2,062
Views
84
CrossRef citations to date
0
Altmetric
Research Paper

Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium

, , , , , , & show all
Pages 235-245 | Published online: 01 Feb 2012

References

  • Barea JM, Pozo MJ, Azco´n R, Azco´n-Aguilar C. Microbial co-operation in the rhizosphere. J Exp Bot 2005; 56:1761 - 78; http://dx.doi.org/10.1093/jxb/eri197; PMID: 15911555
  • Loper JE. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 1986; 76:76 - 386; http://dx.doi.org/10.1094/Phyto-76-386
  • Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 2007; 20:619 - 26; http://dx.doi.org/10.1094/MPMI-20-6-0619; PMID: 17555270
  • Joo G-J, Kim Y-M, Kim J-T, Rhee I-K, Kim J-H, Lee I-J. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 2005; 43:510 - 5; PMID: 16410767
  • Orti´z-Castro R, Valencia-Cantero E, Lo´pez-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 2008; 3:263 - 5; http://dx.doi.org/10.4161/psb.3.4.5204; PMID: 19704649
  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, et al. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 2000; 57:123 - 34; http://dx.doi.org/10.1006/pmpp.2000.0291
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 2007; 26:227 - 42; http://dx.doi.org/10.1080/07352680701572966
  • Nautiyal CS. Selection of Chickpea-Rhizosphere-Competent Pseudomonas fluorescens NBRI1303 Antagonistic to Fusarium oxysporum f. sp. ciceri, Rhizoctonia bataticola and Pythium sp. Curr Microbiol 1997; 35:52 - 8; http://dx.doi.org/10.1007/s002849900211
  • de Freitas JR, Banerjee MR, Germida JJ. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 1997; 24:358 - 64; http://dx.doi.org/10.1007/s003740050258
  • Dimkpa C, Weinand T, Asch F. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 2009; 32:1682 - 94; http://dx.doi.org/10.1111/j.1365-3040.2009.02028.x; PMID: 19671096
  • Saleem M, Arshad M, Hussain S, Bhatti AS. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 2007; 34:635 - 48; http://dx.doi.org/10.1007/s10295-007-0240-6; PMID: 17665234
  • van Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 1998; 36:453 - 83; http://dx.doi.org/10.1146/annurev.phyto.36.1.453; PMID: 15012509
  • Heil M, Bostock RM. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 2002; 89:503 - 12; http://dx.doi.org/10.1093/aob/mcf076; PMID: 12099523
  • Berg G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 2009; 84:11 - 8; http://dx.doi.org/10.1007/s00253-009-2092-7; PMID: 19568745
  • Pieterse CM, van Wees SC, Hoffland E, van Pelt JA, van Loon LC. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 1996; 8:1225 - 37; PMID: 8776893
  • Van Wees SC, Pieterse CM, Trijssenaar A, Van ’t Westende YA, Hartog F, Van Loon LC. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 1997; 10:716 - 24; http://dx.doi.org/10.1094/MPMI.1997.10.6.716; PMID: 9245833
  • Knoester M, Pieterse CM, Bol JF, Van Loon LC. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant Microbe Interact 1999; 12:720 - 7; http://dx.doi.org/10.1094/MPMI.1999.12.8.720; PMID: 10475689
  • Li W, Estrada-de los Santos P, Matthijs S, Xie GL, Busson R, Cornelis P, et al. Promysalin, a salicylate-containing Pseudomonas putida antibiotic, promotes surface colonization and selectively targets other Pseudomonas. Chem Biol 2011; 18:1320 - 30; http://dx.doi.org/10.1016/j.chembiol.2011.08.006; PMID: 22035801
  • Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 2011; 35:299 - 323; http://dx.doi.org/10.1111/j.1574-6976.2010.00249.x; PMID: 20796030
  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 2005; 18:385 - 96; http://dx.doi.org/10.1094/MPMI-18-0385; PMID: 15915637
  • Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytol 2006; 172:35 - 46; http://dx.doi.org/10.1111/j.1469-8137.2006.01840.x; PMID: 16945087
  • Johnson JM, Oelmüller R. Mutualism or parasitism: life in an unstable continuum. Endocytobiosis Cell Res 2009; 19:81 - 111
  • Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 2005; 444:139 - 58; http://dx.doi.org/10.1016/j.abb.2005.10.018; PMID: 16309626
  • Tuteja N. Integrated calcium signaling in plants, In Signaling in plants, Baluska F and Mancuso S, eds. (Springer-Verloag Press, Germany) 2009; 29–49.
  • Newman EI, Reddel P. The distribution of mycorrhizas among families of vascular plants. New Phytol 1987; 106:745 - 51; http://dx.doi.org/10.1111/j.1469-8137.1987.tb00175.x
  • Prikryl Z, Vancura V, Wurst M. Auxin formation by rhizosphere bacteria as a factor of root growth. Biol Plant 1985; 27:159 - 63; http://dx.doi.org/10.1007/BF02902155
  • Bottini R, Cass´n F, Piccoli P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 2004; 65:497 - 503; http://dx.doi.org/10.1007/s00253-004-1696-1; PMID: 15378292
  • Lo´pez-Bucio J, Campos-Cuevas JC, Hern´ndez-Caldero´n E, Vel´squez-Becerra C, Fari´as-Rodri´guez R, Maci´as-Rodri´guez LI, et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 2007; 20:207 - 17; http://dx.doi.org/10.1094/MPMI-20-2-0207; PMID: 17313171
  • Bloemberg GV, Lugtenberg BJJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 2001; 4:343 - 50; http://dx.doi.org/10.1016/S1369-5266(00)00183-7; PMID: 11418345
  • Espinosa-Urgel M. Plant-associated Pseudomonas populations: molecular biology, DNA dynamics, and gene transfer. Plasmid 2004; 52:139 - 50; http://dx.doi.org/10.1016/j.plasmid.2004.06.004; PMID: 15518872
  • Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B. PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signal Behav 2009; 4:321 - 3; http://dx.doi.org/10.4161/psb.4.4.8106; PMID: 19794852
  • Cuvier O, Hirano T. A role of topoisomerase II in linking DNA replication to chromosome condensation. J Cell Biol 2003; 160:645 - 55; http://dx.doi.org/10.1083/jcb.200209023; PMID: 12604590
  • Singh BN, Mudgil Y, Sopory SK, Reddy MK. Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant. Plant Mol Biol 2003; 52:1063 - 76; http://dx.doi.org/10.1023/A:1025427700337; PMID: 14558665
  • Mo X, Zhu Q, Li X, Li J, Zeng Q, Rong H, et al. The hpa1 mutant of Arabidopsis reveals a crucial role of histidine homeostasis in root meristem maintenance. Plant Physiol 2006; 141:1425 - 35; http://dx.doi.org/10.1104/pp.106.084178; PMID: 16815950
  • Gao Z, Wen CK, Binder BM, Chen YF, Chang J, Chiang YH, et al. Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 2008; 283:23801 - 10; http://dx.doi.org/10.1074/jbc.M800641200; PMID: 18577522
  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, et al. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 2010; 285:26532 - 44; http://dx.doi.org/10.1074/jbc.M110.111021; PMID: 20479005
  • Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, van Loon LC, Pieterse CMJ. The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Mol Plant Microbe Interact 2004; 17:895 - 908; http://dx.doi.org/10.1094/MPMI.2004.17.8.895; PMID: 15305611
  • Tuteja N, Mahajan S. Calcium signaling network in plants: an overview. Plant Signal Behav 2007; 2:79 - 85; http://dx.doi.org/10.4161/psb.2.2.4176; PMID: 19516972
  • Vadassery J, Oelmüller R. Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant Signal Behav 2009; 4:215 - 6; http://dx.doi.org/10.4161/psb.4.11.9800; PMID: 19721753
  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, et al. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 2005; 139:1750 - 61; http://dx.doi.org/10.1104/pp.105.069757; PMID: 16299177
  • Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM, Squires TM, et al. A new abscisic acid catabolic pathway. Plant Physiol 2004; 134:361 - 9; http://dx.doi.org/10.1104/pp.103.030734; PMID: 14671016
  • Tuteja N. Abscisic Acid and abiotic stress signaling. Plant Signal Behav 2007; 2:135 - 8; http://dx.doi.org/10.4161/psb.2.3.4156; PMID: 19516981
  • Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 2007; 12:343 - 51; http://dx.doi.org/10.1016/j.tplants.2007.06.013; PMID: 17629540
  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J-P, et al. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 2009; 149:949 - 60; http://dx.doi.org/10.1104/pp.108.126938; PMID: 19074630
  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, et al. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 2004; 134:1439 - 49; http://dx.doi.org/10.1104/pp.103.037614; PMID: 15064374
  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E. Integration of abscisic acid signalling into plant responses. Plant Biol (Stuttg) 2006; 8:314 - 25; http://dx.doi.org/10.1055/s-2006-924120; PMID: 16807823
  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 2006; 141:97 - 107; http://dx.doi.org/10.1104/pp.106.079475; PMID: 16543410
  • Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, et al. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol Plant Microbe Interact 2008; 21:244 - 59; http://dx.doi.org/10.1094/MPMI-21-2-0244; PMID: 18184068
  • Ton J, Davison S, Van Wees SC, Van Loon L, Pieterse CM. The arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 2001; 125:652 - 61; http://dx.doi.org/10.1104/pp.125.2.652; PMID: 11161023
  • Tuominen H, Overmyer K, Keinänen M, Kollist H, Kangasjärvi J. Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in Arabidopsis. Plant J 2004; 39:59 - 69; http://dx.doi.org/10.1111/j.1365-313X.2004.02107.x; PMID: 15200642
  • Verhagen BWM, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 2010; 61:249 - 60; http://dx.doi.org/10.1093/jxb/erp295; PMID: 19812243
  • Stein E, Molitor A, Kogel KH, Waller F. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 2008; 49:1747 - 51; http://dx.doi.org/10.1093/pcp/pcn147; PMID: 18842596
  • Lorkovic´ ZJ, Herrmann RG, Oelmüller R. PRH75, a new nucleus-localized member of the DEAD-box protein family from higher plants. Mol Cell Biol 1997; 17:2257 - 65; PMID: 9121476
  • Kushwaha HR, Singh AK, Sopory SK, Singla-Pareek SL, Pareek A. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics 2009; 10:200; http://dx.doi.org/10.1186/1471-2164-10-200; PMID: 19400948
  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 2005; 102:509 - 14; http://dx.doi.org/10.1073/pnas.0406485102; PMID: 15630095
  • Krizek BA, Meyerowitz EM. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 1996; 122:11 - 22; PMID: 8565821
  • Zik M, Irish VF. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 2003; 15:207 - 22; http://dx.doi.org/10.1105/tpc.006353; PMID: 12509532
  • Li W, Chen C, Markmann-Mulisch U, Timofejeva L, Schmelzer E, Ma H, et al. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci U S A 2004; 101:10596 - 601; http://dx.doi.org/10.1073/pnas.0404110101; PMID: 15249667
  • Minorsky PV. A gene involved in homologous recombination. Plant Physiol 2005; 139:561 - 2; http://dx.doi.org/10.1104/pp.104.900175
  • Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 2006; 46:601 - 12; http://dx.doi.org/10.1111/j.1365-313X.2006.02723.x; PMID: 16640597
  • Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, Aida M, Tasaka M, et al. NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 2008; 20:2631 - 42; http://dx.doi.org/10.1105/tpc.108.060160; PMID: 18849494
  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, et al. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol 2010; 185:1062 - 73; http://dx.doi.org/10.1111/j.1469-8137.2009.03149.x; PMID: 20085621
  • Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic Acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 1991; 57:535 - 8; PMID: 16348419
  • Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 2001; 43:51 - 6; http://dx.doi.org/10.1007/s002840010259; PMID: 11375664
  • Nautiyal CS, Rehman A, Chauhan PS. Environmental Escherichia coli occur as natural plant growth-promoting soil bacterium. Arch Microbiol 2010; 192:185 - 93; http://dx.doi.org/10.1007/s00203-010-0544-1; PMID: 20084366
  • Bengtsson A, Bengtsson H. Microarray image analysis: background estimation using quantile and morphological filters. BMC Bioinformatics 2006; 7:96; http://dx.doi.org/10.1186/1471-2105-7-96; PMID: 16504173
  • Loguinov AV, Mian IS, Vulpe CD. Exploratory differential gene expression analysis in microarray experiments with no or limited replication. Genome Biol 2004; 5:R18; http://dx.doi.org/10.1186/gb-2004-5-3-r18; PMID: 15003121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.