629
Views
4
CrossRef citations to date
0
Altmetric
Extra View

Identifying critical sites of PrPc-PrPSc interaction in prion-infected cells by dominant-negative inhibition

&
Pages 452-456 | Received 21 Oct 2013, Accepted 12 Dec 2013, Published online: 24 Dec 2013

References

  • Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, Mastrianni J, Lugaresi E, Gambetti P, Prusiner SB. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 1996; 274:2079 - 82; http://dx.doi.org/10.1126/science.274.5295.2079; PMID: 8953038
  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science 2007; 318:930 - 6; http://dx.doi.org/10.1126/science.1138718; PMID: 17991853
  • Taguchi Y, Mistica AMA, Kitamoto T, Schätzl HM. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein. PLoS Pathog 2013; 9:e1003466; http://dx.doi.org/10.1371/journal.ppat.1003466; PMID: 23825952
  • Lawson VA, Priola SA, Wehrly K, Chesebro B. N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J Biol Chem 2001; 276:35265 - 71; http://dx.doi.org/10.1074/jbc.M103799200; PMID: 11466311
  • Lawson VA, Priola SA, Meade-White K, Lawson M, Chesebro B. Flexible N-terminal region of prion protein influences conformation of protease-resistant prion protein isoforms associated with cross-species scrapie infection in vivo and in vitro. J Biol Chem 2004; 279:13689 - 95; http://dx.doi.org/10.1074/jbc.M303697200; PMID: 14736880
  • Kaneko K, Zulianello L, Scott M, Cooper CM, Wallace AC, James TL, Cohen FE, Prusiner SB. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci U S A 1997; 94:10069 - 74; http://dx.doi.org/10.1073/pnas.94.19.10069; PMID: 9294164
  • Lee CI, Yang Q, Perrier V, Baskakov IV. The dominant-negative effect of the Q218K variant of the prion protein does not require protein X. Protein Sci 2007; 16:2166 - 73; http://dx.doi.org/10.1110/ps.072954607; PMID: 17766375
  • Geoghegan JC, Miller MB, Kwak AH, Harris BT, Supattapone S. Trans-dominant inhibition of prion propagation in vitro is not mediated by an accessory cofactor. PLoS Pathog 2009; 5:e1000535; http://dx.doi.org/10.1371/journal.ppat.1000535; PMID: 19649330
  • Zulianello L, Kaneko K, Scott M, Erpel S, Han D, Cohen FE, Prusiner SB. Dominant-negative inhibition of prion formation diminished by deletion mutagenesis of the prion protein. J Virol 2000; 74:4351 - 60; http://dx.doi.org/10.1128/JVI.74.9.4351-4360.2000; PMID: 10756050
  • Geissen M, Mella H, Saalmüller A, Eiden M, Proft J, Pfaff E, Schätzl HM, Groschup MH. Inhibition of prion amplification by expression of dominant inhibitory mutants--a systematic insertion mutagenesis study. Infect Disord Drug Targets 2009; 9:40 - 7; http://dx.doi.org/10.2174/1871526510909010040; PMID: 19200014
  • Singh J, Udgaonkar JB. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry. J Mol Biol 2013; 425:3510 - 21; http://dx.doi.org/10.1016/j.jmb.2013.06.009; PMID: 23811055
  • Smirnovas V, Kim J-I, Lu X, Atarashi R, Caughey B, Surewicz WK. Distinct structures of scrapie prion protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange. J Biol Chem 2009; 284:24233 - 41; http://dx.doi.org/10.1074/jbc.M109.036558; PMID: 19596861
  • Smirnovas V, Baron GS, Offerdahl DK, Raymond GJ, Caughey B, Surewicz WK. Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nat Struct Mol Biol 2011; 18:504 - 6; http://dx.doi.org/10.1038/nsmb.2035; PMID: 21441913
  • Bocharova OV, Breydo L, Salnikov VV, Gill AC, Baskakov IV. Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob Disease. Protein Sci 2005; 14:1222 - 32; http://dx.doi.org/10.1110/ps.041186605; PMID: 15802644
  • Zou W-Q, Capellari S, Parchi P, Sy M-S, Gambetti P, Chen SG. Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt-Jakob disease. J Biol Chem 2003; 278:40429 - 36; http://dx.doi.org/10.1074/jbc.M308550200; PMID: 12917418
  • Kyle LM, John TR, Schätzl HM, Lewis RV. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro. PLoS One 2013; 8:e66715; http://dx.doi.org/10.1371/journal.pone.0066715; PMID: 23825561
  • Dutta A, Chen S, Surewicz WK. The effect of β2-α2 loop mutation on amyloidogenic properties of the prion protein. FEBS Lett 2013; 587:2918 - 23; http://dx.doi.org/10.1016/j.febslet.2013.07.023; PMID: 23892077
  • Chatterjee B, Lee C-Y, Lin C, Chen EH-L, Huang C-L, Yang C-C, Chen RP-Y. Amyloid core formed of full-length recombinant mouse prion protein involves sequence 127-143 but not sequence 107-126. PLoS One 2013; 8:e67967; http://dx.doi.org/10.1371/journal.pone.0067967; PMID: 23844138
  • Surewicz WK, Jones EM, Apetri AC. The emerging principles of mammalian prion propagation and transmissibility barriers: Insight from studies in vitro. Acc Chem Res 2006; 39:654 - 62; http://dx.doi.org/10.1021/ar050226c; PMID: 16981682
  • Moore RA, Herzog C, Errett J, Kocisko DA, Arnold KM, Hayes SF, Priola SA. Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation. Protein Sci 2006; 15:609 - 19; http://dx.doi.org/10.1110/ps.051822606; PMID: 16452616
  • Singh J, Sabareesan AT, Mathew MK, Udgaonkar JB. Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils. J Mol Biol 2012; 423:217 - 31; http://dx.doi.org/10.1016/j.jmb.2012.06.040; PMID: 22789566
  • Pirisinu L, Nonno R, Esposito E, Benestad SL, Gambetti P, Agrimi U, Zou W-Q. Small ruminant nor98 prions share biochemical features with human gerstmann-sträussler-scheinker disease and variably protease-sensitive prionopathy. PLoS One 2013; 8:e66405; http://dx.doi.org/10.1371/journal.pone.0066405; PMID: 23826096
  • Taguchi Y, Mohri S, Ironside JW, Muramoto T, Kitamoto T. Humanized knock-in mice expressing chimeric prion protein showed varied susceptibility to different human prions. Am J Pathol 2003; 163:2585 - 93; http://dx.doi.org/10.1016/S0002-9440(10)63613-9; PMID: 14633630
  • Korth C, Kaneko K, Groth D, Heye N, Telling G, Mastrianni J, Parchi P, Gambetti P, Will R, Ironside J, et al. Abbreviated incubation times for human prions in mice expressing a chimeric mouse-human prion protein transgene. Proc Natl Acad Sci U S A 2003; 100:4784 - 9; http://dx.doi.org/10.1073/pnas.2627989100; PMID: 12684540
  • Tamgüney G, Giles K, Oehler A, Johnson NL, DeArmond SJ, Prusiner SB. Chimeric elk/mouse prion proteins in transgenic mice. J Gen Virol 2013; 94:443 - 52; http://dx.doi.org/10.1099/vir.0.045989-0; PMID: 23100369