1,135
Views
22
CrossRef citations to date
0
Altmetric
Extra View

Cis phosphorylated tau as the earliest detectable pathogenic conformation in Alzheimer disease, offering novel diagnostic and therapeutic strategies

, &
Pages 117-120 | Received 14 Sep 2012, Accepted 11 Nov 2012, Published online: 15 Nov 2012

References

  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411:355 - 65; http://dx.doi.org/10.1038/35077225; PMID: 11357143
  • Lu KP, Finn G, Lee TH, Nicholson LK. Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 2007; 3:619 - 29; http://dx.doi.org/10.1038/nchembio.2007.35; PMID: 17876319
  • Lee TH, Pastorino L, Lu KP. Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med 2011; 13:e21; http://dx.doi.org/10.1017/S1462399411001906; PMID: 21682951
  • Eckert B, Martin A, Balbach J, Schmid FX. Prolyl isomerization as a molecular timer in phage infection. Nat Struct Mol Biol 2005; 12:619 - 23; http://dx.doi.org/10.1038/nsmb946; PMID: 15937494
  • Sarkar P, Reichman C, Saleh T, Birge RB, Kalodimos CG. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol Cell 2007; 25:413 - 26; http://dx.doi.org/10.1016/j.molcel.2007.01.004; PMID: 17289588
  • Sarkar P, Saleh T, Tzeng SR, Birge RB, Kalodimos CG. Structural basis for regulation of the Crk signaling protein by a proline switch. Nat Chem Biol 2011; 7:51 - 7; http://dx.doi.org/10.1038/nchembio.494; PMID: 21131971
  • Wang L, Yang F, Zhang D, Chen Z, Xu RM, Nierhaus KH, et al. A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat Struct Mol Biol 2012; 19:403 - 10; http://dx.doi.org/10.1038/nsmb.2254; PMID: 22407015
  • Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 2005; 438:248 - 52; http://dx.doi.org/10.1038/nature04130; PMID: 16281040
  • Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell 2012; 149:232 - 44; http://dx.doi.org/10.1016/j.cell.2012.02.016; PMID: 22464332
  • Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399:784 - 8; http://dx.doi.org/10.1038/21650; PMID: 10391244
  • Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 2003; 424:556 - 61; http://dx.doi.org/10.1038/nature01832; PMID: 12891359
  • Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 2000; 6:873 - 83; http://dx.doi.org/10.1016/S1097-2765(05)00083-3; PMID: 11090625
  • Lim J, Balastik M, Lee TH, Nakamura K, Liou YC, Sun A, et al. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J Clin Invest 2008; 118:1877 - 89; PMID: 18431510
  • Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 2002; 103:26 - 35; http://dx.doi.org/10.1007/s004010100423; PMID: 11837744
  • Luna-Muñoz J, Chávez-Macías L, García-Sierra F, Mena R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J Alzheimers Dis 2007; 12:365 - 75; PMID: 18198423
  • Luna-Muñoz J, García-Sierra F, Falcón V, Menéndez I, Chávez-Macías L, Mena R. Regional conformational change involving phosphorylation of tau protein at the Thr231, precedes the structural change detected by Alz-50 antibody in Alzheimer’s disease. J Alzheimers Dis 2005; 8:29 - 41; PMID: 16155347
  • Pal D, Chakrabarti P. Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J Mol Biol 1999; 294:271 - 88; http://dx.doi.org/10.1006/jmbi.1999.3217; PMID: 10556045
  • Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 1998; 37:5566 - 75; http://dx.doi.org/10.1021/bi973060z; PMID: 9548941
  • Stewart DE, Sarkar A, Wampler JE. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol 1990; 214:253 - 60; http://dx.doi.org/10.1016/0022-2836(90)90159-J; PMID: 2370664
  • Davies CA, Mann DM, Sumpter PQ, Yates PO. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 1987; 78:151 - 64; http://dx.doi.org/10.1016/0022-510X(87)90057-8; PMID: 3572454
  • DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990; 27:457 - 64; http://dx.doi.org/10.1002/ana.410270502; PMID: 2360787
  • Scheff SW, DeKosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 1990; 11:29 - 37; http://dx.doi.org/10.1016/0197-4580(90)90059-9; PMID: 2325814
  • Orlicky S, Tang X, Willems A, Tyers M, Sicheri F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 2003; 112:243 - 56; http://dx.doi.org/10.1016/S0092-8674(03)00034-5; PMID: 12553912
  • Segat L, Pontillo A, Annoni G, Trabattoni D, Vergani C, Clerici M, et al. PIN1 promoter polymorphisms are associated with Alzheimer’s disease. Neurobiol Aging 2007; 28:69 - 74; http://dx.doi.org/10.1016/j.neurobiolaging.2005.11.009; PMID: 16384626
  • Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, et al. Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: A redox proteomics analysis. Neurobiol Aging 2006; 27:918 - 25; http://dx.doi.org/10.1016/j.neurobiolaging.2005.05.005; PMID: 15950321
  • Ma SL, Tang NL, Tam CW, Lui VW, Lam LC, Chiu HF, et al. A PIN1 polymorphism that prevents its suppression by AP4 associates with delayed onset of Alzheimer’s disease. Neurobiol Aging 2012; 33:804 - 13; http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.018; PMID: 20580132
  • Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 2009; 11:909 - 13; http://dx.doi.org/10.1038/ncb1901; PMID: 19503072
  • Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 2007; 27:9115 - 29; http://dx.doi.org/10.1523/JNEUROSCI.2361-07.2007; PMID: 17715348
  • Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, et al. Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 2011; 286:34457 - 67; http://dx.doi.org/10.1074/jbc.M111.229633; PMID: 21841002
  • Spires-Jones TL, Kopeikina KJ, Koffie RM, de Calignon A, Hyman BT. Are tangles as toxic as they look?. J Mol Neurosci 2011; 45:438 - 44; http://dx.doi.org/10.1007/s12031-011-9566-7; PMID: 21638071

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.