN, Jones S, Chataway TK, Costa M, Brookes SJ. Comparison of extrinsic efferent innervation of guinea pig distal colon and rectum. J Comp Neurol 2006; 496:787 - 801; http://dx.doi.org/10.1002/cne.20965; PMID: 16628614
  • Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol 1899; 24:99 - 143; PMID: 16992487
  • Pack RJ, Richardson PS, Smith IC, Webb SR. The functional significance of the sympathetic innervation of mucous glands in the bronchi of man. J Physiol 1988; 403:211 - 9; PMID: 3253421
  • Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000; 52:595 - 638; PMID: 11121511
  • Furness JB, Costa M. Morphology and distribution of intrinsic adrenergic neurones in the proximal colon of the guinea-pig. Z Zellforsch Mikrosk Anat 1971; 120:346 - 63; http://dx.doi.org/10.1007/BF00324897; PMID: 5153840
  • Phillips RJ, Rhodes BS, Powley TL. Effects of age on sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle of Fischer 344 rats. Anat Embryol (Berl) 2006; 211:673 - 83; http://dx.doi.org/10.1007/s00429-006-0123-z; PMID: 17024301
  • Fu YY, Peng SJ, Lin HY, Pasricha PJ, Tang SC. 3-D imaging and illustration of mouse intestinal neurovascular complex. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1 - 11; http://dx.doi.org/10.1152/ajpgi.00209.2012; PMID: 23086917
  • Capurso L, Friedmann CA, Parks AG. Adrenergic fibres in the human intestine. Gut 1968; 9:678 - 82; http://dx.doi.org/10.1136/gut.9.6.678; PMID: 5717969
  • Llewellyn-Smith IJ, Furness JB, O’Brien PE, Costa M. Noradrenergic nerves in human small intestine. Distribution and ultrastructure. Gastroenterology 1984; 87:513 - 29; PMID: 6745604
  • Dorban G, Defaweux V, Demonceau C, Flandroy S, Van Lerberghe PB, Falisse-Poirrier N, et al. Interaction between dendritic cells and nerve fibres in lymphoid organs after oral scrapie exposure. Virchows Arch 2007; 451:1057 - 65; http://dx.doi.org/10.1007/s00428-007-0476-6; PMID: 17823814
  • Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 1985; 135:Suppl 755s - 65s; PMID: 2861231
  • Manni M, Granstein RD, Maestroni G. β2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine 2011; 55:380 - 6; http://dx.doi.org/10.1016/j.cyto.2011.05.013; PMID: 21683614
  • Maestroni GJ. Dendritic cell migration controlled by alpha 1b-adrenergic receptors. J Immunol 2000; 165:6743 - 7; PMID: 11120793
  • Maestroni GJ, Mazzola P. Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J Neuroimmunol 2003; 144:91 - 9; http://dx.doi.org/10.1016/j.jneuroim.2003.08.039; PMID: 14597102
  • Yanagawa Y, Matsumoto M, Togashi H. Enhanced dendritic cell antigen uptake via alpha2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. J Immunol 2010; 185:5762 - 8; http://dx.doi.org/10.4049/jimmunol.1001899; PMID: 20935206
  • Sanders VM. The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet?. Brain Behav Immun 2012; 26:195 - 200; http://dx.doi.org/10.1016/j.bbi.2011.08.001; PMID: 21855626
  • Li YS, Kouassi E, Revillard JP. Differential regulation of mouse B-cell activation by beta-adrenoceptor stimulation depending on type of mitogens. Immunology 1990; 69:367 - 72; PMID: 2155873
  • Kasprowicz DJ, Kohm AP, Berton MT, Chruscinski AJ, Sharpe A, Sanders VM. Stimulation of the B cell receptor, CD86 (B7-2), and the beta 2-adrenergic receptor intrinsically modulates the level of IgG1 and IgE produced per B cell. J Immunol 2000; 165:680 - 90; PMID: 10878340
  • Kohm AP, Sanders VM. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 2001; 53:487 - 525; PMID: 11734616
  • González-Ariki S, Husband AJ. The role of sympathetic innervation of the gut in regulating mucosal immune responses. Brain Behav Immun 1998; 12:53 - 63; http://dx.doi.org/10.1006/brbi.1997.0509; PMID: 9570861
  • Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora’s box?. Mol Med 2008; 14:195 - 204; PMID: 18079995
  • Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci 2012; 169:12 - 27; http://dx.doi.org/10.1016/j.autneu.2012.02.004; PMID: 22436622
  • Chou RC, Stinson MW, Noble BK, Spengler RN. Beta-adrenergic receptor regulation of macrophage-derived tumor necrosis factor-alpha production from rats with experimental arthritis. J Neuroimmunol 1996; 67:7 - 16; PMID: 8707933
  • Straub RH, Pongratz G, Weidler C, Linde HJ, Kirschning CJ, Glück T, et al. Ablation of the sympathetic nervous system decreases gram-negative and increases gram-positive bacterial dissemination: key roles for tumor necrosis factor/phagocytes and interleukin-4/lymphocytes. J Infect Dis 2005; 192:560 - 72; http://dx.doi.org/10.1086/432134; PMID: 16028124
  • Gershon MD, Sherman DL. Noradrenergic innervation of serotoninergic neurons in the myenteric plexus. J Comp Neurol 1987; 259:193 - 210; http://dx.doi.org/10.1002/cne.902590203; PMID: 3584557
  • Lundgren O.. Sympathetic input into the enteric nervous system. Gut2000; 47 (Suppl 4): iv33-5; discussion iv6.
  • Tobin G, Giglio D, Lundgren O.. Muscarinic receptor subtypes in the alimentary tract. J Physiol Pharmacol 2009; 60:3-21.
  • Xu Y, Luo X, Shen J, Zhu W, Chen K, Jiang H. Molecular dynamics of nicotinic acetylcholine receptor correlating biological functions. Curr Protein Pept Sci 2006; 7:195 - 200; http://dx.doi.org/10.2174/138920306777452321; PMID: 16787259
  • Kawashima K, Fujii T, Moriwaki Y, Misawa H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci 2012; 91:1027 - 32; http://dx.doi.org/10.1016/j.lfs.2012.05.006; PMID: 22659391
  • Qian J, Galitovskiy V, Chernyavsky AI, Marchenko S, Grando SA. Plasticity of the murine spleen T-cell cholinergic receptors and their role in in vitro differentiation of naïve CD4 T cells toward the Th1, Th2 and Th17 lineages. Genes Immun 2011; 12:222 - 30; http://dx.doi.org/10.1038/gene.2010.72; PMID: 21270829
  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421:384 - 8; http://dx.doi.org/10.1038/nature01339; PMID: 12508119
  • Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H. Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci 2007; 80:2314 - 9; http://dx.doi.org/10.1016/j.lfs.2007.02.036; PMID: 17383684
  • Skok M, Grailhe R, Changeux JP. Nicotinic receptors regulate B lymphocyte activation and immune response. Eur J Pharmacol 2005; 517:246 - 51; http://dx.doi.org/10.1016/j.ejphar.2005.05.011; PMID: 15963492
  • Skok M, Grailhe R, Agenes F, Changeux JP. The role of nicotinic acetylcholine receptors in lymphocyte development. J Neuroimmunol 2006; 171:86 - 98; http://dx.doi.org/10.1016/j.jneuroim.2005.09.011; PMID: 16253349
  • Kirchgessner AL, Gershon MD. Identification of vagal efferent fibers and putative target neurons in the enteric nervous system of the rat. J Comp Neurol 1989; 285:38 - 53; http://dx.doi.org/10.1002/cne.902850105; PMID: 2568999
  • Holst MC, Kelly JB, Powley TL. Vagal preganglionic projections to the enteric nervous system characterized with Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 1997; 381:81 - 100; http://dx.doi.org/10.1002/(SICI)1096-9861(19970428)381:1<81::AID-CNE7>3.0.CO;2-G; PMID: 9087421
  • Walter GC, Phillips RJ, Baronowsky EA, Powley TL. Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines. J Neurosci Methods 2009; 178:1 - 9; http://dx.doi.org/10.1016/j.jneumeth.2008.11.003; PMID: 19056424
  • Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011; 334:98 - 101; http://dx.doi.org/10.1126/science.1209985; PMID: 21921156
  • Reardon C, Duncan GS, Brüstle A, Brenner D, Tusche MW, Olofsson PS, et al. Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proc Natl Acad Sci U S A 2013; 110:1410 - 5; http://dx.doi.org/10.1073/pnas.1221655110; PMID: 23297238
  • Costa M, Brookes SJ, Hennig GW. . Anatomy and physiology of the enteric nervous system. Gut2000; 47 (Suppl 4):iv15-9; discussion iv26.
  • Furness JB. The enteric nervous system and neurogastroenterology. Nature reviews. Gastroenterol Hepatol 2012; 9:286 - 94
  • Berthoud HR, Jedrzejewska A, Powley TL. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat. J Comp Neurol 1990; 301:65 - 79; http://dx.doi.org/10.1002/cne.903010107; PMID: 1706359
  • Manber L, Gershon MD. A reciprocal adrenergic-cholinergic axoaxonic synapse in the mammalian gut. Am J Physiol 1979; 236:E738 - 45; PMID: 443427
  • de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005; 6:844 - 51; http://dx.doi.org/10.1038/ni1229; PMID: 16025117
  • Vizi ES. Presynaptic modulation of neurochemical transmission. Prog Neurobiol 1979; 12:181 - 290; http://dx.doi.org/10.1016/0301-0082(79)90011-X; PMID: 39316
  • Straub RH, Wiest R, Strauch UG, Härle P, Schölmerich J. The role of the sympathetic nervous system in intestinal inflammation. Gut 2006; 55:1640 - 9; http://dx.doi.org/10.1136/gut.2006.091322; PMID: 17047110
  • Kulkarni-Narla A, Beitz AJ, Brown DR. Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and ileum. Cell Tissue Res 1999; 298:275 - 86; http://dx.doi.org/10.1007/s004419900096; PMID: 10571116
  • Delgado M, Abad C, Martinez C, Juarranz MG, Arranz A, Gomariz RP, et al. Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med (Berl) 2002; 80:16 - 24; http://dx.doi.org/10.1007/s00109-001-0291-5; PMID: 11862320
  • Delgado M, Ganea D. Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol 2001; 167:966 - 75; PMID: 11441105
  • Delgado M, Gonzalez-Rey E, Ganea D. The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 2005; 175:7311 - 24; PMID: 16301637
  • Massacand JC, Kaiser P, Ernst B, Tardivel A, Bürki K, Schneider P, et al. Intestinal bacteria condition dendritic cells to promote IgA production. PLoS One 2008; 3:e2588; http://dx.doi.org/10.1371/journal.pone.0002588; PMID: 18596964
  • Boirivant M, Fais S, Annibale B, Agostini D, Delle Fave G, Pallone F. Vasoactive intestinal polypeptide modulates the in vitro immunoglobulin A production by intestinal lamina propria lymphocytes. Gastroenterology 1994; 106:576 - 82; PMID: 8119526
  • Phillips RJ, Powley TL. . Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 2007; 136:1-19.
  • Allione A, Bernabei P, Bosticardo M, Ariotti S, Forni G, Novelli F. Nitric oxide suppresses human T lymphocyte proliferation through IFN-gamma-dependent and IFN-gamma-independent induction of apoptosis. J Immunol 1999; 163:4182 - 91; PMID: 10510354
  • Cifone MG, D’Alò S, Parroni R, Millimaggi D, Biordi L, Martinotti S, et al. Interleukin-2-activated rat natural killer cells express inducible nitric oxide synthase that contributes to cytotoxic function and interferon-gamma production. Blood 1999; 93:3876 - 84; PMID: 10339496
  • Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001; 2:907 - 16; http://dx.doi.org/10.1038/ni1001-907; PMID: 11577346
  • Kirchgessner AL, Tamir H, Gershon MD. . Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci1992; 12:235-48.
  • Grønstad KO, DeMagistris L, Dahlström A, Nilsson O, Price B, Zinner MJ, et al. The effects of vagal nerve stimulation on endoluminal release of serotonin and substance P into the feline small intestine. Scand J Gastroenterol 1985; 20:163 - 9; http://dx.doi.org/10.3109/00365528509089650; PMID: 2581309
  • Idzko M, Panther E, Stratz C, Müller T, Bayer H, Zissel G, et al. The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol 2004; 172:6011 - 9; PMID: 15128784
  • Tsuchida Y, Hatao F, Fujisawa M, Murata T, Kaminishi M, Seto Y, et al. Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via α7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 2011; 60:638 - 47; http://dx.doi.org/10.1136/gut.2010.227546; PMID: 21115544
  • Ormsbee HS 3rd, Fondacaro JD. Action of serotonin on the gastrointestinal tract. Proc Soc Exp Biol Med 1985; 178:333 - 8; http://dx.doi.org/10.3181/00379727-178-42016; PMID: 3919396
  • Brookes SJ, Steele PA, Costa M. Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine. Neuroscience 1991; 42:863 - 78; http://dx.doi.org/10.1016/0306-4522(91)90050-X; PMID: 1720229
  • Kimball ES, Persico FJ, Vaught JL. Neurokinin-induced generation of interleukin-1 in a macrophage cell line. Ann N Y Acad Sci 1988; 540:688 - 90; http://dx.doi.org/10.1111/j.1749-6632.1988.tb27213.x; PMID: 2462840
  • Payan DG, Brewster DR, Goetzl EJ. Specific stimulation of human T lymphocytes by substance P. J Immunol 1983; 131:1613 - 5; PMID: 6194207
  • Dong WZ, Zou DW, Li ZS, Zou XP, Zhu AY, Xu GM, et al. Study of visceral hypersensitivity in irritable bowel syndrome. Chin J Dig Dis 2004; 5:103 - 9; http://dx.doi.org/10.1111/j.1443-9573.2004.00168.x; PMID: 15612244
  • Shanahan F, Denburg JA, Fox J, Bienenstock J, Befus D. Mast cell heterogeneity: effects of neuroenteric peptides on histamine release. J Immunol 1985; 135:1331 - 7; PMID: 2409146
  • Feng B, La JH, Schwartz ES, Gebhart GF. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1085 - 98; http://dx.doi.org/10.1152/ajpgi.00542.2011; PMID: 22403791
  • de Jonge WJ, The FO, van der Coelen D, Bennink RJ, Reitsma PH, van Deventer SJ, et al. Mast cell degranulation during abdominal surgery initiates postoperative ileus in mice. Gastroenterology 2004; 127:535 - 45; http://dx.doi.org/10.1053/j.gastro.2004.04.017; PMID: 15300586
  • van Bree SH, Gomez-Pinilla PJ, van de Bovenkamp FS, Di Giovangiulio M, Farro G, Nemethova A, et al. Inhibition of spleen tyrosine kinase as treatment of postoperative ileus. Gut 2012; http://dx.doi.org/10.1136/gutjnl-2012-302615; PMID: 23242119
  • Genton L, Kudsk KA. Interactions between the enteric nervous system and the immune system: role of neuropeptides and nutrition. Am J Surg 2003; 186:253 - 8; http://dx.doi.org/10.1016/S0002-9610(03)00210-1; PMID: 12946828
  • Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation 2010; 7:37; http://dx.doi.org/10.1186/1742-2094-7-37; PMID: 20615234
  • Geboes K.. Immunopathological studies of the small intestinal intramural nervous system and of intramural vessels in Crohn's disease. Verh K Acad Geneeskd Belg1993; 55:267-301; discussion -3.
  • Arranz A, Juarranz Y, Leceta J, Gomariz RP, Martínez C. VIP balances innate and adaptive immune responses induced by specific stimulation of TLR2 and TLR4. Peptides 2008; 29:948 - 56; http://dx.doi.org/10.1016/j.peptides.2008.01.019; PMID: 18359536
  • Linden DR, Couvrette JRN, Ciolino A, McQuoid C, Blaszyk H, Sharkey KA, et al. Indiscriminate loss of myenteric neurones in the TNBS-inflamed guinea-pig distal colon. Neurogastroenterol Motil2005; 17:751-60.
  • Belai A, Boulos PB, Robson T, Burnstock G. Neurochemical coding in the small intestine of patients with Crohn’s disease. Gut 1997; 40:767 - 74; http://dx.doi.org/10.1136/gut.40.6.767; PMID: 9245931
  • Mazumdar S, Das KM. Immunocytochemical localization of vasoactive intestinal peptide and substance P in the colon from normal subjects and patients with inflammatory bowel disease. Am J Gastroenterol 1992; 87:176 - 81; PMID: 1370872
  • Bueno L, Fioramonti J, Ruckebusch Y. Postoperative intestinal motility in dogs and sheep. Am J Dig Dis 1978; 23:682 - 9; http://dx.doi.org/10.1007/BF01072352; PMID: 685935
  • Zittel TT, Reddy SN, Plourde V, Raybould HE. Role of spinal afferents and calcitonin gene-related peptide in the postoperative gastric ileus in anesthetized rats. Ann Surg 1994; 219:79 - 87; http://dx.doi.org/10.1097/00000658-199401000-00013; PMID: 8297181
  • Kalff JC, Buchholz BM, Eskandari MK, Hierholzer C, Schraut WH, Simmons RL, et al. Biphasic response to gut manipulation and temporal correlation of cellular infiltrates and muscle dysfunction in rat. Surgery 1999; 126:498 - 509; http://dx.doi.org/10.1016/S0039-6060(99)70091-7; PMID: 10486602
  • Kalff JC, Carlos TM, Schraut WH, Billiar TR, Simmons RL, Bauer AJ. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 1999; 117:378 - 87; http://dx.doi.org/10.1053/gast.1999.0029900378; PMID: 10419919
  • Kalff JC, Schraut WH, Simmons RL, Bauer AJ. Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg 1998; 228:652 - 63; http://dx.doi.org/10.1097/00000658-199811000-00004; PMID: 9833803
  • de Jonge WJ, van den Wijngaard RM, The FO, ter Beek ML, Bennink RJ, Tytgat GN, et al. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology 2003; 125:1137 - 47; http://dx.doi.org/10.1016/S0016-5085(03)01197-1; PMID: 14517797
  • Swain MG, Blennerhassett PA, Collins SM. Impaired sympathetic nerve function in the inflamed rat intestine. Gastroenterology 1991; 100:675 - 82; PMID: 1847118
  • Jacobson K, McHugh K, Collins SM. The mechanism of altered neural function in a rat model of acute colitis. Gastroenterology 1997; 112:156 - 62; http://dx.doi.org/10.1016/S0016-5085(97)70230-0; PMID: 8978354
  • Motagally MA, Neshat S, Lomax AE. Inhibition of sympathetic N-type voltage-gated Ca2+ current underlies the reduction in norepinephrine release during colitis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1077 - 84; http://dx.doi.org/10.1152/ajpgi.00006.2009; PMID: 19264956
  • Straub RH, Grum F, Strauch U, Capellino S, Bataille F, Bleich A, et al. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 2008; 57:911 - 21; http://dx.doi.org/10.1136/gut.2007.125401; PMID: 18308830
  • Bai A, Lu N, Guo Y, Chen J, Liu Z. Modulation of inflammatory response via alpha2-adrenoceptor blockade in acute murine colitis. Clin Exp Immunol 2009; 156:353 - 62; http://dx.doi.org/10.1111/j.1365-2249.2009.03894.x; PMID: 19250273
  • McCafferty DM, Wallace JL, Sharkey KA. Effects of chemical sympathectomy and sensory nerve ablation on experimental colitis in the rat. Am J Physiol 1997; 272:G272 - 80; PMID: 9124351
  • Xia CM, Colomb DG Jr, Akbarali HI, Qiao LY. . Prolonged sympathetic innervation of sensory neurons in rat thoracolumbar dorsal root ganglia during chronic colitis. Neurogastroenterol Motil2011; 23:801-e339.
  • Berthoud HR, Kressel M, Raybould HE, Neuhuber WL. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol (Berl) 1995; 191:203 - 12; http://dx.doi.org/10.1007/BF00187819; PMID: 7771683
  • Williams RM, Berthoud HR, Stead RH. Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation 1997; 4:266 - 70; PMID: 9650820
  • Ek M, Kurosawa M, Lundeberg T, Ericsson A.. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. The Journal of neuroscience: the official journal of the Society for Neuroscience1998; 18:9471-9.
  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405:458 - 62; http://dx.doi.org/10.1038/35013070; PMID: 10839541
  • Tracey KJ. The inflammatory reflex. Nature 2002; 420:853 - 9; http://dx.doi.org/10.1038/nature01321; PMID: 12490958
  • Cailotto C, Costes LM, van der Vliet J, van Bree SH, van Heerikhuize JJ, Buijs RM, et al. Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine. Neurogastroenterol Motil2012; 24:191-200, e93.
  • Lubbers T, De Haan JJ, Hadfoune M, Zhang Y, Luyer MD, Grundy D, et al. Lipid-enriched enteral nutrition controls the inflammatory response in murine Gram-negative sepsis. Crit Care Med 2010; 38:1996 - 2002; PMID: 20639744
  • Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 2006; 131:1122 - 30; http://dx.doi.org/10.1053/j.gastro.2006.08.016; PMID: 17030182
  • Orr-Urtreger A, Kedmi M, Rosner S, Karmeli F, Rachmilewitz D. Increased severity of experimental colitis in alpha 5 nicotinic acetylcholine receptor subunit-deficient mice. Neuroreport 2005; 16:1123 - 7; http://dx.doi.org/10.1097/00001756-200507130-00018; PMID: 15973160
  • Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JRN, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A 2008; 105:11008 - 13; http://dx.doi.org/10.1073/pnas.0803237105; PMID: 18669662
  • Vida G, Peña G, Deitch EA, Ulloa L. α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol 2011; 186:4340 - 6; http://dx.doi.org/10.4049/jimmunol.1003722; PMID: 21339364
  • Nance DM, Burns J. Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav Immun 1989; 3:281 - 90; http://dx.doi.org/10.1016/0889-1591(89)90028-7; PMID: 2611414
  • Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun 1993; 7:191 - 204; http://dx.doi.org/10.1006/brbi.1993.1021; PMID: 8219410
  • Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp Physiol 2012; 97:1180 - 5; PMID: 22247284
  • Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 2009; 96:557 - 67; http://dx.doi.org/10.1016/j.physbeh.2008.12.004; PMID: 19135464
  • Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology2011; 141:599-609, e1-3.
  • Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011; 23:1132 - 9; http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x; PMID: 21988661
  • Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology2010; 139:2102-12e1.
  • Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011; 140:1720 - 8; http://dx.doi.org/10.1053/j.gastro.2011.01.054; PMID: 21530738
  • DuPont AW, DuPont HL. The intestinal microbiota and chronic disorders of the gut. Nature reviews. Gastroenterol Hepatol 2011; 8:523 - 31
  • Mawdsley JE, Rampton DS. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 2005; 54:1481 - 91; http://dx.doi.org/10.1136/gut.2005.064261; PMID: 16162953
  • Mawdsley JE, Rampton DS. The role of psychological stress in inflammatory bowel disease. Neuroimmunomodulation 2006; 13:327 - 36; http://dx.doi.org/10.1159/000104861; PMID: 17709955