846
Views
9
CrossRef citations to date
0
Altmetric
Review

Applying the tools of chemistry (mass spectrometry and covalent modification by small molecule reagents) to the detection of prions and the study of their structure

Pages 42-50 | Received 26 Nov 2013, Accepted 16 Jan 2014, Published online: 07 Feb 2014

References

  • Basler K, Oesch B, Scott M, Westaway D, Wälchli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986; 46:417 - 28; http://dx.doi.org/10.1016/0092-8674(86)90662-8; PMID: 2873895
  • Hope J, Morton LJ, Farquhar CF, Multhaup G, Beyreuther K, Kimberlin RH. The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO J 1986; 5:2591 - 7; PMID: 3096712
  • Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 1993; 32:1991 - 2002; http://dx.doi.org/10.1021/bi00059a016; PMID: 8448158
  • Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE. Purification and structural studies of a major scrapie prion protein. Cell 1984; 38:127 - 34; http://dx.doi.org/10.1016/0092-8674(84)90533-6; PMID: 6432339
  • Turk E, Teplow DB, Hood LE, Prusiner SB. Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 1988; 176:21 - 30; http://dx.doi.org/10.1111/j.1432-1033.1988.tb14246.x; PMID: 3138115
  • Bolton DC, Meyer RK, Prusiner SB. Scrapie PrP 27-30 is a sialoglycoprotein. J Virol 1985; 53:596 - 606; PMID: 3918176
  • Baldwin MA. Mass spectrometric analysis of prion proteins. Adv Protein Chem 2001; 57:29 - 54; http://dx.doi.org/10.1016/S0065-3233(01)57017-5; PMID: 11447694
  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987; 51:229 - 40; http://dx.doi.org/10.1016/0092-8674(87)90150-4; PMID: 2444340
  • Stahl N, Baldwin M, Teplow DB, Hood LE, Beavis R, Chait B, Gibson BW, Burlingame AL, Prusiner SB. Cataloging post-translational modifications of the scrapie prion protein by mass spectrometry. In: Prusiner SB, Collinge J, Powell J, Anderton B, eds. Prion diseases of humans and animals. New York: Ellis Horwood, 1992:361-79.
  • Endo T, Groth D, Prusiner SB, Kobata A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 1989; 28:8380 - 8; http://dx.doi.org/10.1021/bi00447a017; PMID: 2574992
  • Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ, Wormald MR, Serban H, Prusiner SB, Kobata A, et al. Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A 1999; 96:13044 - 9; http://dx.doi.org/10.1073/pnas.96.23.13044; PMID: 10557270
  • Stimson E, Hope J, Chong A, Burlingame AL. Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/electrospray mass spectrometry and exoglycosidase digestions. Biochemistry 1999; 38:4885 - 95; http://dx.doi.org/10.1021/bi982330q; PMID: 10200178
  • Stahl N, Baldwin MA, Prusiner SB. Electrospray mass spectrometry of the glycosylinositol phospholipid of the scrapie prion protein. Cell Biol Int Rep 1991; 15:853 - 62; http://dx.doi.org/10.1016/0309-1651(91)90037-J; PMID: 1686992
  • Stahl N, Baldwin MA, Hecker R, Pan KM, Burlingame AL, Prusiner SB. . Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 1992; 31:5043 - 53; http://dx.doi.org/10.1021/bi00136a600; PMID: 1350920
  • Requena JR, Dimitrova MN, Legname G, Teijeira S, Prusiner SB, Levine RL. Oxidation of methionine residues in the prion protein by hydrogen peroxide. Arch Biochem Biophys 2004; 432:188 - 95; http://dx.doi.org/10.1016/j.abb.2004.09.012; PMID: 15542057
  • Serpa JJ, Makepeace KA, Borchers TH, Wishart DS, Petrotchenko EV, Borchers CH. Using isotopically-coded hydrogen peroxide as a surface modification reagent for the structural characterization of prion protein aggregates. J Proteomics 2013; Forthcoming http://dx.doi.org/10.1016/j.jprot.2013.11.020; PMID: 24316355
  • Requena JR, Groth D, Legname G, Stadtman ER, Prusiner SB, Levine RL. Copper-catalyzed oxidation of the recombinant SHa(29-231) prion protein. Proc Natl Acad Sci U S A 2001; 98:7170 - 5; http://dx.doi.org/10.1073/pnas.121190898; PMID: 11404462
  • Pamplona R, Naudí A, Gavín R, Pastrana MA, Sajnani G, Ilieva EV, Del Río JA, Portero-Otín M, Ferrer I, Requena JR. Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med 2008; 45:1159 - 66; http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.009; PMID: 18703134
  • Smirnovas V, Kim JI, Lu X, Atarashi R, Caughey B, Surewicz WK. Distinct structures of scrapie prion protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange. J Biol Chem 2009; 284:24233 - 41; http://dx.doi.org/10.1074/jbc.M109.036558; PMID: 19596861
  • Onisko B, Fernández EG, Freire ML, Schwarz A, Baier M, Camiña F, García JR, Rodríguez-Segade Villamarín S, Requena JR. Probing PrPSc structure using chemical cross-linking and mass spectrometry: evidence of the proximity of Gly90 amino termini in the PrP 27-30 aggregate. Biochemistry 2005; 44:10100 - 9; http://dx.doi.org/10.1021/bi0501582; PMID: 16042387
  • Petrotchenko EV, Serpa JJ, Hardie DB, Berjanskii M, Suriyamongkol BP, Wishart DS, Borchers CH. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins. Mol Cell Proteomics 2012; 11:013524; http://dx.doi.org/10.1074/mcp.M111.013524; PMID: 22438564
  • McDonald AJ, Dibble JP, Evans EG, Millhauser GL. A New Paradigm for Enzymatic Control of alpha-Cleavage and beta-Cleavage of the Prion Protein. J Biol Chem 2014; Forthcoming http://dx.doi.org/10.1074/jbc.M113.502351; PMID: 24247244
  • Chen SG, Zou W, Parchi P, Gambetti P. PrP(Sc) typing by N-terminal sequencing and mass spectrometry. Arch Virol Suppl 2000; 209 - 16; PMID: 11214924
  • Gielbert A, Davis LA, Sayers AR, Hope J, Gill AC, Sauer MJ. High-resolution differentiation of transmissible spongiform encephalopathy strains by quantitative N-terminal amino acid profiling (N-TAAP) of PK-digested abnormal prion protein. J Mass Spectrom 2009; 44:384 - 96; http://dx.doi.org/10.1002/jms.1516; PMID: 19053160
  • Gielbert A, Davis LA, Sayers AR, Tang Y, Hope J, Sauer MJ. Quantitative profiling of PrP(Sc) peptides by high-performance liquid chromatography mass spectrometry to investigate the diversity of prions. Anal Biochem 2013; 436:36 - 44; http://dx.doi.org/10.1016/j.ab.2013.01.015; PMID: 23357236
  • Howells LC, Anderson S, Coldham NG, Sauer MJ. Transmissible spongiform encephalopathy strain-associated diversity of N-terminal proteinase K cleavage sites of PrP(Sc) from scrapie-infected and bovine spongiform encephalopathy-infected mice. Biomarkers 2008; 13:393 - 412; http://dx.doi.org/10.1080/13547500801903719; PMID: 18484354
  • Sajnani G, Pastrana MA, Dynin I, Onisko B, Requena JR. Scrapie prion protein structural constraints obtained by limited proteolysis and mass spectrometry. J Mol Biol 2008; 382:88 - 98; http://dx.doi.org/10.1016/j.jmb.2008.06.070; PMID: 18621059
  • Sajnani G, Silva CJ, Ramos A, Pastrana MA, Onisko BC, Erickson ML, Antaki EM, Dynin I, Vázquez-Fernández E, Sigurdson CJ, et al. PK-sensitive PrP is infectious and shares basic structural features with PK-resistant PrP. PLoS Pathog 2012; 8:e1002547; http://dx.doi.org/10.1371/journal.ppat.1002547; PMID: 22396643
  • Silva CJ, Sajnani G, Ramos A, Pastrana MA, Onisko BC, Erickson ML, Antaki EM, Dynin I, Vazquez-Fernandez E, Sigurdson CJ, et al. A comparison of the structure of the PK-sensitive and PK-resistant forms of PrPSc. Prion 2013; 7:Supplement 90 - 1
  • Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 2005; 308:1435 - 9; http://dx.doi.org/10.1126/science.1110837; PMID: 15933194
  • Chesebro B, Race B, Meade-White K, Lacasse R, Race R, Klingeborn M, Striebel J, Dorward D, McGovern G, Jeffrey M. Fatal transmissible amyloid encephalopathy: a new type of prion disease associated with lack of prion protein membrane anchoring. PLoS Pathog 2010; 6:e1000800; http://dx.doi.org/10.1371/journal.ppat.1000800; PMID: 20221436
  • Smirnovas V, Baron GS, Offerdahl DK, Raymond GJ, Caughey B, Surewicz WK. Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nat Struct Mol Biol 2011; 18:504 - 6; http://dx.doi.org/10.1038/nsmb.2035; PMID: 21441913
  • Vázquez-Fernández E, Alonso J, Pastrana MA, Ramos A, Stitz L, Vidal E, Dynin I, Petsch B, Silva CJ, Requena JR. Structural organization of mammalian prions as probed by limited proteolysis. PLoS One 2012; 7:e50111; http://dx.doi.org/10.1371/journal.pone.0050111; PMID: 23185550
  • Vazquez-Fernandez E, Pastrana M, Ramos A, Alonso J, Stitz L, Vidal E, Dynin I, Silva C. Probing the structure of GPI-less PrPSc by limited proteolysis. Prion 2012; 6:supplement 26 - 7; PMID: 22453174
  • Miller MB, Wang DW, Wang F, Noble GP, Ma J, Woods VL Jr., Li S, Supattapone S. Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013; 21:2061 - 8; http://dx.doi.org/10.1016/j.str.2013.08.025; PMID: 24120764
  • Moore RA, Timmes AG, Wilmarth PA, Safronetz D, Priola SA. Identification and removal of proteins that co-purify with infectious prion protein improves the analysis of its secondary structure. Proteomics 2011; 11:3853 - 65; http://dx.doi.org/10.1002/pmic.201100253; PMID: 21805638
  • Wolschner C, Giese A, Kretzschmar HA, Huber R, Moroder L, Budisa N. Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proc Natl Acad Sci U S A 2009; 106:7756 - 61; http://dx.doi.org/10.1073/pnas.0902688106; PMID: 19416900
  • Colombo G, Meli M, Morra G, Gabizon R, Gasset M. Methionine sulfoxides on prion protein Helix-3 switch on the alpha-fold destabilization required for conversion. PLoS One 2009; 4:e4296; http://dx.doi.org/10.1371/journal.pone.0004296; PMID: 19172188
  • Younan ND, Nadal RC, Davies P, Brown DR, Viles JH. Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway. J Biol Chem 2012; 287:28263 - 75; http://dx.doi.org/10.1074/jbc.M112.354779; PMID: 22654104
  • Canello T, Engelstein R, Moshel O, Xanthopoulos K, Juanes ME, Langeveld J, Sklaviadis T, Gasset M, Gabizon R. Methionine sulfoxides on PrPSc: a prion-specific covalent signature. Biochemistry 2008; 47:8866 - 73; http://dx.doi.org/10.1021/bi800801f; PMID: 18680312
  • Canello T, Frid K, Gabizon R, Lisa S, Friedler A, Moskovitz J, Gasset M, Gabizon R. Oxidation of Helix-3 methionines precedes the formation of PK resistant PrP. PLoS Pathog 2010; 6:e1000977; http://dx.doi.org/10.1371/journal.ppat.1000977; PMID: 20625387
  • Oien DB, Canello T, Gabizon R, Gasset M, Lundquist BL, Burns JM, Moskovitz J. Detection of oxidized methionine in selected proteins, cellular extracts and blood serums by novel anti-methionine sulfoxide antibodies. Arch Biochem Biophys 2009; 485:35 - 40; http://dx.doi.org/10.1016/j.abb.2009.01.020; PMID: 19388147
  • Moskovitz J. Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 2005; 1703:213 - 9; http://dx.doi.org/10.1016/j.bbapap.2004.09.003; PMID: 15680229
  • Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 2001; 98:12920 - 5; http://dx.doi.org/10.1073/pnas.231472998; PMID: 11606777
  • Boschi-Muller S, Gand A, Branlant G. The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch Biochem Biophys 2008; 474:266 - 73; http://dx.doi.org/10.1016/j.abb.2008.02.007; PMID: 18302927
  • Weissbach H, Resnick L, Brot N.. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 2005; 1703:203 - 12
  • Tamgüney G, Giles K, Glidden DV, Lessard P, Wille H, Tremblay P, Groth DF, Yehiely F, Korth C, Moore RC, et al. Genes contributing to prion pathogenesis. J Gen Virol 2008; 89:1777 - 88; http://dx.doi.org/10.1099/vir.0.2008/001255-0; PMID: 18559949
  • Gasset M, Baldwin MA, Lloyd DH, Gabriel JM, Holtzman DM, Cohen F, Fletterick R, Prusiner SB. Predicted α-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci U S A 1992; 89:10940 - 4; http://dx.doi.org/10.1073/pnas.89.22.10940; PMID: 1438300
  • Bergstrom AL, Chabry J, Bastholm L, Heegaard PM. Oxidation reduces the fibrillation but not the neurotoxicity of the prion peptide PrP106-126. Biochim Biophys Acta 2007; 1774:1118 - 27
  • Breydo L, Bocharova OV, Makarava N, Salnikov VV, Anderson M, Baskakov IV. Methionine oxidation interferes with conversion of the prion protein into the fibrillar proteinase K-resistant conformation. Biochemistry 2005; 44:15534 - 43; http://dx.doi.org/10.1021/bi051369+; PMID: 16300402
  • Grabenauer M, Wu C, Soto P, Shea JE, Bowers MT. Oligomers of the prion protein fragment 106-126 are likely assembled from beta-hairpins in solution, and methionine oxidation inhibits assembly without altering the peptide’s monomeric conformation. J Am Chem Soc 2010; 132:532 - 9; http://dx.doi.org/10.1021/ja905595k; PMID: 20020713
  • Ghesquière B, Jonckheere V, Colaert N, Van Durme J, Timmerman E, Goethals M, Schymkowitz J, Rousseau F, Vandekerckhove J, Gevaert K. Redox proteomics of protein-bound methionine oxidation. Mol Cell Proteomics 2011; 10:006866; http://dx.doi.org/10.1074/mcp.M110.006866; PMID: 21406390
  • Sun G, Anderson VE. Prevention of artifactual protein oxidation generated during sodium dodecyl sulfate-gel electrophoresis. Electrophoresis 2004; 25:959 - 65; http://dx.doi.org/10.1002/elps.200305800; PMID: 15095433
  • Swiderek KM, Davis MT, Lee TD. The identification of peptide modifications derived from gel-separated proteins using electrospray triple quadrupole and ion trap analyses. Electrophoresis 1998; 19:989 - 97; http://dx.doi.org/10.1002/elps.1150190614; PMID: 9638945
  • Kotiaho T, Eberlin MN, Vainiotalo P, Kostiainen R. Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. J Am Soc Mass Spectrom 2000; 11:526 - 35; http://dx.doi.org/10.1016/S1044-0305(00)00116-1; PMID: 10833026
  • Chowdhury SK, Eshraghi J, Wolfe H, Forde D, Hlavac AG, Johnston D. Mass spectrometric identification of amino acid transformations during oxidation of peptides and proteins: modifications of methionine and tyrosine. Anal Chem 1995; 67:390 - 8; http://dx.doi.org/10.1021/ac00098a026; PMID: 7856883
  • Guan Z, Yates NA, Bakhtiar R. Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation. J Am Soc Mass Spectrom 2003; 14:605 - 13; http://dx.doi.org/10.1016/S1044-0305(03)00201-0; PMID: 12781462
  • Chen M, Cook KD. Oxidation artifacts in the electrospray mass spectrometry of Abeta Peptide. Anal Chem 2007; 79:2031 - 6; http://dx.doi.org/10.1021/ac061743r; PMID: 17249640
  • Morand K, Talbo G, Mann M. Oxidation of peptides during electrospray ionization. Rapid Commun Mass Spectrom 1993; 7:738 - 43; http://dx.doi.org/10.1002/rcm.1290070811; PMID: 8374164
  • Silva CJ, Dynin I, Erickson ML, Requena JR, Balachandran A, Hui C, Onisko BC, Carter JM. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation. Biochemistry 2013; 52:2139 - 47; http://dx.doi.org/10.1021/bi3016795; PMID: 23458153
  • Silva CJ, Onisko BC, Dynin I, Erickson ML, Vensel WH, Requena JR, Antaki EM, Carter JM. Assessing the role of oxidized methionine at position 213 in the formation of prions in hamsters. Biochemistry 2010; 49:1854 - 61; http://dx.doi.org/10.1021/bi901850n; PMID: 20121218
  • Onisko B, Dynin I, Requena JR, Silva CJ, Erickson M, Carter JM. Mass spectrometric detection of attomole amounts of the prion protein by nanoLC/MS/MS. J Am Soc Mass Spectrom 2007; 18:1070 - 9; http://dx.doi.org/10.1016/j.jasms.2007.03.009; PMID: 17446085
  • Onisko BC, Silva CJ, Dynin I, Erickson M, Vensel WH, Hnasko R, Requena JR, Carter JM. Sensitive, preclinical detection of prions in brain by nanospray liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2007; 21:4023 - 6; http://dx.doi.org/10.1002/rcm.3310; PMID: 18000838
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312:212 - 7; http://dx.doi.org/10.1126/science.1124619; PMID: 16614208
  • Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA. Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 2009; 8:787 - 97; http://dx.doi.org/10.1021/pr800538n; PMID: 19105742
  • Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012; 9:555 - 66; http://dx.doi.org/10.1038/nmeth.2015; PMID: 22669653
  • Bolton DC, Rudelli RD, Currie JR, Bendheim PE. Copurification of Sp33-37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease. J Gen Virol 1991; 72:2905 - 13; http://dx.doi.org/10.1099/0022-1317-72-12-2905; PMID: 1684986
  • Pastrana MA, Sajnani G, Onisko B, Castilla J, Morales R, Soto C, Requena JR. Isolation and characterization of a proteinase K-sensitive PrPSc fraction. Biochemistry 2006; 45:15710 - 7; http://dx.doi.org/10.1021/bi0615442; PMID: 17176093
  • Silva CJ, Dynin I, Erickson ML, Hui C, Carter JM. Oxidation of methionine in PrP is dependent upon the oxidant and the amino acid two positions removed. Prion 2013; 7:Supplement 81
  • Silva CJ, Erickson ML, Dynin IA, Onisko BC, Carter JM. Diagnosing Prion Diseases. Mass Spectrometry-Based Approaches Prion 2011; 5:Supplement 85
  • Silva CJ, Onisko BC, Dynin I, Erickson ML, Requena JR, Carter JM. Utility of mass spectrometry in the diagnosis of prion diseases. Anal Chem 2011; 83:1609 - 15; http://dx.doi.org/10.1021/ac102527w; PMID: 21288014
  • Stahl N, Baldwin MA, Burlingame AL, Prusiner SB. Identification of glycoinositol phospholipid linked and truncated forms of the scrapie prion protein. Biochemistry 1990; 29:8879 - 84; http://dx.doi.org/10.1021/bi00490a001; PMID: 1980209
  • Douma MD, Kerr GM, Brown RS, Keller BO, Oleschuk RD. Mass spectrometric detection of proteins in non-aqueous media - The case of prion proteins in biodiesel. Can J Chem 2008; 86:774 - 81; http://dx.doi.org/10.1139/v08-083
  • Sturm R, Sheynkman G, Booth C, Smith LM, Pedersen JA, Li L. Absolute quantification of prion protein (90-231) using stable isotope-labeled chymotryptic peptide standards in a LC-MRM AQUA workflow. J Am Soc Mass Spectrom 2012; 23:1522 - 33; http://dx.doi.org/10.1007/s13361-012-0411-1; PMID: 22714949
  • Lamoureux L, Simon SL, Plews M, Ruddat V, Brunet S, Graham C, Czub S, Knox JD. Urine proteins identified by two-dimensional differential gel electrophoresis facilitate the differential diagnoses of scrapie. PLoS One 2013; 8:e64044; http://dx.doi.org/10.1371/journal.pone.0064044; PMID: 23704971
  • Lamoureux L, Simon SL, Plews M, Stobart M, Groschup M, Czub S, Graham C, Knox JD. Analysis of clusterin glycoforms in the urine of BSE-infected Fleckvieh-Simmental cows. J Toxicol Environ Health A 2011; 74:138 - 45; http://dx.doi.org/10.1080/15287394.2011.529063; PMID: 21218342
  • Simon SL, Lamoureux L, Plews M, Stobart M, LeMaistre J, Ziegler U, Graham C, Czub S, Groschup M, Knox JD. The identification of disease-induced biomarkers in the urine of BSE infected cattle. Proteome Sci 2008; 6:23; http://dx.doi.org/10.1186/1477-5956-6-23; PMID: 18775071
  • Wei X, Herbst A, Ma D, Aiken J, Li L. A quantitative proteomic approach to prion disease biomarker research: delving into the glycoproteome. J Proteome Res 2011; 10:2687 - 702; http://dx.doi.org/10.1021/pr2000495; PMID: 21469646
  • Barr JB, Watson M, Head MW, Ironside JW, Harris N, Hogarth C, Fraser JR, Barron R. Differential protein profiling as a potential multi-marker approach for TSE diagnosis. BMC Infect Dis 2009; 9:188; http://dx.doi.org/10.1186/1471-2334-9-188; PMID: 19943924
  • Asuni AA, Gray B, Bailey J, Skipp P, Perry VH, O’Connor V. Analysis of the hippocampal proteome in ME7 prion disease reveals a predominant astrocytic signature and highlights the brain-restricted production of clusterin in chronic neurodegeneration. J Biol Chem 2013; Forthcoming http://dx.doi.org/10.1074/jbc.M113.502690; PMID: 24366862
  • Batxelli-Molina I, Salvetat N, Andréoletti O, Guerrier L, Vicat G, Molina F, Mourton-Gilles C. Ovine serum biomarkers of early and late phase scrapie. BMC Vet Res 2010; 6:49; http://dx.doi.org/10.1186/1746-6148-6-49; PMID: 21044301
  • Herbst A, McIlwain S, Schmidt JJ, Aiken JM, Page CD, Li L. Prion disease diagnosis by proteomic profiling. J Proteome Res 2009; 8:1030 - 6; http://dx.doi.org/10.1021/pr800832s; PMID: 19133784
  • Chen C, Xiao D, Zhou W, Zhang YC, Shi Q, Tian C, Zhang J, Zhou CX, Zhang JZ, Dong XP. Comparative peptidome analyses of the profiles of the peptides ranging from 1-10 KD in CSF samples pooled from probable sporadic CJD and non-CJD patients. Prion 2012; 6:46 - 51; http://dx.doi.org/10.4161/pri.6.1.18082; PMID: 22453178
  • Van Dorsselaer A, Carapito C, Delalande F, Schaeffer-Reiss C, Thierse D, Diemer H, McNair DS, Krewski D, Cashman NR. Detection of prion protein in urine-derived injectable fertility products by a targeted proteomic approach. PLoS One 2011; 6:e17815; http://dx.doi.org/10.1371/journal.pone.0017815; PMID: 21448279
  • Kuwabara Y, Mine K, Katayama A, Inagawa T, Akira S, Takeshita T. Proteomic analyses of recombinant human follicle-stimulating hormone and urinary-derived gonadotropin preparations. J Reprod Med 2009; 54:459 - 66; PMID: 19769189
  • Giorgi A, Di Francesco L, Principe S, Mignogna G, Sennels L, Mancone C, Alonzi T, Sbriccoli M, De Pascalis A, Rappsilber J, et al. Proteomic profiling of PrP27-30-enriched preparations extracted from the brain of hamsters with experimental scrapie. Proteomics 2009; 9:3802 - 14; http://dx.doi.org/10.1002/pmic.200900085; PMID: 19637240
  • Petrakis S, Malinowska A, Dadlez M, Sklaviadis T. Identification of proteins co-purifying with scrapie infectivity. J Proteomics 2009; 72:690 - 4; http://dx.doi.org/10.1016/j.jprot.2009.01.025; PMID: 19367687
  • Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA. Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 2004; 22:724 - 31; http://dx.doi.org/10.1038/nbt969; PMID: 15146195
  • Zafar S, Asif AR, Ramljak S, Tahir W, Schmitz M, Zerr I. Anchorless 23-230 PrP(C) Interactomics for Elucidation of PrP(C) Protective Role. Mol Neurobiol 2014; Forthcoming http://dx.doi.org/10.1007/s12035-013-8616-2; PMID: 24390569
  • Nokihara K, Yajima S, Hitara A, Sogon T, Yasuhara T. Characterization of peptides obtained from digests of bovine brain which accelerate structural conversions of the recombinant bovine prion protein. FEBS Lett 2013; 587:673 - 6; http://dx.doi.org/10.1016/j.febslet.2013.01.033; PMID: 23376025
  • Kouassi GK, Irudayaraj J. A nanoparticle-based immobilization assay for prion-kinetics study. J Nanobiotechnology 2006; 4:8; http://dx.doi.org/10.1186/1477-3155-4-8; PMID: 16916458
  • McKinley MP, Bolton DC, Prusiner SB. A protease-resistant protein is a structural component of the scrapie prion. Cell 1983; 35:57 - 62; http://dx.doi.org/10.1016/0092-8674(83)90207-6; PMID: 6414721
  • Pimenova T, Meier L, Roschitzki B, Paraschiv G, Przybylski M, Zenobi R. Polystyrene beads as an alternative support material for epitope identification of a prion-antibody interaction using proteolytic excision-mass spectrometry. Anal Bioanal Chem 2009; 395:1395 - 401; http://dx.doi.org/10.1007/s00216-009-3119-8; PMID: 19787344
  • Qin K, Yang Y, Mastrangelo P, Westaway D. Mapping Cu(II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 2002; 277:1981 - 90; http://dx.doi.org/10.1074/jbc.M108744200; PMID: 11698407
  • Pimenova T, Nazabal A, Roschitzki B, Seebacher J, Rinner O, Zenobi R. Epitope mapping on bovine prion protein using chemical cross-linking and mass spectrometry. J Mass Spectrom 2008; 43:185 - 95; http://dx.doi.org/10.1002/jms.1280; PMID: 17924399
  • Gong B, Ramos A, Vázquez-Fernández E, Silva CJ, Alonso J, Liu Z, Requena JR. Probing structural differences between PrP(C) and PrP(Sc) by surface nitration and acetylation: evidence of conformational change in the C-terminus. Biochemistry 2011; 50:4963 - 72; http://dx.doi.org/10.1021/bi102073j; PMID: 21526750
  • Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, Bastidas RB, Rozenshteyn R, James TL, Houghten RA, Cohen FE, et al. A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 1997; 273:614 - 22; http://dx.doi.org/10.1006/jmbi.1997.1328; PMID: 9356250
  • Silva CJ. Using small molecule reagents to selectively modify epitopes based on their conformation. Prion 2012; 6:163 - 73; http://dx.doi.org/10.4161/pri.18795; PMID: 22436143
  • Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB. Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 1998; 4:1157 - 65; http://dx.doi.org/10.1038/2654; PMID: 9771749
  • Silva C, Erickson M, Dynin I, Carter M. Using synthetic small molecule reagents and antibodies to distiguish among PrP conformers–New uses for old antibodies. Prion 2012; 6:Supplement 90
  • Silva CJ, Erickson ML, Dynin I, Carter JM. Distinguishing between PrPC and PrPSc using small molecule reagents. Prion 2013; 7:Supplement 90
  • Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013; 501:45 - 51; http://dx.doi.org/10.1038/nature12481; PMID: 24005412
  • Grad L, Cashman NR. Prion-like activity of Cu/Zn superoxide dismutase: Implications for amyotrophic lateral sclerosis. Prion 2014; Forthcoming PMID: 24394345
  • Mysling S, Betzer C, Jensen PH, Jorgensen TJ. Characterizing the Dynamics of α-Synuclein Oligomers Using Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry. Biochemistry 2013; 52:9097 - 103; http://dx.doi.org/10.1021/bi4009193; PMID: 24191706
  • Shaw BF, Durazo A, Nersissian AM, Whitelegge JP, Faull KF, Valentine JS. Local unfolding in a destabilized, pathogenic variant of superoxide dismutase 1 observed with H/D exchange and mass spectrometry. J Biol Chem 2006; 281:18167 - 76; http://dx.doi.org/10.1074/jbc.M600623200; PMID: 16644738
  • Borges-Alvarez M, Benavente F, Vilaseca M, Barbosa J, Sanz-Nebot V. Characterization of superoxide dismutase 1 (SOD-1) by electrospray ionization-ion mobility mass spectrometry. J Mass Spectrom 2013; 48:60 - 7; http://dx.doi.org/10.1002/jms.3128; PMID: 23303748
  • Brinkmalm G, Portelius E, Öhrfelt A, Mattsson N, Persson R, Gustavsson MK, Vite CH, Gobom J, Månsson JE, Nilsson J, et al. An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid. J Mass Spectrom 2012; 47:591 - 603; http://dx.doi.org/10.1002/jms.2987; PMID: 22576872
  • Brinkmalm G, Brinkmalm A, Bourgeois P, Persson R, Hansson O, Portelius E, Mercken M, Andreasson U, Parent S, Lipari F, et al. Soluble amyloid precursor protein α and β in CSF in Alzheimer’s disease. Brain Res 2013; 1513:117 - 26; http://dx.doi.org/10.1016/j.brainres.2013.03.019; PMID: 23541617
  • Ohrfelt A, Zetterberg H, Andersson K, Persson R, Secic D, Brinkmalm G, Wallin A, Mulugeta E, Francis PT, Vanmechelen E, et al. Identification of novel α-synuclein isoforms in human brain tissue by using an online nanoLC-ESI-FTICR-MS method. Neurochem Res 2011; 36:2029 - 42; http://dx.doi.org/10.1007/s11064-011-0527-x; PMID: 21674238
  • Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK. Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem 2009; 81:7823 - 8; http://dx.doi.org/10.1021/ac901176t; PMID: 19697948
  • Xia Q, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J. Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 2008; 7:2845 - 51; http://dx.doi.org/10.1021/pr8000496; PMID: 18510355
  • Xia Q, Liao L, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J. Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci 2008; 13:3850 - 6; http://dx.doi.org/10.2741/2973; PMID: 18508479
  • Borsarelli CD, Falomir-Lockhart LJ, Ostatná V, Fauerbach JA, Hsiao HH, Urlaub H, Paleček E, Jares-Erijman EA, Jovin TM. Biophysical properties and cellular toxicity of covalent crosslinked oligomers of α-synuclein formed by photoinduced side-chain tyrosyl radicals. Free Radic Biol Med 2012; 53:1004 - 15; http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.035; PMID: 22771470
  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000; 290:985 - 9; http://dx.doi.org/10.1126/science.290.5493.985; PMID: 11062131
  • Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 1998; 57:338 - 42; http://dx.doi.org/10.1097/00005072-199804000-00006; PMID: 9600227
  • Ida N, Hartmann T, Pantel J, Schröder J, Zerfass R, Förstl H, Sandbrink R, Masters CL, Beyreuther K. Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 1996; 271:22908 - 14; http://dx.doi.org/10.1074/jbc.271.37.22908; PMID: 8798471
  • Kosik KS, Orecchio LD, Binder L, Trojanowski JQ, Lee VM, Lee G. Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1988; 1:817 - 25; http://dx.doi.org/10.1016/0896-6273(88)90129-8; PMID: 2483104
  • Carmel G, Mager EM, Binder LI, Kuret J. The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 1996; 271:32789 - 95; http://dx.doi.org/10.1074/jbc.271.51.32789; PMID: 8955115
  • Choi JY, Park HJ, Seong YM, Choi EY, Min BR, Rhim H. Fine epitope mapping of monoclonal antibodies specific to human alpha-synuclein. Neurosci Lett 2006; 397:53 - 8; http://dx.doi.org/10.1016/j.neulet.2005.11.058; PMID: 16380207
  • Broering TJ, Wang H, Boatright NK, Wang Y, Baptista K, Shayan G, Garrity KA, Kayatekin C, Bosco DA, Matthews CR, et al. Identification of human monoclonal antibodies specific for human SOD1 recognizing distinct epitopes and forms of SOD1. PLoS One 2013; 8:e61210; http://dx.doi.org/10.1371/journal.pone.0061210; PMID: 23613814

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.