710
Views
9
CrossRef citations to date
0
Altmetric
Review

Wnt/planar cell polarity signaling

An important mechanism to coordinate growth and patterning in the limb

Pages 260-266 | Received 09 Dec 2011, Accepted 14 Dec 2011, Published online: 01 Oct 2011

References

  • Saunders JW Jr. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 1948; 108:363 - 403; PMID: 18882505; http://dx.doi.org/10.1002/jez.1401080304
  • Summerbell D, Lewis JH, Wolpert L. Positional information in chick limb morphogenesis. Nature 1973; 244:492 - 496; PMID: 4621272; http://dx.doi.org/10.1038/244492a0
  • Dudley AT, Ros MA, Tabin CJ. A re-examination of proximodistal patterning during vertebrate limb development. Nature 2002; 418:539 - 544; PMID: 12152081; http://dx.doi.org/10.1038/nature00945
  • Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev 2007; 21:1433 - 1442; PMID: 17575045; http://dx.doi.org/10.1101/gad.1547407
  • Cooper KL, Hu JK, ten Berge D, Fernandez-Teran M, Ros MA, Tabin CJ. Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 2011; 332:1083 - 1086; PMID: 21617075; http://dx.doi.org/10.1126/science.1199499
  • Mariani FV, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 2008; 453:401 - 415; PMID: 18449196; http://dx.doi.org/10.1038/nature06876
  • Mercader N, Leonardo E, Piedra ME, Martinez AC, Ros MA, Torres M. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 2000; 127:3961 - 3970; PMID: 10952894
  • Roselló-Diez A, Ros MA, Torres M. Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision. Science 2011; 332:1086 - 1088; PMID: 21617076; http://dx.doi.org/10.1126/science.1199489
  • Ede DA, Law JT. Computer simulation of vertebrate limb morphogenesis. Nature 1969; 221:244 - 248; PMID: 5812579; http://dx.doi.org/10.1038/221244a0
  • Dillon R, Othmer HG. A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J Theor Biol 1999; 197:295 - 330; PMID: 10089144; http://dx.doi.org/10.1006/jtbi.1998.0876
  • Morishita Y, Iwasa Y. Growth based morphogenesis of vertebrate limb bud. Bull Math Biol 2008; 70:1957 - 1978; PMID: 18668295; http://dx.doi.org/10.1007/s11538008-9334-1
  • Hornbruch A, Wolpert L. Cell division in the early growth and morphogenesis of the chick limb. Nature 1970; 226:764 - 766; PMID: 5443258; http://dx.doi.org/10.1038/226764a0
  • Niswander L, Martin GR. FGF-4 and BMP-2 have opposite effects on limb growth. Nature 1993; 361:68 - 71; PMID: 8421496; http://dx.doi.org/10.1038/361068a0
  • Reiter RS, Solursh M. Mitogenic property of the apical ectodermal ridge. Dev Biol 1982; 93:28 - 35; PMID: 7128937; http://dx.doi.org/10.1016/0012-1606(82)90235-4
  • Fernández-Teran MA, Hinchliffe JR, Ros MA. Birth and death of cells in limb development: a mapping study. Dev Dyn 2006; 235:2521 - 2537; PMID: 16881063; http://dx.doi.org/10.1002/dvdy.20916
  • Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 2002; 418:501 - 508; PMID: 12152071; http://dx.doi.org/10.1038/nature00902
  • Lu P, Yu Y, Perdue Y, Werb Z. The apical ectodermal ridge is a timer for generating distal limb progenitors. Development 2008; 135:1395 - 1405; PMID: 18359901; http://dx.doi.org/10.1242/dev.018945
  • Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development 2008; 135:483 - 491; PMID: 18094024; http://dx.doi.org/10.1242/dev.013268
  • Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, et al. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol 2010; 8:e1000420; PMID: 20644711; http://dx.doi.org/10.1371/journal.pbio.1000420
  • Holmes LB, Trelstad RL. Patterns of cell polarity in the developing mouse limb. Dev Biol 1977; 59:164 - 173; PMID: 892225; http://dx.doi.org/10.1016/0012-1606(77)90251-2
  • Mellor H. Cell motility: Golgi signalling shapes up to ship out. Curr Biol 2004; 14:R434 - R435; PMID: 15182693; http://dx.doi.org/10.1016/j.cub.2004.05.038
  • Nabi IR. The polarization of the motile cell. J Cell Sci 1999; 112:1803 - 1811; PMID: 10341200
  • Li S, Muneoka K. Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev Biol 1999; 211:335 - 347; PMID: 10395792; http://dx.doi.org/10.1006/dbio.1999.9317
  • Saxton TM, Ciruna BG, Holmyard D, Kulkarni S, Harpal K, Rossant J, et al. The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Nat Genet 2000; 24:420 - 423; PMID: 10742110; http://dx.doi.org/10.1038/74279
  • Wyngaarden LA, Vogeli KM, Ciruna BG, Wells M, Hadjantonakis AK, Hopyan S. Oriented cell motility and division underlie early limb bud morphogenesis. Development 2010; 137:2551 - 2558; PMID: 20554720; http://dx.doi.org/10.1242/dev.046987
  • Gros J, Hu JK, Vinegoni C, Feruglio PF, Weissleder R, Tabin CJ. Wnt5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr Biol 2010; 20:1993 - 2002; PMID: 21055947; http://dx.doi.org/10.1016/j.cub.2010.09.063
  • Corson LB, Yamanaka Y, Lai KM, Rossant J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 2003; 130:4527 - 4537; PMID: 12925581; http://dx.doi.org/10.1242/dev.00669
  • Lewandoski M, Mackem S. Developmental biology: extending the limb and body with vectors and scalars. Curr Biol 2011; 21:R34 - R36; PMID: 21215936; http://dx.doi.org/10.1016/j.cub.2010.11.023
  • Roszko I, Sawada A, Solnica-Krezel L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 2009; 20:986 - 997; PMID: 19761865; http://dx.doi.org/10.1016/j.semcdb.2009.09.004
  • Tada M, Kai M. Noncanonical Wnt/PCP signaling during vertebrate gastrulation. Zebrafish 2009; 6:29 - 40; PMID: 19292674; http://dx.doi.org/10.1089/zeb.2008.0566
  • Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 2003; 13:1129 - 1133; PMID: 12842012; http://dx.doi.org/10.1016/S0960-9822(03)00374-9
  • Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003; 423:173 - 177; PMID: 12724779; http://dx.doi.org/10.1038/nature01618
  • Strong LC, Hollander WF. Hereditary loop-tail in the house mouse accompanied by inperforate vagina and with lethal craniorachischisis when homozygous. J Hered 1949; 40:329 - 334
  • Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, et al. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006; 133:1767 - 1778; PMID: 16571627; http://dx.doi.org/10.1242/dev.02347
  • Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development 2010; 137:3707 - 3717; PMID: 20940229; http://dx.doi.org/10.1242/dev.052001
  • Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26:2147 - 2156; PMID: 16495441; http://dx.doi.org/10.1523/JNEUROSCI.4698-05.2005
  • Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5:367 - 377; PMID: 12967557; http://dx.doi.org/10.1016/S1534-5807(03)00266-1
  • Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, et al. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 2007; 306:121 - 133; PMID: 17433286; http://dx.doi.org/10.1016/j.ydbio.2007.03.011
  • Yamaguchi TP, Bradley A, McMahon AP, Jones SA. Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999; 126:1211 - 1223; PMID: 10021340
  • Barrow JR. Wnt/PCP signaling: a veritable polar star in establishing patterns of polarity in embryonic tissues. Semin Cell Dev Biol 2006; 17:185 - 193; PMID: 16765615; http://dx.doi.org/10.1016/j.semcdb.2006.04.002
  • Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signaling pathway. Genes Cells 2003; 8:645 - 654; PMID: 12839624; http://dx.doi.org/10.1046/j.1365-2443.2003.00662.x
  • Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 2010; 239:1 - 15; PMID: 19530173
  • Nomi M, Oishi I, Kani S, Suzuki H, Matsuda T, Yoda A, et al. Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol 2001; 21:832 - 935; PMID: 11713269; http://dx.doi.org/10.1128/MCB.21.24.8329-8335.2001
  • Afzal AR, Jeffery S. One gene, two phenotypes: ROR2 mutations in autosomal recessive Robinow syndrome and autosomal dominant brachydactyly type B. Hum Mutat 2003; 22:1 - 11; PMID: 12815588; http://dx.doi.org/10.1002/humu.10233
  • Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet 2000; 25:419 - 422; PMID: 10932186; http://dx.doi.org/10.1038/78107
  • van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 2000; 25:423 - 426; PMID: 10932187; http://dx.doi.org/10.1038/78113
  • Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollitt C, et al. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet 2000; 24:275 - 278; PMID: 10700182; http://dx.doi.org/10.1038/73495
  • Schwabe GC, Tinschert S, Buschow C, Meinecke P, Wolff G, Gillessen-Kaesbach G, et al. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am J Hum Genet 2000; 67:822 - 831; PMID: 10986040; http://dx.doi.org/10.1086/303084
  • Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 2010; 239:327 - 337; PMID: 19918918
  • Wang B, Sinha T, Jiao K, Serra R, Wang J. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum Mol Genet 2011; 20:271 - 285; PMID: 20962035; http://dx.doi.org/10.1093/hmg/ddq462
  • Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 2011; 20:163 - 176; PMID: 21316585; http://dx.doi.org/10.1016/j.devcel.2011.01.001
  • Kawakami Y, Wada N, Nishimatsu SI, Ishikawa T, Noji S, Nohno T. Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev Growth Differ 1999; 41:29 - 40; PMID: 10445500; http://dx.doi.org/10.1046/j.1440-169x.1999.00402.x
  • Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, et al. Ectodermal Wnt3/betacatenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 2003; 17:394 - 409; PMID: 12569130; http://dx.doi.org/10.1101/gad.1044903
  • Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 2002; 418:979 - 983; PMID: 12198547; http://dx.doi.org/10.1038/nature01033
  • te Welscher P, Zuniga A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 2002; 298:827 - 830; PMID: 12215652; http://dx.doi.org/10.1126/science.1075620
  • Adamska M, MacDonald BT, Sarmast ZH, Oliver ER, Meisler MH. En1 and Wnt7a interact with Dkk1 during limb development in the mouse. Dev Biol 2004; 272:134 - 144; PMID: 15242796; http://dx.doi.org/10.1016/j.ydbio.2004.04.026
  • Loomis CA, Harris E, Michaud J, Wurst W, Hanks M, Joyner AL. The mouse Engrailed-1 gene and ventral limb patterning. Nature 1996; 382:360 - 363; PMID: 8684466; http://dx.doi.org/10.1038/382360a0
  • Niswander L, Tickle C, Vogel A, Booth I, Martin GR. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993; 75:579 - 587; PMID: 8221896; http://dx.doi.org/10.1016/0092-8674(93)90391-3
  • Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M, Nishino J, et al. Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev Cell 2004; 6:411 - 422; PMID: 15030763; http://dx.doi.org/10.1016/S1534-5807(04)00062-0
  • Boulet AM, Moon AM, Arenkiel BR, Capecchi MR. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 2004; 273:361 - 372; PMID: 15328019; http://dx.doi.org/10.1016/j.ydbio.2004.06.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.