674
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Correlation analysis for the incubation period of prion disease

, , &
Pages 276-281 | Received 11 Jul 2011, Accepted 06 Feb 2012, Published online: 01 Jul 2012

Reference

  • Pan K-M, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 1993; 90:10962 - 6; http://dx.doi.org/10.1073/pnas.90.23.10962; PMID: 7902575
  • Huang Z, Prusiner SB, Cohen FE. Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des 1995; 1:13 - 9; http://dx.doi.org/10.1016/S1359-0278(96)00007-7; PMID: 9162135
  • Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature 1996; 382:180 - 2; http://dx.doi.org/10.1038/382180a0; PMID: 8700211
  • Liu H, Farr-Jones S, Ulyanov NB, Llinas M, Marqusee S, Groth D, et al. Solution structure of Syrian hamster prion protein rPrP(90-231). Biochemistry 1999; 38:5362 - 77; http://dx.doi.org/10.1021/bi982878x; PMID: 10220323
  • Prusiner SB. Prion Biology and Diseases. New York: Cold Spring Harbor Laboratory Press, 2004:3,10,14,17-18,143-144,600,1021.
  • Kimberlin RH, Walker CA. Incubation periods in six models of intraperitoneally injected scrapie depend mainly on the dynamics of agent replication within the nervous system and not the lymphoreticular system. J Gen Virol 1988; 69:2953 - 60; http://dx.doi.org/10.1099/0022-1317-69-12-2953; PMID: 3143808
  • Barron RM, Thomson V, Jamieson E, Melton DW, Ironside J, Will R, et al. Changing a single amino acid in the N-terminus of murine PrP alters TSE incubation time across three species barriers. EMBO J 2001; 20:5070 - 8; http://dx.doi.org/10.1093/emboj/20.18.5070; PMID: 11566872
  • Moreno CR, Cosseddu GM, Schibler L, Roig A, Moazami-Goudarzi K, Andreoletti O, et al. Identification of new quantitative trait Loci (other than the PRNP gene) modulating the scrapie incubation period in sheep. Genetics 2008; 179:723 - 6; http://dx.doi.org/10.1534/genetics.108.088146; PMID: 18493086
  • Carlson GA, Westaway D, DeArmond SJ, Peterson-Torchia M, Prusiner SB. Primary structure of prion protein may modify scrapie isolate properties. Proc Natl Acad Sci USA 1989; 86:7475 - 9; http://dx.doi.org/10.1073/pnas.86.19.7475; PMID: 2798418
  • Telling GC, Scott M, Hsiao KK, Foster D, Yang S-L, Torchia M, et al. Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc Natl Acad Sci U S A 1994; 91:9936 - 40; http://dx.doi.org/10.1073/pnas.91.21.9936; PMID: 7937921
  • Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 1995; 83:79 - 90; http://dx.doi.org/10.1016/0092-8674(95)90236-8; PMID: 7553876
  • Tateishi J, Kitamoto T, Hoque MZ, Furukawa H. Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 1996; 46:532 - 7; PMID: 8614527
  • Pattison IH. Experiments with scrapie with special reference to the nature of the agent and the pathology of the disease. In: Gajdusek DC, et al. eds. Slow, Latent and Temperate Virus Infections (NINDB Monogr 2). Washington DC: U.S. Government Printing Office, 1965:249-257.
  • Kimberlin RH, Walker CA. Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol 1977; 34:295 - 304; http://dx.doi.org/10.1099/0022-1317-34-2-295; PMID: 402439
  • Kimberlin RH, Walker CA. Pathogenesis of scrapie: agent multiplication in brain at the first and second passage of hamster scrapie in mice. J Gen Virol 1979; 42:107 - 17; http://dx.doi.org/10.1099/0022-1317-42-1-107; PMID: 103999
  • Kulkarni RV, Slepoy A, Singh RRP, Cox DL, Pázmándi F. Theoretical modeling of prion disease incubation. Biophys J 2003; 85:707 - 18; http://dx.doi.org/10.1016/S0006-3495(03)74514-7; PMID: 12885622
  • Carlson GA, Kingsbury DT, Goodman PA, Coleman S, Marshall ST, DeArmond S, et al. Linkage of prion protein and scrapie incubation time genes. Cell 1986; 46:503 - 11; http://dx.doi.org/10.1016/0092-8674(86)90875-5; PMID: 3015416
  • Moore RC, Hope J, McBride PA, McConnell I, Selfridge J, Melton DW, et al. Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat Genet 1998; 18:118 - 25; http://dx.doi.org/10.1038/ng0298-118; PMID: 9462739
  • Stephenson DA, Chiotti K, Ebeling C, Groth D, DeArmond SJ, Prusiner SB, et al. Quantitative trait loci affecting prion incubation time in mice. Genomics 2000; 69:47 - 53; http://dx.doi.org/10.1006/geno.2000.6320; PMID: 11013074
  • Lloyd SE, Onwuazor ON, Beck JA, Mallinson G, Farrall M, Targonski P, et al. Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc Natl Acad Sci U S A 2001; 98:6279 - 83; http://dx.doi.org/10.1073/pnas.101130398; PMID: 11353827
  • Manolakou K, Beaton J, McConnell I, Farquar C, Manson J, Hastie ND, et al. Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc Natl Acad Sci U S A 2001; 98:7402 - 7; http://dx.doi.org/10.1073/pnas.121172098; PMID: 11404459
  • Lloyd SE, Uphill JB, Targonski PV, Fisher EM, Collinge J. Identification of genetic loci affecting mouse-adapted bovine spongiform encephalopathy incubation time in mice. Neurogenetics 2002; 4:77 - 81; http://dx.doi.org/10.1007/s10048-002-0133-9; PMID: 12481985
  • Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM. Detection of new quantitative trait Loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 2003; 165:2085 - 91; PMID: 14704188
  • Hernández-Sánchez J, Waddington D, Wiener P, Haley CS, Williams JL. Genome-wide search for markers associated with bovine spongiform encephalopathy. Mamm Genome 2002; 13:164 - 8; http://dx.doi.org/10.1007/BF02684022; PMID: 11919688
  • Zhang C, De Koning DJ, Hernández-Sánchez J, Haley CS, Williams JL, Wiener P. Mapping of multiple quantitative trait loci affecting bovine spongiform encephalopathy. Genetics 2004; 167:1863 - 72; http://dx.doi.org/10.1534/genetics.104.026401; PMID: 15342524
  • Marcos-Carcavilla A, Moreno C, Serrano M, Laurent P, Cribiu EP, Andréoletti O, et al. Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 2010; 15:343 - 9; http://dx.doi.org/10.1007/s12192-009-0149-2; PMID: 19838832
  • Moreno CR, Moazami-Goudarzi K, Briand S, Robert-Granié C, Weisbecker JL, Laurent P, et al. Mapping of quantitative trait loci affecting classical scrapie incubation time in a population comprising several generations of scrapie-infected sheep. J Gen Virol 2010; 91:575 - 9; http://dx.doi.org/10.1099/vir.0.014134-0; PMID: 19828762
  • Yun J, Jin HT, Lee YJ, Choi EK, Carp RI, Jeong BH, et al. The first report of RPSA polymorphisms, also called 37/67 kDa LRP/LR gene, in sporadic Creutzfeldt-Jakob disease (CJD). BMC Med Genet 2011; 12:108; http://dx.doi.org/10.1186/1471-2350-12-108; PMID: 21838916
  • Bessen RA, Marsh RF. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 1994; 68:7859 - 68; PMID: 7966576
  • Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 1996; 274:2079 - 82; http://dx.doi.org/10.1126/science.274.5295.2079; PMID: 8953038
  • Scott MR, Groth D, Tatzelt J, Torchia M, Tremblay P, DeArmond SJ, et al. Propagation of prion strains through specific conformers of the prion protein. J Virol 1997; 71:9032 - 44; PMID: 9371560
  • Scott MR, Will R, Ironside J, Nguyen H-OB, Tremblay P, DeArmond SJ, et al. Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc Natl Acad Sci U S A 1999; 96:15137 - 42; http://dx.doi.org/10.1073/pnas.96.26.15137; PMID: 10611351
  • Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, Burton DR, et al. A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 2002; 34:921 - 32; http://dx.doi.org/10.1016/S0896-6273(02)00726-2; PMID: 12086640
  • McLean AR, Bostock CJ. Scrapie infections initiated at varying doses: an analysis of 117 titration experiments. Philos Trans R Soc Lond B Biol Sci 2000; 355:1043 - 50; http://dx.doi.org/10.1098/rstb.2000.0641; PMID: 11186305
  • Grogan ED, Lund R. Reactivity of human white blood cells to factors of elasmobranch origin. Copeia 1991; 2:402 - 8; http://dx.doi.org/10.2307/1446589
  • Snyder GK, Sheafor BA. Red blood cells: centerpiece in the evolution of the vertebrate circulatory system. Am Zool 1999; 39:189 - 98
  • Sacher GA. Relation of lifespan to brain weight and body weight in mammals, In: Wolstenholme GEW and O’Conner M eds. CIBA Foundation Colloquia on Aging, 1959; 5:115-141.
  • Sacher GA. Longevity and aging in vertebrate evolution. Bioscience 1978; 28:497 - 501; http://dx.doi.org/10.2307/1307295
  • Allman J, McLaughlin T, Hakeem A. Brain weight and life-span in primate species. Proc Natl Acad Sci U S A 1993; 90:118 - 22; http://dx.doi.org/10.1073/pnas.90.1.118; PMID: 8419913
  • Pattison IH. The relative susceptibility of sheep, goats and mice to two types of the goat scrapie agent. Res Vet Sci 1966; 7:207 - 12; PMID: 4163198
  • Anderson RM, Donnelly CA, Ferguson NM, Woolhouse MEJ, Watt CJ, Udy HJ, et al. Transmission dynamics and epidemiology of BSE in British cattle. Nature 1996; 382:779 - 88; http://dx.doi.org/10.1038/382779a0; PMID: 8752271
  • Huillard d’Aignaux JN, Cousens SN, Maccario J, Costagliola D, Alpers MP, Smith PG, et al. The incubation period of kuru. Epidemiology 2002; 13:402 - 8; http://dx.doi.org/10.1097/00001648-200207000-00007; PMID: 12094094
  • Brown P, Brandel J-P, Preece M, Sato T. Iatrogenic Creutzfeldt-Jakob disease: the waning of an era. Neurology 2006; 67:389 - 93; http://dx.doi.org/10.1212/01.wnl.0000231528.65069.3f; PMID: 16855204
  • Allison T, Cicchetti DV. Sleep in mammals: ecological and constitutional correlates. Science 1976; 194:732 - 4; http://dx.doi.org/10.1126/science.982039; PMID: 982039
  • Wigal RA, Coggins VL. Mountain goat. In: Wild Mammals of North America: Biology, Management, Economics. The Johns Hopkins University Press. 1982:1008-1020.
  • Voight GL. Hematology Techniques and Concepts for Veterinary Technicians. 1st. Ames, Iowa: Iowa State University Press, 2000:51.
  • Pisek L, Travnicek J, Salat J, Kroupova V, Soch M. Changes in white blood cells in sheep blood during selenium supplementation. Vet Med-Czech 2008; 53:255 - 9
  • Malassez ML. De la numération des globules rouges du sang chez les mammifères, les oisseaux et les poissons. Comptes Rendus de l'Académie des Sciences 1872; 75:1528 - 31
  • Gulliver G. Observations on the sizes and shapes of the red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proc Zool Soc Lond 1875; 474 - 95
  • Cleland JB, Johnston TH. Relative dimensions of the red blood cells of vertebrates, especially of birds. Emu 1912; 11:188 - 97; http://dx.doi.org/10.1071/MU911188
  • Emmons WF. The interrelation of number, volume, diameter and area of mammalian erythrocytes. J Physiol 1927; 64:215 - 28; PMID: 16993914
  • Wintrobe MM. Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematol (Frankf) 1933; 51:32 - 49
  • Ponder E. Hemolysis and Related Phenomena. New York: Grune and Stratton, 1948.
  • Kisch B. Hemoglobin content, size and amount of erythrocytes in fishes. Exp Med Surg 1949; 7:118 - 33; PMID: 18151280
  • Kisch B. Observations on the haematology of fishes and birds. Exp Med Surg 1949; 7:318 - 26, illust; PMID: 15396127
  • Albritton EC. Standard Values in Blood. WB Saunders Company, 1954:409.
  • Dunaway PB, Lewis LL. Taxonomic relation of erythrocyte count, mean corpuscular volume, and body weight in mammals. Nature 1965; 205:481 - 4; http://dx.doi.org/10.1038/205481a0; PMID: 14265293
  • Huser HJ. Atlas of Comparative Primate Hematology. Academic Press, 1970:405.
  • Hawkey CM. Comparative Mammalian Haematology. London: William Heinemann Medical Books, 1975.
  • Withers PC. Comparative Animal Physiology. New York: Saunders College Publishing, 1992.
  • Ragan HA. Comparative hematology. In: Wintrobe's Clinical Hematology. Baltimore: Williams & Wilkins, 1999:2749-2763.
  • Benga G, Kuchel PW, Chapman BE, Cox GC, Ghiran I, Gallagher CH. Comparative cell shape and diffusional water permeability of red blood cells from Indian elephant (Elephas maximus) and Man (Homo sapiens). Comp Haematol Int 2000; 10:1 - 8; http://dx.doi.org/10.1007/s005800070020
  • Ratcliffe NA, Millar DA. Comparative aspects and possible phylogenetic affinities of vertebrate and invertebrate blood cells. In: Roweley AF, Ratcliffe NA eds. Vertebrate Blood Cells. Cambridge University Press, 1988.
  • Microsoft Corporation. MS office 2007. Redmond, WA, USA 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.