869
Views
21
CrossRef citations to date
0
Altmetric
Review

Engineering vascularized tissues using natural and synthetic small molecules

, &
Pages 215-227 | Published online: 01 Oct 2008

References

  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6:389 - 395
  • Peirce SM, Skalak TC. Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 2003; 10:99 - 111
  • Heil M, Schaper W. Insights into pathways of arteriogenesis. Current Pharm Biotech 2007; 8:35 - 42
  • Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, et al. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 1997; 36:78 - 85
  • Lekas M, Lekas P, Latter DA, Kutryk MB, Stewart DJ. Growth factor-induced therapeutic neovascularization for ischaemic vascular disease: time for a re-evaluation?. Curr Opin Cardiol 2006; 21:376 - 384
  • Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, et al. Therapeutic angiogenesis—a single intraarterial bolus of vascular endothelial growth-factor augments revascularization in a rabbit ischemic hind-limb. J Clin Invest 1994; 93:662 - 670
  • Peirce SM, Price RJ, Skalak TC. Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1. Am J Physiol Heart Circ Physiol 2004a; 286:918 - 925
  • Jain RK. Molecular regulation of vessel maturation. Nature Medicine 2003; 9:685 - 693
  • Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 2007; 24:258 - 264
  • Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 2003; 107:1359 - 1365
  • Barnard GC, McCool JD, Wood DW, Gerngross TU. Integrated recombinant protein expression and purification platform based on ralstonia eutropha. Appl Environ Microbiol 2005; 71:5735 - 5742
  • Ivan M, Kondo K, Yang HF, Kim W, Valiando J, Ohh M, et al. HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O-2 sensing. Science 2001; 292:464 - 468
  • Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF1-alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001; 15:2675 - 2686
  • Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 2003; 93:1074 - 1081
  • Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 2000; 102:73 - 86
  • Kotch LE, Iyer NV, Laughner E, Semenza GL. Defective vascularization of HiF-1α-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Develop Biol 1999; 209:254 - 267
  • Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1α. Genes Dev 2001; 15:2520 - 2532
  • Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 2000; 54:576 - 583
  • Vincent KA, Shyu KG, Luo Y, Magner M, Tio RA, Jiang C, et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation 2000; 102:2255 - 2261
  • Warnecke C, Griethe W, Weidemann A, Jurgensen JS, William C, Bachmann S, et al. Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J 2003; 17:1186 - 1188
  • Singletary K, MacDonald C, Iovinelli M, Fisher C, Wallig M. Effect of the β-diketones diferuloulmethane (curcumin) and dibenzoylmethane on rat mammary DNA adducts and tumors induced by 7,12-dimethylbenz[a]anthracene. Carcinogenesis 1998; 19:1039 - 1043
  • Mabjeesh, Willard MT, Harris WB, Sun HY, Wang R, Zhong H, Umbreit JN, et al. Dibenzoylmethane, a natural dietary compound, induces HIF-1alpha and increases expression of VEGF. Biochem Biophys Res Commun 2003; 303:279 - 286
  • Linden T, Katschinski DM, Eckhardt K, Scheid A, Pagel H, Wenger RH. The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression and angiogenesis. FASEB J 2003; 17:761 - 763
  • Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ. Regulation of angiogenic growth factor expression by hypoxia, transition metals and chelating agents. Am J Physiol 1995; 268:1362 - 1368
  • Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 1993; 82:3610 - 3615
  • Chekanov VS, Nikolaychik V, Maternowski MA, Mehran R, Leon MB, Adamian M, et al. Deferoxamine enhances neovascularization and recovery of ischemic skeletal muscle in an experimental sheep model. Ann Thorac Surg 1003; 75:184 - 189
  • Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, et al. Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proc Natl Acad Sci USA 2008; 105:686 - 691
  • Dragsten PR, Hallaway PE, Hanson GJ, Berger AE, Bernard B, Hedlund BE. First human studies with a high-molecular-weight iron chelator. J Lab Clinical Med 2000; 135:57 - 65
  • Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90:4304 - 4308
  • Maxwell P, Salnikow K. HIF-1: An oxygen and metal responsive transcription factor. Cancer Biol Ther 2004; 3:29 - 35
  • Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest 2005; 85:1292 - 1307
  • Loboda A, Jazwa A, Wegiel B, Jozkowicz A, Dulak J. Heme oxygenase-1-dependent and -independent regulation of angiogenic genes expression: effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells. Cell Mol Biol 2005; 51:347 - 355
  • Xi L, Taher M, Yin C, Salloum F, Kukreja RC. Cobalt chloride induces delayed cardiac preconditioning in mcie through selective activation of HIF-1α and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 2004; 287:2369 - 2375
  • Baker JE, Curry BD, Olinger GN, Gross GJ. Increased tolerance of chronically hypoxic immature heart to ischemia. Contribution of the KATP channel. Circulation 1997; 95:1278 - 1285
  • Rakusan K, Cicutti N, Kolar F. Cardiac function, microvascular structure and capillary hematocrit in hearts of polycythemic rats. Am J Physiol Heart Circ Physiol 2001; 281:2425 - 2431
  • Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxlyase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 2002; 99:13459 - 13464
  • Cho H, Lee H, Ahn D, Kim SY, Kim S, Lee KB, et al. Baicalein induces functional hypoxia-inducible factor-1α and angiogenesis. Mol Pharmacol 2008; 74:70 - 81
  • Creighton-Gutteridge M, Tyrrell RM. A novel iron chelator that does not induce HIF-1 activity. Free Radic Biol Med 2002; 33:356 - 363
  • Nangaku M, Izuhara Y, Takizawa S, Yamashita T, Fujii-Kuriyama Y, Ohneda O, et al. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arterioscler Thromb Vasc Biol 2007; 27:2548 - 2554
  • Hanauske-Abel HM, Gunzler V. A stereochemical concept for the catalytic mechanism of prolylhydroxylase: applicability to classification and design of inhibitors. J Theor Biol 1982; 94:421 - 455
  • Jaakkola P, Mole Dr, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292:468 - 472
  • Asikainen TM, Ahmad A, Schneider BK, Ho WB, Arend M, Brenner M, et al. Stimulation of HIF-1α, HIF-2α and VEGF by prolyl 4-hydroxylase inhibition in human lung endothelial and epithelial cells. Free Radic Biol Med 2005; 38:1002 - 1013
  • Okaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA III, et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 2005; 289:542 - 548
  • Milkiewicz M, Pugh CW, Egginton S. Inhibition of endogenous HIF inactivation induces angiogenesis in ischaemic skeletal muscles of mice. J Physiol 2004; 560.1:21 - 26
  • Milkiewicz M, Hudlicka O, Verhaeg J, Egginton S, Brown MD. Differential expression of Flk-1 and Flt-1 in rat skeletal muscle in reponse to chronic ischaemia:favourable effect of muscel activity. Clin Sci (Lond) 2003; 105:473 - 482
  • Guenzler-Pukall V, Neff TB, Wang Q, Arend MP, Flippin LA, Melekhov A. 2003; US2003017617A
  • Kostenis E. G proteins in drug screening: From analysis of receptor-G protein specificity to manipulation of GPCR-mediated signaling pathways. Curr Pharma Design 2006; 12:1703 - 1715
  • Gardell SE, Dubin AE, Chun J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 2006; 12:65 - 75
  • Civelli O. GPCR deorphanizations: the novel, the known, and the unexpected transmitter. Trends Pharmacol Sci 2005; 26:15 - 19
  • Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S. Spingosine 1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 1991; 114:155 - 167
  • Culliver O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, et al. Suppression of ceramide-mediated programmed cell death by sphingosine 1-phosphate. Nature 1996; 381:800 - 803
  • Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 2001; 8:693 - 704
  • Rosenfeldt HM, Hobson JP, Maceyka M, Olivera A, Nava VE, Milstein S, et al. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J 2001; 15:2649 - 2659
  • Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine 1-phosphate receptor isoform. Mol Cell Biol 2003; 23:1534 - 1545
  • Wang F, Van Brocklyn JR, Hobson JP, Movafagh S, Zukowska-Grojec Z, Milstein S, et al. Sphingosine 1-phosphate stimulates cell migration through a Gi-coupled cell surface receptor: potential involvement in angiogenesis. J Biol Chem 1999; 274:35343 - 35350
  • Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, et al. Edg-1, the G protein-coupled receptor for sphingosine 1-phosphate, is essential for vascular maturation. J Clin Invest 2000b; 106:951 - 961
  • Cyster JG. Chemokines, sphingosine 1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 2005; 23:127 - 159
  • Pyne S, Pyne N. Sphingosine 1-phosphate signaling via the endothelial differentiation gene family of G protein-coupled receptors. Pharmacol Ther 2000; 88:115 - 131
  • Kimura T, Watanabe T, Sato K, Kon J, Tomura H, Tamama K, et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 2000; 348:71 - 76
  • Kluk MJ, Hla T. Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circ Research 2001; 89:496 - 502
  • Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM, Mack CP. Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J Biol Chem 2004; 279:42422 - 42430
  • Hisano N, Yatomi Y, Satoh K, Akimoto S, Mitsumata M, Fujino MA, et al. Induction and suppression of endothelial cell apoptosis by sphingolipids: A possible in vitro model for cell-cell interactions between platelets and endothelial cells. Blood 1999; 93:4293 - 4299
  • Paik JH, Skoura A, Chae SS, Cowan AE, Han DK, Proia RL, et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 2004; 18:2392 - 2403
  • Wacker BK, Scott EA, Kaneda MM, Alford SK, Elbert DL. Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules 2006; 7:1335 - 1343
  • Kawanabe T, Kawakami T, Yatomi Y, Shimada S, Soma Y. Sphingosine 1-phosphate accelerates wound healing in diabetic mice. J Dermatol Sci 2007; 48:53 - 60
  • Oyama O, Sugimoto N, Qi X, Takuwa N, Mizugishi K, Koizumi J, et al. The lysophospholipid mediator sphingosine 1-phosphate promotes angiogenesis in vivo in ischemic hindlimbs of mice. Cardiovas Res 2008; 78:301 - 307
  • Sefcik LS, Petrie Aronin CE, Wieghaus KA, Botchwey EA. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials 2008; 29:2869 - 2877
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84:767 - 801
  • Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth-muscle accumulation after angioplasty by an antibody to PDGF. Science 1991; 253:1129 - 1132
  • Waeber C, Blondeau N, Salomone S. Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect 2004; 17:365 - 382
  • Saba JD, Hla T. Point-Counterpoint of Sphingosine 1-Phosphate Metabolism. Circ Res 2004; 94:724 - 734
  • Wamhoff BR, Lynch KR, Macdonald TL, Owens GK. Sphingosine 1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2008; 28:1454 - 1461
  • Inoue S, Nakazawa T, Cho A, Dastvan F, Shilling D, Daum G, et al. Regulation of arterial lesions in mice depends on differential smooth muscle cell migration: a role for sphingosine 1-phosphate receptors. J Vasc Surg 2007; 46:756 - 763
  • Shimizu T, Nakazawa T, Cho A, Dastvan F, Shilling D, Daum G, et al. Sphingosine 1-phosphate receptor 2 negatively regulates neointimal formation in mouse arteries. Circ Res 2007; 101:995 - 1000
  • Goetzl EJ, An SZ. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J 1998; 12:1589 - 1598
  • Lee H, Goetzl EJ, An SZ. Lysophosphatidic acid and sphingosine 1-phosphate stimualte endothelial cell woudn healing. Am J Physiol Cell Physiol 2000; 278:612 - 618
  • Wu WT, Chen CN, Lin CI, Chen JH, Lee H. Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. Endocrinology 2005; 146:3387 - 3400
  • English D, Kovala AT, Welch Z, Harvey KA, Siddiqui RA, Brindley DN, et al. Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 1999; 8:627 - 634
  • Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, et al. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 2002; 22:6921 - 6929
  • Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA, et al. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res 2001; 61:6938 - 6944
  • Van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradere JP, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 2006; 26:5015 - 5022
  • Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M, et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 2006; 281:25822 - 25830
  • Rivera-Lopez CM, Tucker AL, Lynch KR. Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis 2008; 11:301 - 310
  • Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn-Schmied Arch Pharmacol 2000; 362:364 - 374
  • Dusseau JW, Hutchins PM, Malbasa DS. Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 2986; 59:163 - 170
  • Adair TH. Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol 2005; 289:283 - 296
  • Marshall JM. Roles of adenosine and nitric oxide in skeletal muscle in acute and chronic hypoxia. Adv Exp Med Biol 2001; 502:349 - 363
  • Cronstein BN. Adenosine receptors and wound healing. Scientific World Journal 2004; 4:1 - 8
  • Ziada AM, Hudlicka O, Tyler KR, Wright AJ. The effect of long-term vasodilation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res 1984; 18:724 - 732
  • Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Boyno-Yasenetckaya T, et al. Differential expression of adensonie receptors in human endoethelial cells: role of A(2B) receptors in angiogenic factor regulation. Circ Res 2002; 90:531 - 538
  • Pinhal-Enfield G, Ramanathan M, Hasko G, Vogel SN, Salzman AL, Boons GJ, et al. An angiogenic switch in macrophages involving synergy between toll-like receptors 2, 4, 7 and 9 and adenosine A(2A) receptors. Am J Pathol 2003; 163:711 - 721
  • Clark AN, Youkey R, Liu XP, Jia LG, Blatt R, Day YJ, et al. A(1) adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res 2007; 101:1130 - 1138
  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology XXV. Nomenclature and classification of adenosine receptors. Pharma Rev 2001; 53:527 - 552
  • Fan TP, Yeh JC, Leung KW, Yue P, Wong R. Angiogenesis: from plants to blood vessels. Trends Pharmacol Sci 2006; 27:297 - 309
  • Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003; 66:1022 - 1037
  • Wainwright M. Miracle Cure: The Story of Penicillin and the Golden Age of Antibiotics 1990; Oxford, UK Blackwell
  • Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Prod Rep 2000; 17:215 - 234
  • Sneader W. Drug Protoypes and their Exploitation 1996; Chichester, UK Wiley
  • Mann J. The Elusive Magic Bullet: The Search for the Perfect Drug 1999; Oxford, UK Oxford University Press 39 - 78
  • Crowley BM, Boger DL. Total synthesis and evaluation of [psi[CH2NH]Tpg(4)]vancomycin aglycon: Reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc 2006; 128:2885 - 2892
  • Wang S, Zheng Z, Weng Y, Yu Y, Zhang D, Fan W, Dai R, Hu Z. Angiogenesis and antiangiogenesis activity of Chinese medicinal herbal extracts. Life Sci 2004; 74:2467 - 2478
  • Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992; 339:1523 - 1526
  • Law M, Wald N. Why heart disease mortality is low in France: The time lag explanation. BMJ 1999; 318:1471 - 1476
  • Das DK, Maulik N. Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interv 2006; 6:36 - 47
  • Wang XB, Huang J, Zou JG, Su EB, Shan QJ, Yang ZJ, Cao KJ. Effects of resveratrol on number and activity of endothelial progenitor cells from human peripheral blood. Clin Exp Pharmacol Physiol 2007; 34:1109 - 1115
  • Fukuda S, Kaga S, Zhan L, Bagchi D, Das DK, Bertelli A, et al. Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1. Cell Biochem Biophys 2006; 44:43 - 49
  • Wallerath T, Deckert G, Ternes T, Anderson H, Huige L, Witte K, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circ 2002; 106:1652 - 1658
  • Hsieh TC, Juan G, Darzynkiewicz Z, Wu JM. Resveratrol increases nitric oxide synhase, induces accumulation of p53 and p21, and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S to G2. Cancer Res 1999; 59:2596 - 2601
  • Bertelli AAE, Giovannini L, Giannessi D, Miglior M, Bernini W, Fregoni M, et al. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React 1995; 17:1 - 3
  • Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, et al. Modulating angiogenesis: the yin and the yang in ginseng. Circ 2004; 110:1219 - 1225
  • De Smet PA. Herbal remedies. N Engl J Med 2002; 347:2046 - 2056
  • Yun T, Lee Y, Lee YH, Kim SI, Yun HY. Anticarcinogenic effect of Panax ginseng C.A. Meyer and identification of active compounds. J Korean Med Sci 2001; 16:6 - 18
  • Duda RB, Zhong Y, Navas V, Li MZ, Toy BR, Alavarez JG. American ginseng and breast cancer therapeutic agents synergistically inhibit MCF-7 breast cancer cell growth. J Surg Oncol 1999; 72:230 - 239
  • Leung KW, Cheng YK, Mak NK, Chan KKC, Fan TPD, Wong RNS. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Letters 2006; 580:3211 - 3216
  • Yue P, Wong D, Ha WY, Fung MC, Mak NK, Yeung HW, et al. Elucidation of the mechanisms underlying the angiogenic effects of ginsenoside Rg1 in vivo and in vitro. Angiogenesis 2005; 8:205 - 216
  • Kang SY, Schini-Kerth VB, Kim ND. Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sciences 1995; 56:1577 - 1586
  • Huang YC, Chen CT, Chen SC, Lai PH, Liang HC, Chang Y, et al. A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharma Res 2005; 22:636 - 646
  • Koedam Koedam JA, Smink JJ, van Buul-Offers SC. Glucocorticoids inhibit vascular endothelial growth factor expression in growth plate chondrocytes. Mol Cell Endocrinol 2002; 197:35 - 44
  • Schiffelers RM, Banciu M, Metselaar JM, Storm G. Therapeutic application of long-circulating liposomal gluocorticoids in auto-immune diseases and cancer. J Liposome Res 2006; 16:185 - 194
  • Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997; 133:135 - 140
  • Kiran MS, Sameer Kumar VB, Viji RI, Sherin GT, Rajasekharan KN, Sudhakaran PR. Opposing effects of curcuminoids on serum stimulated and unstimulated angiogenic response. J Cell Physiol 2007; 215:251 - 264
  • Srimal RC, Dhawan BN. Pharmacology of dieruloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 1973; 25:447 - 452
  • Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharma Ther Tox 1986; 24:651 - 654
  • Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Letter 1985; 129:197 - 202
  • Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem Pharma 1976; 25:1811 - 1812
  • Toda S, Miyase T, Arichi H, Tanizawa H, Takino Y. Natural antioxidants III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharma Bulletin 1985; 33:1725 - 1728
  • Negi PS, Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agi Food Chem 1999; 47:4297 - 4300
  • Yang S, Graham J, Kahn JW, Schwartz EA, Gerritsen ME. Functional roles of PECAM-1 (CD31) and VE Cadherin (CD144) in tube assembly and lumen formation in three dimensional collagen rats. Am J Pathol 1999; 155:887 - 895
  • Kraling BM, Razon MJ, Boon LM, Zurakowski D, Seachord C, Darveau RP, et al. E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol 1996; 148:1181 - 1191
  • Wahlstrom BO, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacologica et Toxicologica 1978; 43:86 - 92
  • Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3methosyphenyl)-1,6-hepadine-3,5-dione) in the rat. Xenobiotica 1978; 8:761 - 776
  • Sidhu GS, Mani H, Gaddipati JP, Singh AK, Seth P, Banaudha KK, et al. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 1999; 7:362 - 374
  • Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Rep Reg 1998; 6:167 - 178
  • Jagetia GC, Rajanikant GK. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of γ-radiation. J Surg Res 2004; 120:127 - 138
  • Gopinath D, Rafiuddin Ahmed M, Gomathi K, Chitra K, Sehgal PK, et al. Dermal would healing processes with curcumin incorporated collagen films. Biomaterials 2004; 25:1911 - 1917
  • Karsan A, Pollet I, Yu LR, Chan KC, Conrads TP, Lucas DA, Andersen R, Veenstra T. Quantitative proteomic analysis of sokotrasterol sulfate-stimulated primary human endothelial cells. Mol Cellular Proteomics 2005; 4:191 - 204
  • Murphy S, Larrivee B, Pollet I, Craig KS, Williams DE, Huang XH, et al. Identification of sokotrasterol as a novel proangiogenic steroid. Circ Res 2006; 99:257 - 265
  • Brennen WN, Cooper CR, Capitosti S, Brown ML, Sikes RA. Thalidomide and analogues: current proposed mechanisms and therapeutic usage. Clin Prostate Cancer 2004; 3:54 - 61
  • Capitosti SM, Hansen TP, Brown ML. Thalidomide analogues demonstrate dual inhibition of both angiogenesis and prostate cancer. Bioorg Med Chem 2004; 12:327 - 336
  • van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 2000; 17:1159 - 1167
  • Fu K, Klibanov AM, Langer R. Protein stability in controlled-release systems. Nat Biotechnol 2000; 18:24 - 25
  • Rothen-Weinhold A, Oudry N, Schwach-Abdellaoui K, Frutiger-Hughes S, Hughes GJ, Jeannerat D, et al. Formation of peptide impurities in polyester matrices during implant manufacturing. Eur J Pharm Biopharm 2000; 49:253 - 257
  • Wieghaus KA, Capitosti SM, Anderson CR, Blackman BR, Price RJ, Brown ML, et al. Small molecule inducers of angiogenesis for tissue engineering. Tissue Eng 2006; 12:1903 - 1913
  • Wieghaus KA, Gianchandani EP, Papin JA, Brown ML, Botchwey EA. Mechanistic interrogation of phthalimide neovascular factor 1 (PNF1) using network analysis tools. Tissue Eng 2007; 13:2561 - 2575
  • Wieghaus KA, Gianchandani EP, Paige MA, Brown ML, Papin JA, Botchwey EA. Novel pathway compendium analysis eludicates mechanism of pro-angiogenic synthetic small molecule with in vivo validation. Bioinformatics 2008; 24:2384 - 2390
  • Wieghaus KA, Nickerson MM, Petrie Aronin CE, Sefcik LS, Paige M, Price RJ, Brown ML, Botchwey EA. Expansion of microvascular networks in vivo by phthalimide neovascular factor 1 (PNF1). Biomaterials 2008; 29:4698 - 4708
  • Sanchez T, Estrada-Hernandez T, Paik JH, et al. Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem 2003; 278:47281 - 47290
  • Butler J, Lana D, Round O, LaMontagne K. Functional characterization of sphingosine 1-phosphate receptor agonist in human endothelial cells. Prostaglandins Other Lipid Med 2004; 73:29 - 45
  • Schmid G, Guba M, Ischenko I, Papyan A, Joka M, Schrepfer S, et al. The immunosuppressant FTY720 inhibits tumor angiogenesis via the sphingosine 1-phosphate receptor 1. J Cell Biochem 2007; 101:259 - 270
  • Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA, Ley K, Hedrick CC. Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ Res 2006; 99:731 - 739
  • Osada M, Yatomi Y, Ohmori T, Ikeda H, Ozaki Y. Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochem Biophys Res Commun 2002; 299:483 - 487
  • Inokia I, Takuwad N, Sugimotoa N, Yoshiokaa K, Takatac S, Kanekob S, et al. Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor. Biochem Biophys Res Commun 2006; 346:293 - 300
  • Yan G, Chen S, You B, Sun J. Activation of sphingosine kinase-1 mediates induction of endothelial cell proliferation and angiogenesis by epoxyeicosatrienoic acids. Cardiovasc Res 2008; 78:308 - 314
  • Donati C, Cencetti F, Nincheri P, Bernacchioni C, Brunelli S, Clementi E, et al. Sphingosine 1-Phosphate Mediates Proliferation and Survival of Mesoangioblasts. Stem Cells 2007; 25:1713 - 1719
  • Salomone S, Potts EM, Tyndall S, Ip PC, Chun J, Brinkmann V, Waeber C. Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br J Pharmacol 2008; 153:140 - 147
  • Sanna MG, Wang SK, Gonzalez-Cabrera PJ, Don A, Marsolais D, Matheu MP, et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2006; 2:434 - 441
  • Qian L, Xu Y, Simper T, Jiang G, Aoki J, Umezu-Goto M, et al. Phosphorothioate analogues of alkyl lysophosphatidic acid as LPA3 receptor-selective agonists. Chem Med Chem 2006; 1:376 - 383
  • Chen J, Chen Y, Zhu W, Han Y, Han B, Xu R, et al. Specific LPA receptor subtype mediation of LPA-induced hypertrophy of cardiac myocytes and involvement of Akt and NFkappaB signal pathways. J Cell Biochem 2008; 103:1718 - 1731
  • Heise CE, Santos WL, Schreihofer AM, Heasley BH, Mukhin YV, Macdonald TL, Lynch KR. Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol Pharmacol 2001; 60:1173 - 1180
  • Xu YJ, Tappia PS, Goyal RK, Dhalla NS. Mechanisms of the lysophosphatidic acid-induced increase in [Ca(2+)](i) in skeletal muscle cells. J Cell Mol Med 2008; 12:942 - 954
  • Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, et al. Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblastlike cells. Stem Cells 2008; 26:789 - 797
  • Gustin C, Van Steenbrugge M, Raes M. Lysosphosphatidic acid (LPA) modulates monocyte migration directly and via LPA-stimulated endothelial cells. Am J Physiol Cell Physiol 2008; [Epub ahead of print]
  • Yin F, Watsky MA. LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Invest Ophthalmol Vis Sci 2005; 46:1927 - 1933

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.