5,100
Views
165
CrossRef citations to date
0
Altmetric
Mini Review

The therapeutic potential of chemical chaperones in protein folding diseases

&
Pages 197-202 | Received 13 Dec 2013, Accepted 16 Apr 2014, Published online: 12 May 2014

References

  • Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013; 501:45 - 51; http://dx.doi.org/10.1038/nature12481; PMID: 24005412
  • Doyle SM, Genest O, Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 2013; 14:617 - 29; http://dx.doi.org/10.1038/nrm3660; PMID: 24061228
  • Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 2005; 6:11 - 22; http://dx.doi.org/10.1038/nrn1587; PMID: 15611723
  • Turturici G, Sconzo G, Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011; 2011:618127; http://dx.doi.org/10.1155/2011/618127; PMID: 21403864
  • Nemirovsky A, Fisher Y, Baron R, Cohen IR, Monsonego A. Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer’s disease. Vaccine 2011; 29:4043 - 50; http://dx.doi.org/10.1016/j.vaccine.2011.03.033; PMID: 21473952
  • Bernier V, Lagacé M, Bichet DG, Bouvier M. Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 2004; 15:222 - 8; http://dx.doi.org/10.1016/j.tem.2004.05.003; PMID: 15223052
  • Gaestel M, Alberti S. Molecular chaperones in health and disease. Berlin: Springer, 2006.
  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science 1982; 217:1214 - 22; http://dx.doi.org/10.1126/science.7112124; PMID: 7112124
  • Lin TY, Timasheff SN. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry 1994; 33:12695 - 701; http://dx.doi.org/10.1021/bi00208a021; PMID: 7918496
  • Baskakov I, Bolen DW. Forcing thermodynamically unfolded proteins to fold. J Biol Chem 1998; 273:4831 - 4; http://dx.doi.org/10.1074/jbc.273.9.4831; PMID: 9478922
  • Street TO, Bolen DW, Rose GD. A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 2006; 103:13997 - 4002; http://dx.doi.org/10.1073/pnas.0606236103; PMID: 16968772
  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 2001; 276:39586 - 91; http://dx.doi.org/10.1074/jbc.M103081200; PMID: 11517217
  • Street TO, Krukenberg KA, Rosgen J, Bolen DW, Agard DA. Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci 2010; 19:57 - 65; PMID: 19890989
  • Uversky VN, Li J, Fink AL. Trimethylamine-N-oxide-induced folding of alpha-synuclein. FEBS Lett 2001; 509:31 - 5; http://dx.doi.org/10.1016/S0014-5793(01)03121-0; PMID: 11734201
  • Yang DS, Yip CM, Huang TH, Chakrabartty A, Fraser PE. Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J Biol Chem 1999; 274:32970 - 4; http://dx.doi.org/10.1074/jbc.274.46.32970; PMID: 10551864
  • Fung J, Darabie AA, McLaurin J. Contribution of simple saccharides to the stabilization of amyloid structure. Biochem Biophys Res Commun 2005; 328:1067 - 72; http://dx.doi.org/10.1016/j.bbrc.2005.01.068; PMID: 15707986
  • Tatzelt J, Prusiner SB, Welch WJ. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 1996; 15:6363 - 73; PMID: 8978663
  • Gu Y, Singh N. Doxycycline and protein folding agents rescue the abnormal phenotype of familial CJD H187R in a cell model. Brain Res Mol Brain Res 2004; 123:37 - 44; http://dx.doi.org/10.1016/j.molbrainres.2004.01.006; PMID: 15046864
  • Bennion BJ, DeMarco ML, Daggett V. Preventing misfolding of the prion protein by trimethylamine N-oxide. Biochemistry 2004; 43:12955 - 63; http://dx.doi.org/10.1021/bi0486379; PMID: 15476389
  • Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10:148 - 54; http://dx.doi.org/10.1038/nm985; PMID: 14730359
  • Shaked GM, Engelstein R, Avraham I, Kahana E, Gabizon R. Dimethyl sulfoxide delays PrP sc accumulation and disease symptoms in prion-infected hamsters. Brain Res 2003; 983:137 - 43; http://dx.doi.org/10.1016/S0006-8993(03)03045-2; PMID: 12914974
  • Dover GJ, Brusilow S, Charache S. Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate. Blood 1994; 84:339 - 43; PMID: 7517215
  • Camacho LH, Olson J, Tong WP, Young CW, Spriggs DR, Malkin MG. Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest New Drugs 2007; 25:131 - 8; http://dx.doi.org/10.1007/s10637-006-9017-4; PMID: 17053987
  • Zeitlin PL, Diener-West M, Rubenstein RC, Boyle MP, Lee CK, Brass-Ernst L. Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 2002; 6:119 - 26; http://dx.doi.org/10.1006/mthe.2002.0639; PMID: 12095312
  • Wirth B, Brichta L, Hahnen E. Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol 2006; 13:121 - 31; http://dx.doi.org/10.1016/j.spen.2006.06.008; PMID: 17027862
  • Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown RH Jr., Zhang H, Schoenfeld DA, Shefner J, Matson S, et al, Northeast ALS and National VA ALS Research Consortiums. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler 2009; 10:99 - 106; http://dx.doi.org/10.1080/17482960802320487; PMID: 18688762
  • Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem 2005; 280:556 - 63; PMID: 15494404
  • Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 2011; 286:14941 - 51; http://dx.doi.org/10.1074/jbc.M110.211029; PMID: 21372141
  • Cuadrado-Tejedor M, García-Osta A, Ricobaraza A, Oyarzabal J, Franco R. Defining the mechanism of action of 4-phenylbutyrate to develop a small-molecule-based therapy for Alzheimer’s disease. Curr Med Chem 2011; 18:5545 - 53; http://dx.doi.org/10.2174/092986711798347315; PMID: 22172064
  • Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313:1137 - 40; http://dx.doi.org/10.1126/science.1128294; PMID: 16931765
  • Mimori S, Ohtaka H, Koshikawa Y, Kawada K, Kaneko M, Okuma Y, Nomura Y, Murakami Y, Hamana H. 4-Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor. Bioorg Med Chem Lett 2013; 23:6015 - 8; http://dx.doi.org/10.1016/j.bmcl.2013.08.001; PMID: 24044874
  • Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004; 89:1358 - 67; http://dx.doi.org/10.1111/j.1471-4159.2004.02406.x; PMID: 15189338
  • Wright JM, Zeitlin PL, Cebotaru L, Guggino SE, Guggino WB. Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol Genomics 2004; 16:204 - 11; http://dx.doi.org/10.1152/physiolgenomics.00160.2003; PMID: 14583596
  • Konsoula Z, Barile FA. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods 2012; 66:215 - 20; http://dx.doi.org/10.1016/j.vascn.2012.08.001; PMID: 22902970
  • Inden M, Kitamura Y, Takeuchi H, Yanagida T, Takata K, Kobayashi Y, Taniguchi T, Yoshimoto K, Kaneko M, Okuma Y, et al. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 2007; 101:1491 - 504; http://dx.doi.org/10.1111/j.1471-4159.2006.04440.x; PMID: 17459145
  • Cuadrado-Tejedor M, Ricobaraza AL, Torrijo R, Franco R, Garcia-Osta A. Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer´s disease-like phenotype of a commonly used mouse model. Curr Pharm Des 2013; 19:5076 - 84; http://dx.doi.org/10.2174/1381612811319280006; PMID: 23448463
  • Wiley JC, Meabon JS, Frankowski H, Smith EA, Schecterson LC, Bothwell M, Ladiges WC. Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells. PLoS One 2010; 5:e9135; http://dx.doi.org/10.1371/journal.pone.0009135; PMID: 20161760
  • Ricobaraza A, Cuadrado-Tejedor M, Garcia-Osta A. Long-term phenylbutyrate administration prevents memory deficits in Tg2576 mice by decreasing Abeta. Front Biosci (Elite Ed) 2011; 3:1375 - 84; PMID: 21622143
  • Wiley JC, Pettan-Brewer C, Ladiges WC. Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice. Aging Cell 2011; 10:418 - 28; http://dx.doi.org/10.1111/j.1474-9726.2011.00680.x; PMID: 21272191
  • Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, Pahan K. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS One 2012; 7:e38113; http://dx.doi.org/10.1371/journal.pone.0038113; PMID: 22723850
  • Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003; 23:9418 - 27; PMID: 14561870
  • Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 2003; 100:2041 - 6; http://dx.doi.org/10.1073/pnas.0437870100; PMID: 12576549
  • Hogarth P, Lovrecic L, Krainc D. Sodium phenylbutyrate in Huntington’s disease: a dose-finding study. Mov Disord 2007; 22:1962 - 4; http://dx.doi.org/10.1002/mds.21632; PMID: 17702032
  • Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci U S A 2002; 99:10671 - 6; http://dx.doi.org/10.1073/pnas.162362299; PMID: 12149470
  • Ramalho RM, Viana RJ, Low WC, Steer CJ, Rodrigues CM. Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer’s disease. Trends Mol Med 2008; 14:54 - 62; http://dx.doi.org/10.1016/j.molmed.2007.12.001; PMID: 18218342
  • Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 2007; 1773:283 - 308; http://dx.doi.org/10.1016/j.bbamcr.2006.04.014; PMID: 17291602
  • Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 1998; 4:165 - 78; PMID: 9562975
  • Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 1998; 101:2790 - 9; http://dx.doi.org/10.1172/JCI1325; PMID: 9637713
  • Rodrigues CM, Solá S, Sharpe JC, Moura JJ, Steer CJ. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome C release in isolated mitochondria. Biochemistry 2003; 42:3070 - 80; http://dx.doi.org/10.1021/bi026979d; PMID: 12627974
  • Azzaroli F, Mehal W, Soroka CJ, Wang L, Lee J, Crispe IN, Boyer JL. Ursodeoxycholic acid diminishes Fas-ligand-induced apoptosis in mouse hepatocytes. Hepatology 2002; 36:49 - 54; http://dx.doi.org/10.1053/jhep.2002.34511; PMID: 12085348
  • Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res 2009; 50:1509 - 20; http://dx.doi.org/10.1194/jlr.R900007-JLR200; PMID: 19346331
  • Song S, Liang JJ, Mulhern ML, Madson CJ, Shinohara T. Cholesterol-derived bile acids enhance the chaperone activity of α-crystallins. Cell Stress Chaperones 2011; 16:475 - 80; http://dx.doi.org/10.1007/s12192-011-0259-5; PMID: 21380614
  • Berger E, Haller D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun 2011; 409:610 - 5; http://dx.doi.org/10.1016/j.bbrc.2011.05.043; PMID: 21605547
  • de Almeida SF, Picarote G, Fleming JV, Carmo-Fonseca M, Azevedo JE, de Sousa M. Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation. J Biol Chem 2007; 282:27905 - 12; http://dx.doi.org/10.1074/jbc.M702672200; PMID: 17626021
  • Viana RJ, Nunes AF, Castro RE, Ramalho RM, Meyerson J, Fossati S, Ghiso J, Rostagno A, Rodrigues CM. Tauroursodeoxycholic acid prevents E22Q Alzheimer’s Abeta toxicity in human cerebral endothelial cells. Cell Mol Life Sci 2009; 66:1094 - 104; http://dx.doi.org/10.1007/s00018-009-8746-x; PMID: 19189048
  • Kim NH, Choi JK, Jeong BH, Kim JI, Kwon MS, Carp RI, Kim YS. Effect of transition metals (Mn, Cu, Fe) and deoxycholic acid (DA) on the conversion of PrPC to PrPres. FASEB J 2005; 19:783 - 5; PMID: 15758042
  • Macedo B, Batista AR, Ferreira N, Almeida MR, Saraiva MJ. Anti-apoptotic treatment reduces transthyretin deposition in a transgenic mouse model of Familial Amyloidotic Polyneuropathy. Biochim Biophys Acta 2008; 1782:517 - 22; http://dx.doi.org/10.1016/j.bbadis.2008.05.005; PMID: 18572024
  • Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJ, Callaerts-Vegh Z, D’Hooge R, Rodrigues CM. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol Neurobiol 2012; 45:440 - 54; http://dx.doi.org/10.1007/s12035-012-8256-y; PMID: 22438081
  • Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson CJ, Wolf CR, Rodrigues CM, Gama MJ. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Mol Neurobiol 2012; 46:475 - 86; http://dx.doi.org/10.1007/s12035-012-8295-4; PMID: 22773138
  • Castro RE, Solá S, Ramalho RM, Steer CJ, Rodrigues CM. The bile acid tauroursodeoxycholic acid modulates phosphorylation and translocation of bad via phosphatidylinositol 3-kinase in glutamate-induced apoptosis of rat cortical neurons. J Pharmacol Exp Ther 2004; 311:845 - 52; http://dx.doi.org/10.1124/jpet.104.070532; PMID: 15190125
  • Kuwata K, Nishida N, Matsumoto T, Kamatari YO, Hosokawa-Muto J, Kodama K, Nakamura HK, Kimura K, Kawasaki M, Takakura Y, et al. Hot spots in prion protein for pathogenic conversion. Proc Natl Acad Sci U S A 2007; 104:11921 - 6; http://dx.doi.org/10.1073/pnas.0702671104; PMID: 17616582
  • Hosokawa-Muto J, Kamatari YO, Nakamura HK, Kuwata K. Variety of antiprion compounds discovered through an in silico screen based on cellular-form prion protein structure: Correlation between antiprion activity and binding affinity. Antimicrob Agents Chemother 2009; 53:765 - 71; http://dx.doi.org/10.1128/AAC.01112-08; PMID: 19015328
  • Katsuno M, Tanaka F, Sobue G. Perspectives on molecular targeted therapies and clinical trials for neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2012; 83:329 - 35; http://dx.doi.org/10.1136/jnnp-2011-301307; PMID: 22323772
  • Ferreira NC, Marques IA, Conceição WA, Macedo B, Machado CS, Mascarello A, Chiaradia-Delatorre LD, Yunes RA, Nunes RJ, Hughson AG, et al. Anti-prion activity of a panel of aromatic chemical compounds: in vitro and in silico approaches. PLoS One 2014; 9:e84531; http://dx.doi.org/10.1371/journal.pone.0084531; PMID: 24400098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.