3,849
Views
125
CrossRef citations to date
0
Altmetric
Mini Review

Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia

Pages 2-13 | Received 13 Jul 2012, Accepted 07 Aug 2012, Published online: 16 Aug 2012

References

  • Lawrence JJ. Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci 2008; 31:317 - 27; http://dx.doi.org/10.1016/j.tins.2008.03.008; PMID: 18556072
  • Fisahn A, Yamada M, Duttaroy A, Gan J-W, Deng C-X, McBain CJ, et al. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 2002; 33:615 - 24; http://dx.doi.org/10.1016/S0896-6273(02)00587-1; PMID: 11856534
  • Chiang PH, Yeh WC, Lee CT, Weng JY, Huang YY, Lien CC. M(1)-like muscarinic acetylcholine receptors regulate fast-spiking interneuron excitability in rat dentate gyrus. Neuroscience 2010; 169:39 - 51; http://dx.doi.org/10.1016/j.neuroscience.2010.04.051; PMID: 20433901
  • Lee K-H, Williams LM, Breakspear M, Gordon E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 2003; 41:57 - 78; http://dx.doi.org/10.1016/S0165-0173(02)00220-5; PMID: 12505648
  • Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 2010; 11:100 - 13; http://dx.doi.org/10.1038/nrn2774; PMID: 20087360
  • Verret L, Mann EO, Hang GB, Barth AMI, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012; 149:708 - 21; http://dx.doi.org/10.1016/j.cell.2012.02.046; PMID: 22541439
  • Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 2005; 6:850 - 62; http://dx.doi.org/10.1038/nrn1785; PMID: 16261179
  • Congar P, Leinekugel X, Ben-Ari Y, Crépel V. A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci 1997; 17:5366 - 79; PMID: 9204921
  • Ross CA, Margolis RL, Reading SAJ, Pletnikov M, Coyle JT. Neurobiology of schizophrenia. Neuron 2006; 52:139 - 53; http://dx.doi.org/10.1016/j.neuron.2006.09.015; PMID: 17015232
  • Curley AA, Lewis DA. Cortical basket cell dysfunction in schizophrenia. J Physiol 2012; 590:715 - 24; PMID: 22219337
  • Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26:365 - 84; http://dx.doi.org/10.1007/s10571-006-9062-8; PMID: 16773445
  • Kantrowitz JT, Javitt DC. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia?. Brain Res Bull 2010; 83:108 - 21; http://dx.doi.org/10.1016/j.brainresbull.2010.04.006; PMID: 20417696
  • Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 2008; 34:944 - 61; http://dx.doi.org/10.1093/schbul/sbn070; PMID: 18586694
  • Behrens MM, Sejnowski TJ. Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex?. Neuropharmacology 2009; 57:193 - 200; http://dx.doi.org/10.1016/j.neuropharm.2009.06.002; PMID: 19523965
  • Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol 2009; 19:220 - 30; http://dx.doi.org/10.1016/j.conb.2009.05.001; PMID: 19481443
  • Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11:682 - 96; http://dx.doi.org/10.1038/nrn2911; PMID: 20842175
  • Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci 2008; 29:346 - 51; http://dx.doi.org/10.1016/j.tips.2008.05.001; PMID: 18538422
  • Sharma G, Vijayaraghavan S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 2003; 38:929 - 39; http://dx.doi.org/10.1016/S0896-6273(03)00322-2; PMID: 12818178
  • Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, et al. Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 2011; 17:470 - 8; http://dx.doi.org/10.1038/nm.2315; PMID: 21441918
  • Li X, Jope RS. Is glycogen synthase kinase-3 a central modulator in mood regulation?. Neuropsychopharmacology 2010; 35:2143 - 54; http://dx.doi.org/10.1038/npp.2010.105; PMID: 20668436
  • Vacic V, McCarthy S, Malhotra D, Murray F, Chou H-H, Peoples A, et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 2011; 471:499 - 503; http://dx.doi.org/10.1038/nature09884; PMID: 21346763
  • Lee K-H, Williams LM, Breakspear M, Gordon E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 2003; 41:57 - 78; http://dx.doi.org/10.1016/S0165-0173(02)00220-5; PMID: 12505648
  • Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 2011; 12:524 - 38; http://dx.doi.org/10.1038/nrn3044; PMID: 21852800
  • Machado-Vieira R, Manji HK, Zarate CA Jr.. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 2009; 11:Suppl 2 92 - 109; http://dx.doi.org/10.1111/j.1399-5618.2009.00714.x; PMID: 19538689
  • Quiroz JA, Machado-Vieira R, Zarate CA Jr., Manji HK. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 2010; 62:50 - 60; http://dx.doi.org/10.1159/000314310; PMID: 20453535
  • Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell 2009; 136:1017 - 31; http://dx.doi.org/10.1016/j.cell.2008.12.044; PMID: 19303846
  • Machado-Vieira R, Pivovarova NB, Stanika RI, Yuan P, Wang Y, Zhou R, et al. The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry 2011; 69:344 - 52; http://dx.doi.org/10.1016/j.biopsych.2010.10.019; PMID: 21167476
  • Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH, et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999; 72:879 - 82; http://dx.doi.org/10.1046/j.1471-4159.1999.720879.x; PMID: 9930766
  • Rong YP, Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 2008; 70:73 - 91; http://dx.doi.org/10.1146/annurev.physiol.70.021507.105852; PMID: 17680735
  • Warsh JJ, Andreopoulos S, Li PP. Role of intracellular calcium signaling in the pathophysiology and pharmacotherapy of bipolar disorder: current status. Clin Neurosci Res 2004; 4:201 - 13; http://dx.doi.org/10.1016/j.cnr.2004.09.012
  • Berridge MJ, Downes CP, Hanley MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell 1989; 59:411 - 9; http://dx.doi.org/10.1016/0092-8674(89)90026-3; PMID: 2553271
  • Kim HJ, Thayer SA. Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol Pharmacol 2009; 75:1021 - 30; http://dx.doi.org/10.1124/mol.108.052357; PMID: 19188338
  • Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13:197 - 207; http://dx.doi.org/10.1038/sj.mp.4002012; PMID: 17486107
  • Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci U S A 2003; 100:313 - 7; http://dx.doi.org/10.1073/pnas.232693499; PMID: 12496348
  • Schlecker C, Boehmerle W, Jeromin A, DeGray B, Varshney A, Sharma Y, et al. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J Clin Invest 2006; 116:1668 - 74; http://dx.doi.org/10.1172/JCI22466; PMID: 16691292
  • Kabbani N, Negyessy L, Lin RW, Goldman-Rakic P, Levenson R. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 2002; 22:8476 - 86; PMID: 12351722
  • Sayas CL, Ariaens A, Ponsioen B, Moolenaar WH. GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol Biol Cell 2006; 17:1834 - 44; http://dx.doi.org/10.1091/mbc.E05-07-0688; PMID: 16452634
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297:353 - 6; http://dx.doi.org/10.1126/science.1072994; PMID: 12130773
  • Khachaturian ZS. Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview. Ann N Y Acad Sci 1989; 568:1 - 4; http://dx.doi.org/10.1111/j.1749-6632.1989.tb12485.x; PMID: 2629579
  • LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 2002; 3:862 - 72; http://dx.doi.org/10.1038/nrn960; PMID: 12415294
  • Stutzmann GE. The pathogenesis of Alzheimers disease is it a lifelong “calciumopathy”?. Neuroscientist 2007; 13:546 - 59; http://dx.doi.org/10.1177/1073858407299730; PMID: 17901262
  • Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 2007; 6:307 - 17; http://dx.doi.org/10.1111/j.1474-9726.2007.00295.x; PMID: 17465978
  • Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu H-Y, Hyman BT, Bacskai BJA. Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008; 59:214 - 25; http://dx.doi.org/10.1016/j.neuron.2008.06.008; PMID: 18667150
  • Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A. Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J Neurochem 2008; 105:262 - 71; http://dx.doi.org/10.1111/j.1471-4159.2007.05135.x; PMID: 18021291
  • Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 2008; 31:454 - 63; http://dx.doi.org/10.1016/j.tins.2008.06.005; PMID: 18675468
  • Sanz-Blasco S, Valero RA, Rodríguez-Crespo I, Villalobos C, Núñez L. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 2008; 3:e2718; http://dx.doi.org/10.1371/journal.pone.0002718; PMID: 18648507
  • Shirwany NA, Payette D, Xie J, Guo Q. The amyloid beta ion channel hypothesis of Alzheimer’s disease. Neuropsychiatr Dis Treat 2007; 3:597 - 612; PMID: 19300589
  • Demuro A, Smith M, Parker I. Single-channel Ca(2+) imaging implicates Aβ1-42 amyloid pores in Alzheimer’s disease pathology. J Cell Biol 2011; 195:515 - 24; http://dx.doi.org/10.1083/jcb.201104133; PMID: 22024165
  • Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC. Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 2012; 51:95 - 106; http://dx.doi.org/10.1016/j.ceca.2011.11.008; PMID: 22177709
  • Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 2009; 457:1128 - 32; http://dx.doi.org/10.1038/nature07761; PMID: 19242475
  • Guo Q, Furukawa K, Sopher BL, Pham DG, Xie J, Robinson N, et al. Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 1996; 8:379 - 83; http://dx.doi.org/10.1097/00001756-199612200-00074; PMID: 9051814
  • Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 2006; 26:5180 - 9; http://dx.doi.org/10.1523/JNEUROSCI.0739-06.2006; PMID: 16687509
  • Supnet C, Grant J, Kong H, Westaway D, Mayne M. Amyloid-β-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 2006; 281:38440 - 7; http://dx.doi.org/10.1074/jbc.M606736200; PMID: 17050533
  • Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 2000; 275:18195 - 200; http://dx.doi.org/10.1074/jbc.M000040200; PMID: 10764737
  • Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM. Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 2005; 94:1711 - 8; http://dx.doi.org/10.1111/j.1471-4159.2005.03332.x; PMID: 16156741
  • Chakroborty S, Goussakov I, Miller MB, Stutzmann GE. Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009; 29:9458 - 70; http://dx.doi.org/10.1523/JNEUROSCI.2047-09.2009; PMID: 19641109
  • Goussakov I, Miller MB, Stutzmann GE. NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci 2010; 30:12128 - 37; http://dx.doi.org/10.1523/JNEUROSCI.2474-10.2010; PMID: 20826675
  • Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid β production. J Cell Biol 2008; 181:1107 - 16; http://dx.doi.org/10.1083/jcb.200706171; PMID: 18591429
  • Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, et al. Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 2006; 126:981 - 93; http://dx.doi.org/10.1016/j.cell.2006.06.059; PMID: 16959576
  • Cheung KH, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, et al. Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58:871 - 83; http://dx.doi.org/10.1016/j.neuron.2008.04.015; PMID: 18579078
  • Müller M, Cárdenas C, Mei L, Cheung KH, Foskett JK. Constitutive cAMP response element binding protein (CREB) activation by Alzheimer’s disease presenilin-driven inositol trisphosphate receptor (InsP3R) Ca2+ signaling. Proc Natl Acad Sci U S A 2011; 108:13293 - 8; http://dx.doi.org/10.1073/pnas.1109297108; PMID: 21784978
  • Palop JJ, Jones B, Kekonius L, Chin J, Yu G-Q, Raber J, et al. Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc Natl Acad Sci U S A 2003; 100:9572 - 7; http://dx.doi.org/10.1073/pnas.1133381100; PMID: 12881482
  • Geula C, Bu J, Nagykery N, Scinto LFM, Chan J, Joseph J, et al. Loss of calbindin-D28k from aging human cholinergic basal forebrain: relation to neuronal loss. J Comp Neurol 2003; 455:249 - 59; http://dx.doi.org/10.1002/cne.10475; PMID: 12454989
  • Berridge MJ. Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 2010; 459:441 - 9; http://dx.doi.org/10.1007/s00424-009-0736-1; PMID: 19795132
  • Berridge MJ. Calcium signalling and Alzheimer’s disease. Neurochem Res 2011; 36:1149 - 56; http://dx.doi.org/10.1007/s11064-010-0371-4; PMID: 21184278
  • Nunes PV, Forlenza OV, Gattaz WF. Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiatry 2007; 190:359 - 60; http://dx.doi.org/10.1192/bjp.bp.106.029868; PMID: 17401045
  • Rohn TT, Vyas V, Hernandez-Estrada T, Nichol KE, Christie L-A, Head E. Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J Neurosci 2008; 28:3051 - 9; http://dx.doi.org/10.1523/JNEUROSCI.5620-07.2008; PMID: 18354008
  • Dineley KT, Hogan D, Zhang WR, Taglialatela G. Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem 2007; 88:217 - 24; http://dx.doi.org/10.1016/j.nlm.2007.03.010; PMID: 17521929
  • Foster TC, Sharrow KM, Masse JR, Norris CM, Kumar A. Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 2001; 21:4066 - 73; PMID: 11356894
  • Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 2002; 13:100 - 5; http://dx.doi.org/10.1016/S1043-2760(01)00547-1; PMID: 11893522
  • Tuohimaa P, Keisala T, Minasyan A, Cachat J, Kalueff A. Vitamin D, nervous system and aging. Psychoneuroendocrinology 2009; 34:Suppl 1 S278 - 86; http://dx.doi.org/10.1016/j.psyneuen.2009.07.003; PMID: 19660871
  • Wang L, Hara K, Van Baaren JM, Price JC, Beecham GW, Gallins PJ, et al. Vitamin D receptor and Alzheimer’s disease: a genetic and functional study. Neurobiol Aging 2012; 33:1844.e1 - 9; http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.038; PMID: 22306846
  • Przybelski RJ, Binkley NC. Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Arch Biochem Biophys 2007; 460:202 - 5; http://dx.doi.org/10.1016/j.abb.2006.12.018; PMID: 17258168
  • Annweiler C, Rolland Y, Schott AM, Blain H, Vellas B, Herrmann FR, et al. Higher vitamin D dietary intake is associated with lower risk of Alzheimer’s disease: A 7-year follow-up. J Gerontol A Biol Sci Med Sci 2012; In Press http://dx.doi.org/10.1093/gerona/gls107; PMID: 22503994
  • Annweiler C, Beauchet O. Possibility of a new anti-alzheimer’s disease pharmaceutical composition combining memantine and vitamin D. Drugs Aging 2012; 29:81 - 91; http://dx.doi.org/10.2165/11597550-000000000-00000; PMID: 22233455
  • Butler MW, Burt A, Edwards TL, Zuchner S, Scott WK, Martin ER, et al. Vitamin D receptor gene as a candidate gene for Parkinson disease. Ann Hum Genet 2011; 75:201 - 10; http://dx.doi.org/10.1111/j.1469-1809.2010.00631.x; PMID: 21309754
  • Kesby JP, Eyles DW, Burne TH, McGrath JJ. The effects of vitamin D on brain development and adult brain function. Mol Cell Endocrinol 2011; 347:121 - 7; http://dx.doi.org/10.1016/j.mce.2011.05.014; PMID: 21664231
  • Kuningas M, Mooijaart SP, Jolles J, Slagboom PE, Westendorp RG, van Heemst D. VDR gene variants associate with cognitive function and depressive symptoms in old age. Neurobiol Aging 2009; 30:466 - 73; http://dx.doi.org/10.1016/j.neurobiolaging.2007.07.001; PMID: 17714831
  • Lehmann DJ, Refsum H, Warden DR, Medway C, Wilcock GK, Smith AD. The vitamin D receptor gene is associated with Alzheimer’s disease. Neurosci Lett 2011; 504:79 - 82; http://dx.doi.org/10.1016/j.neulet.2011.08.057; PMID: 21911036
  • Chan CS, Gertler TS, Surmeier DJ. Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 2009; 32:249 - 56; http://dx.doi.org/10.1016/j.tins.2009.01.006; PMID: 19307031
  • Wang JY, Wu J-N, Cherng T-L, Hoffer BJ, Chen H-H, Borlongan CV, et al. Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 2001; 904:67 - 75; http://dx.doi.org/10.1016/S0006-8993(01)02450-7; PMID: 11516412
  • de Viragh PA, Haglid KG, Celio MR. Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc Natl Acad Sci U S A 1989; 86:3887 - 90; http://dx.doi.org/10.1073/pnas.86.10.3887; PMID: 2542952
  • Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr 2004; 134:3137 - 9; PMID: 15514288
  • Pérez AV, Picotto G, Carpentieri AR, Rivoira MA, Peralta López ME, Tolosa de Talamoni NG. Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion 2008; 77:22 - 34; PMID: 18277073
  • Sutherland MK, Somerville MJ, Yoong LK, Bergeron C, Haussler MR, McLachlan DR. Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28k mRNA levels. Brain Res Mol Brain Res 1992; 13:239 - 50; http://dx.doi.org/10.1016/0169-328X(92)90032-7; PMID: 1317496
  • Brewer LD, Porter NM, Kerr DS, Landfield PW, Thibault O. Chronic 1α,25-(OH)2 vitamin D3 treatment reduces Ca2+ -mediated hippocampal biomarkers of aging. Cell Calcium 2006; 40:277 - 86; http://dx.doi.org/10.1016/j.ceca.2006.04.001; PMID: 16780945

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.